首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human leukotriene C4 (LTC4) synthase was purified > 10000-fold from dimethylsulfoxide-differentiated U937 cells. Steps included: (a) solubilization of membrane-bound LTC4 synthase from microsomal membranes by the anionic detergent taurocholate; (b) successive anion-exchange chromatography steps in the presence of taurocholate plus Triton X-100 (primary anion exchange) then taurocholate plus n-octyl glucoside (secondary anion exchange); and (c) LTC2-affinity chromatography on a matrix that was constructed by first biotinylating synthetic LTC2 then immobilizing the biotinylated LTC2 on streptavidin agarose. The purification of human LTC4 synthase was enabled by the finding that LTC4 synthase activity in preparations enriched > 500-fold was absolutely dependent on the presence in LTC4 synthase incubation mixtures of divalent cations (specifically Mg2+) and phospholipids (specifically phosphatidylcholine), and that reduced glutathione, which was required at 2-4 mM for stabilization of LTC4 synthase, irreversibly inactivated the enzyme when present at > or = 5 mM during freeze/thaw cycles. The > 10000-fold purified LTC4 synthase preparation was comprised of three polypeptides having molecular masses of 37.1, 24.5 and 18.0 kDa. An 18-kDa polypeptide in both microsomal membranes and in the LTC2-affinity purified fraction was specifically labelled by a radioiodinated LTC4 photoaffinity probe (azido 125I-LTC4). The Km values in the LTC2-affinity purified preparation for reduced glutathione and LTA4 were 1.83 mM and 19.6 microM (respectively), closely resembling the Km values in isolated human blood monocytes. The Vmax of LTC2-affinity purified LTC4 synthase was 2-4 mumol LTC4 formed .min-1 x mg-1.  相似文献   

2.
Leukotrienes C4 and D4 (LTC4 and LTD4) stimulated, 5- to 6-fold, the adhesion of the monoblastoid cell line U-937 to plastic. Half-maximal effects were observed around 1 nM. Leukotrienes E4 and B4 (LTE4 and LTB4) were less effective. The adhesive response to LTC4 was inhibited by pertussis toxin and was completely dependent on the presence of extracellular Ca2+. The LTC4-stimulated increases in inositol-phosphates and in intracellular Ca(2+)-concentration were insensitive to pertussis toxin. Activation of leukocyte adhesion is a novel action of cysteinyl-leukotrienes and the present study suggests that control of U-937-cell adhesion by LTC4 involves two pathways; one pertussis toxin insensitive pathway regulating intracellular Ca2+ in a manner partly dependent on extracellular Ca2+ and one pertussis toxin sensitive pathway not concerned with Cai(2+)-regulation.  相似文献   

3.
Leukotriene (LT)C4 synthase is a membrane-bound, specific glutathione transferase which catalyzes the transformation of LTA4 to LTC4. It was originally shown to be present in rodent mastocytoma and basophilic leukemia cells as well as in macrophages. Recently, expression of human LTC4 synthase was demonstrated in platelets (S?derstr?m, M., et al. (1992) Arch. Biochem. Biophys. 294, 70-74). The present report describes the induction of LTC4 synthase activity during differentiation of human erythroleukemia (HEL) cells by the protein kinase C stimulator 12-O-tetradecanoyl phorbol 13-acetate (TPA), ligands of the steroid-thyroid hormone receptor superfamily: all-trans-retinoic acid (RA) and 1 alpha, 25-dihydroxy-vitamin D3 and in addition dimethylsulfoxide (DMSO). TPA was the most powerful inducer of enzyme activity followed by 1 alpha, 25-dihydroxy-vitamin D3 and DMSO. RA did not induce LTC4 synthase activity.  相似文献   

4.
Leukotriene (LT) C(4) synthase, an 18 kDa integral membrane enzyme, conjugates LTA(4) with reduced glutathione to form LTC(4), the parent compound of all cysteinyl leukotrienes that play a crucial role in the pathobiology of bronchial asthma. We have calculated a projection map of recombinant human LTC(4) synthase at a resolution of 4.5 A by electron crystallography, which shows that the enzyme is a trimer. A map truncated at 7.5 A visualizes four transmembrane alpha helices per protein monomer. The densities in projection indicate that most of the alpha helices run nearly perpendicular to the plane of the membrane. At this resolution, LTC(4) synthase is strikingly similar to microsomal glutathione S-transferase 1, which belongs to the same gene family but bears little sequence identity and no resemblance in substrate specificity to the LTC(4) synthase. These results provide new insight into the structure and function of membrane proteins involved in eicosanoid and glutathione metabolism.  相似文献   

5.
Human vascular permeability factor. Isolation from U937 cells   总被引:24,自引:0,他引:24  
Human vascular permeability factor (hVPF) is a glycoprotein that promotes fluid and protein leakage from blood vessels. The function of hVPF is at present unknown, but the potent bioactivities of this protein suggest that it could act during inflammation, wound healing, and tumor angiogenesis. hVPF was purified from serum-free conditioned medium of the human histiocytic lymphoma cell line U937 as a disulfide-linked dimeric 40-kDa protein that promoted dermal blood vessel leakage in guinea pigs at a dose of 20 ng (3 x 10(-9) M) and promoted in vitro endothelial cell growth at concentrations as low as 50 PM. Multiple forms of hVPF with apparent pI values greater than 7.5 were resolved using pH gradient electrophoresis. Antibodies against guinea pig vascular permeability factor were found to cross-react with hVPF. The N-terminal amino acid sequence of hVPF was similar to, but not identical with, the N-terminal sequence of guinea pig vascular permeability factor.  相似文献   

6.
Leukotriene C4 is considered to play a major role in several important pathophysiological conditions, e.g., allergy, asthma, and shock. The present investigation demonstrates the presence in human platelets of a membrane-associated enzyme catalyzing the final step in the biosynthesis of leukotriene C4. This leukotriene C4 synthase was shown to be distinct from previously characterized "microsomal" and soluble glutathione transferases. The latter enzymes did not contribute significantly to the leukotriene A4 conjugating activity in platelets. As determined with leukotriene C4 synthase of a crude membrane fraction from human platelets, the Km value was 7 microM and the V value was 0.56 nmol x min-1 x mg-1 with leukotriene A4 as substrate. The enzyme was 20-fold more efficient with leukotriene A4 than with leukotriene A5 and 30-fold more efficient than with the unphysiological derivative leukotriene A4 methyl ester, as measured by the corresponding V/Km values; 14,15-leukotriene A4 was not a substrate. Platelets should be a useful source for the purification and further characterization of human leukotriene C4 synthase.  相似文献   

7.
Leukotriene E4 (LTE4) is shown to be a partial agonist of leukotriene D4 (LTD4) in differentiated U-937 cells. The data that support this conclusion are: 1) LTE4 completely displaced [3H]LTD4 from its receptors in U-937 cell membranes. 2) LTE4 induced only 30 +/- 4% of the maximal Ca2+ transient induced by LTD4 in the presence of 1 mM extracellular Ca2+ and 60 +/- 4% of the maximal LTD4 response in the absence of extracellular Ca2+. 3) LTE4 induced only a fraction of the inositol phosphates metabolized by LTD4. Moreover, LTE4 resulted in essentially no production of the inositol 1,4,5-trisphosphate isomer, while LTD4 induced a rapid and substantial transient increase in this isomer. The generation of inositol phosphates by both agonists was unaffected by extracellular Ca2+. 4) The EC50 values for Ca2+ mobilization for LTD4 and LTE4 corresponded with their affinity (Kd values) for the LTD4 receptor. 5) A series of structurally diverse LTD4 receptor antagonists blocked the Ca2+ mobilization responses to LTD4 and LTE4 with identical rank orders of potency. 6) LTE4 acted as an antagonist of LTD4 of potency. 6) LTE4 acted as an antagonist of LTD4 effects when they were coadministered. 7) LTE4 and LTD4 acutely desensitized Ca2+ mobilization to each other. All of the effects of LTE4 are explained by its partial agonist activity at the LTD4 receptor as shown by the following data. 1) Neither LTD4 nor LTE4 had any effect on the agonist activity of fMet-Leu-Phe, LTB4, or platelet-activating factor. 2) None of the above agonists or antagonists to the above receptors affected any of the activities of LTD4 or LTE4. 3) Neither LTD4 nor LTE4 induced desensitization of Ca2+ mobilization to any of the non-LTD4 receptor agonists tested. 4) Under the conditions studied, we have not observed any evidence of multiple subclasses of LTD4 receptors in U-937 cells. LTE4 is a partial agonist of the LTD4 receptor, because it can only couple the LTD4 receptor to a portion of the signaling system available to the receptor when occupied by LTD4. Specifically, LTD4 caused the activation of receptor-operated calcium channels, mobilization of intracellular Ca2+, the activation of phosphatidylinositol-phospholipase C, and the liberation of an additional, as yet undefined, intracellular mediator. To do this, LTD4 receptors couple to at least two and perhaps more guanine nucleotide binding proteins. LTE4 is unable to activate the phosphatidylinositol-phospholipase C but can mimic the other effects of LTD4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Human genetic defect in leukotriene C4 synthesis   总被引:1,自引:0,他引:1  
Normal human platelets metabolise [3H]-LTA4 into [3H]-LTC4. Platelets from patients with glutathione synthetase deficiency possessing 10-30% of normal levels of cellular glutathione showed marked reduction in capacity to form [3H]-LTC4 (8-10% of normal) even though exogenous reduced glutathione was added to the incubation medium. To our knowledge this is the first demonstration of a genetic defect in LTC4 synthetase coupled to a defect in cellular glutathione levels.  相似文献   

9.
The utilization of LTA4 by peritoneal macrophages (MO) obtained from untreated rats (control) as well as by those elicited from rats was investigated at designated intervals (on days 3, 7, and 14) following the intraperitoneal injection of thioglycollate (TG). On day 7 following the injection the elicited MO converted LTA4 to LTC4 at the highest rate while the resident MO showed the lowest rate. The conversion of LTA4 to LTC4 and LTB4 was next examined by using each MO lysate. The apparent LTC4 synthase activity was significantly higher in the MO lysate both on day 3 and day 7, with the latter being the highest value obtained. The GSH S-transferase activity in each lysate using as the substrate, DNCB was significantly lower on day 3 but significantly higher on day 7 as compared to control values. However, this elevated activity was less variable than that observed with LTC4 synthase. The possible implication for these observations is discussed.  相似文献   

10.
11.
Leukotriene C(4) (LTC(4)) synthase conjugates LTA(4) with GSH to form LTC(4). Determining the site of LTC(4) synthesis and the topology of LTC(4) synthase may uncover unappreciated intracellular roles for LTC(4), as well as how LTC(4) is transferred to its export carrier, the multidrug resistance protein-1. We have determined the membrane localization of LTC(4) synthase by immunoelectron microscopy. In contrast to the closely related five-lipoxygenase-activating protein, LTC(4) synthase is distributed in the outer nuclear membrane and peripheral endoplasmic reticulum but is excluded from the inner nuclear membrane. We have combined immunofluorescence with differential membrane permeabilization to determine the topology of LTC(4) synthase. The active site of LTC(4) synthase is localized in the lumen of the nuclear envelope and endoplasmic reticulum. These results indicate that the synthesis of LTB(4) and LTC(4) occurs in different subcellular locations and suggests that LTC(4) must be returned to the cytoplasmic side of the membrane for export by multidrug resistance protein-1. The differential localization of two very similar integral membrane proteins suggests that mechanisms other than size-dependent exclusion regulate their passage to the inner nuclear membrane.  相似文献   

12.
Black cumin seed, Nigella sativa L., and its oils have traditionally been used for the treatment of asthma and other inflammatory diseases. Thymoquinone (TQ) has been proposed to be one of the major active components of the drug. Since leukotrienes (LTs) are important mediators in asthma and inflammatory processes, the effects of TQ on leukotriene formation were studied in human blood cells. TQ provoked a significant concentration-dependent inhibition of both LTC4 and LTB4 formation from endogenous substrate in human granulocyte suspensions with IC50 values of 1.8 and 2.3 microM, respectively, at 15 min. Major inhibitory effect was on the 5-lipoxygenase activity (IC50 3 microM) as evidenced by suppressed conversion of exogenous arachidonic acid into 5-hydroxy eicosatetraenoic acid (5HETE) in sonicated polymorphonuclear cell suspensions. In addition, TQ induced a significant inhibition of LTC4 synthase activity, with an IC50 of 10 microM, as judged by suppressed transformation of exogenous LTA4 into LTC4. In contrast, the drug was without any inhibitory effect on LTA4 hydrolase activity. When exogenous LTA4 was added to intact or sonicated platelet suspensions preincubated with TQ, a similar inhibition of LTC4 synthase activity was observed as in human granulocyte suspensions. The unselective protein kinase inhibitor, staurosporine failed to prevent inhibition of LTC4 synthase activity induced by TQ. The findings demonstrate that TQ potently inhibits the formation of leukotrienes in human blood cells. The inhibitory effect was dose- and time-dependent and was exerted on both 5-lipoxygenase and LTC4 synthase activity.  相似文献   

13.
U-937 cells differentiated with dimethylsulphoxide for 3-4 days express receptors for leukotriene D4 (LTD4), which are coupled to Ca2+ mobilization and phosphatidylinositol (PI) metabolism. Treatment of U-937 cells with an inhibitor of protein kinase C (PKC) [staurosporine (100 nM)] augmented the Ca2+ mobilized by LTD4. The peak concentration of the LTD4-induced increase in [Ca2+]i was 1500 nM in untreated cells and 3000 nM in cells treated with staurosporine for 30 s. Maximal mobilization responses were observed at 1-10 microM LTD4 in both control and staurosporine-treated cells. The increased Ca2+ response to LTD4 after staurosporine treatment occurred within 30 s and was attributable to both intracellular and extracellular stores. Additionally, a second phase of Ca2+ mobilization occurred after stimulation with LTD4, which was elevated by pretreatment with staurosporine--this effect was maximal after 5-10 min of treatment. Staurosporine either had no effect or decreased the Ca2+ mobilization response of differentiated U-937 cells to other agonists, such as LTB4, platelet activating factor, ATP or the chemotactic peptide f-Met-Leu-Phe. Although staurosporine alone had no effect on basal PI metabolism it increased LTD4-induced PI metabolism. Staurosporine did not prevent the tachyphylaxis observed upon second challenge with LTD4, nor did it prevent LTD4-induced homologous densensitization. Other compounds which inhibit PKC (sphingosine and 1-O-hexadecyl-2-O-methylglycerol), also enhanced the Ca2+ response of U-937 cells to LTD4, but not to other agonists. These data show that inhibition of PKC enhanced responses of LTD4, suggesting that PKC plays a role in determining the responsiveness of LTD4 receptors.  相似文献   

14.
Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression.  相似文献   

15.
16.
17.
Cystatin F is a cysteine peptidase inhibitor recently discovered in haematopoietic cells by cDNA cloning. To further investigate the expression, distribution and properties of the native human inhibitor the promyeloid cell line U937 has been studied. The cells expressed relatively large quantities of cystatin F, which was found both secreted and intracellularly. The intracellular levels were unusually high for a secreted cystatin ( approximately 25% of the cystatin F in 2- or 4-day culture medium). By contrast, U937 cells contained only 3-4% of the related inhibitor, cystatin C. Cystatin F purified from lysates of U937 cells showed three major forms carrying two, one or no carbohydrate chains. Immunocytochemistry demonstrated a marked cytoplasmic cystatin F staining in a granular pattern. Double staining with a marker for endoplasmic reticulum revealed no colocalization for cystatin F. Analysis of the promoter region of the cystatin F gene (CST7) showed that it, like that of the cystatin C gene (CST3), is devoid of typical TATA- and CAAT-box elements. In contrast to the cystatin C promoter, it does not contain multiple Sp1 binding sites, but has a unique site for C/EBPalpha, possibly explaining the restricted expression of the cystatin F gene. Cells stimulated with all-trans retinoic acid to differentiate them towards a granulocytic pathway, showed a strong ( approximately 18-fold) down-regulation of intracellular cystatin F and almost abolished secreted levels of the inhibitor. Stimulation with tetradecanoyl phorbol acetate, causing monocytic differentiation, also resulted in down-regulation (two fold to threefold) of cystatin F expression, whereas the cystatin C expression was essentially unaltered in both experiments. The results suggest that cystatin F as an intracellular cysteine peptidase inhibitor with readily regulated expression, may be a candidate to control the cysteine peptidase activity known to be essential for antigen presentation in different blood cell lineages.  相似文献   

18.
Leukemic cell lines, such as U937, THP-1, and HL60 cells, can differentiate into macrophages following exposure to various agents including 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro. It is well known that TPA enhances reactive oxygen species (ROS) generation through the activation of NADPH oxidase (NOX), and ROS act as mediators in TPA signaling. Extracellular-superoxide dismutase (EC-SOD) is a major anti-oxidative enzyme that protects the cells from damaging effects of superoxide. Recently, the reduction of Cu/Zn-SOD and the induction of Mn-SOD by TPA in leukemic cells have been reported; however, the regulation of EC-SOD by TPA remains poorly understood. Here, we explored the regulation of EC-SOD during the monocytic differentiation of U937 cells by TPA. We observed the reduction of EC-SOD and Cu/Zn-SOD, whereas the induction of Mn-SOD during the differentiation of U937 cells. The reduction of EC-SOD and Cu/Zn-SOD was attenuated by pretreatments with GF109203X (an inhibitor of protein kinase C, PKC), diphenyleneiodonium (an inhibitor of NOX), and U0126 (an inhibitor of mitogen-activated protein kinase kinase, MEK/extracellular-signal regulated kinase, ERK). Interestingly, pretreatment with BAY11-7082 (an inhibitor of nuclear factor-κB, NF-κB) suppressed the reduction of Cu/Zn-SOD, but not of EC-SOD. Furthermore, we also determined the involvement of newly synthesized protein and the instability of mRNA in the reduction of EC-SOD. Overall, our results suggest that the expression of EC-SOD is decreased by TPA through intracellular signaling consisting of PKC, NOX-derived ROS and MEK/ERK, but not of NF-κB signaling.  相似文献   

19.
Leukotriene (LT) A4 metabolism was studied in human platelets and endothelial cells, since both cells could be involved in transcellular formation of LTC4. Upon addition of exogenous LTA4, both cells produced LTC4 as a major metabolite at various incubation times, and no LTB4, LTD4, or LTE4 was detected. Kinetic studies revealed a higher apparent Km for LTA4 in endothelial cells as compared to platelets (5.8 microM for human umbilical vein endothelial cells (HUVEC) versus 1.3 microM for platelets); platelets were more efficient in this reaction with a higher Vmax (174 pmol/mg protein/min) versus 15 pmol/mg protein/min in HUVEC. The formation of LTC4 and corresponding kinetic parameters were not modified when platelets or endothelial cells were stimulated by thrombin prior to or simultaneously with the addition of LTA4. In both cells LTC4 synthase activity was not modified by repeated addition of LTA4 showing that it is not a suicide-inactivated enzyme. Furthermore, in platelets and endothelial cells, the enzyme activity was localized in the membrane fraction and was distinct from cytosolic glutathione-S-transferases. Platelet membrane fractions showed apparent Km values of 31 microM and 1.2 mM for LTA4 and GSH, respectively. Inhibition of LTC4 formation from platelets and endothelial cells preparations by S-substituted glutathione derivatives was correlated to the length of the S-alkyl chain. The same substances inhibited cytosolic glutathione-S-transferases with significantly lower IC50, confirming the distinct nature of the two enzymes. These results show that platelets and HUVEC possess similar enzymes for the production of LTC4 from LTA4; however, platelets seem to have a higher efficiency than HUVEC in performing this reaction.  相似文献   

20.
Human leukotriene C4 synthase (hLTC4S) is an integral membrane enzyme that conjugates leukotriene (LT) A4 with glutathione to form LTC4, a precursor to the cysteinyl leukotrienes (LTC4, LTD4, and LTE4) that are involved in the pathogenesis of human bronchial asthma. From the crystal structure of hLTC4S, Arg-104 and Arg-31 have been implicated in the conjugation reaction. Here, we used site-directed mutagenesis, UV spectroscopy, and x-ray crystallography to examine the catalytic role of Arg-104 and Arg-31. Exchange of Arg-104 with Ala, Ser, Thr, or Lys abolished 94.3–99.9% of the specific activity against LTA4. Steady-state kinetics of R104A and R104S revealed that the Km for GSH was not significantly affected. UV difference spectra of the binary enzyme-GSH complex indicated that GSH ionization depends on the presence of Arg-104 because no thiolate signal, with λmax at 239 nm, could be detected using R104A or R104S hLTC4S. Apparently, the interaction of Arg-104 with the thiol group of GSH reduces its pKa to allow formation of a thiolate anion and subsequent nucleophilic attack at C6 of LTA4. On the other hand, exchange of Arg-31 with Ala or Glu reduced the catalytic activity of hLTC4S by 88 and 70%, respectively, without significantly affecting the kcat/Km values for GSH, and a crystal structure of R31Q hLTC4S (2.1 Å) revealed a Gln-31 side chain pointing away from the active site. We conclude that Arg-104 plays a critical role in the catalytic mechanism of hLTC4S, whereas a functional role of Arg-31 seems more elusive. Because Arg-104 is a conserved residue, our results pertain to other homologous membrane proteins and represent a structure-function paradigm probably common to all microsomal GSH transferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号