首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently described a large, multiple-conductance Cl- channel in excised patches from normal T lymphocytes. The properties of this channel in excised patches are similar to maxi-Cl- channels found in a number of cell types. The voltage dependence in excised patches permitted opening only at nonphysiological voltages, and channel activity was rarely seen in cell-attached patches. In the present study, we show that Cl- channels can be activated in intact cells at physiological temperatures and voltages and that channel properties change after patch excision. Maxi-Cl- channels were reversibly activated in 69% of cell-attached patches when the temperature was above 32 degrees C, whereas fewer than 2% of patches showed activity at room temperature. Upon excision, the same patches displayed large, multiple-conductance Cl- channels with characteristics like those we previously reported for excised patches. After patch excision, warm temperatures were not essential to allow channel activity; 37% (114/308) of inside-out patches had active channels at room temperature. The voltage dependence of the channels was markedly different in cell-attached recordings compared with excised patches. In cell-attached patches, Cl- channels could be open at cell resting potentials in the normal range. Channel activation was not related to changes in intracellular Ca2+ since neither ionomycin nor mitogens activated the channels in cell-attached patches, Ca2+ did not rise in response to warming and the Cl- channel was independent of Ca2+ in inside-out patches. Single-channel currents were blocked by internal or external Zn2+ (100-200 microM), 4-acetamido-4' isothiocyanostilbene-2,2'-disulfonate (SITS, 100-500 microM) and 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS, 100 microM). NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) reversibly blocked the channels in inside-out patches.  相似文献   

2.
We studied the ionic permeability of cGMP-dependent currents in membrane patches detached from the outer segment of retinal cone and rod photoreceptors. Reversal potentials measured in membranes exposed to symmetric Na+ but with varying cytoplasmic Ca2+ concentrations reveal that the permeability ratio, PCa/PNa, is higher in the cGMP-gated channels of cones (7.6 +/- 0.8) than in those of rods (3.1 +/- 1.0). Ca2+ blocks both channels in a voltage-dependent manner. At any Ca2+ concentration, the channel block is maximal near the ionic reversal potential. The maximal block is essentially identical in channels of cones and rods with respect to its extent and voltage and Ca2+ dependence. The Ca2+ block is relieved by voltage, but the features of this relief differ markedly between rods and cones. Whereas the Boltzmann distribution function describes the relief of block by hyperpolarizing voltages, any given voltage is more effective in relieving the Ca2+ block in cones than in rods. Similarly, depolarizing voltages more effectively relieve Ca2+ block in cones than in rods. Our results suggest that channels contain two binding sites for Ca2+, one of which is similar in the two receptor types. The second site either interacts more strongly with Ca2+ than the first one or it is located differently in the membrane, so as to be less sensitive to membrane voltage. The channels in rods and cones differ in the features of this second site. The difference in Ca2+ permeability between the channels is likely to result in light-dependent changes in cytoplasmic Ca2+ concentration that are larger and faster in cones than in rods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

4.
K+ channels were recorded in excised, inside-out patches from the apical membrane of the freshly isolated tubule of the caudal portion of the rat epididymis. With asymmetric K+ concentrations in bath and pipette (140 mM K+in/6 mM K+out), the channels had a slope conductance of 54.2 pS at 0 mV. The relative permeability of K+ over Na+ was about 171 to 1. The channels were activated by intracellular Ca2+ and by membrane depolarization. These channels belong to a class defined as "intermediate-conductance Ca2+-activated K+ channel. " External tetraethylammonium ions (TEA+) caused a flickery block of the channel with reduction in single-channel current amplitude measured at a range of holding membrane potentials (-40 to 60 mV). Activity of the K+ channels was inhibited by intracellular ATP (KD =1.188 mM). The channel activity was detected only occasionally in patches from the apical membrane (about 1 in 17 patches containing active channels). The presence of the intermediate-conductance Ca2+-activated K+ channels indicates that they could provide a route for K+ secretion in a Ca2+-dependent process responsible for a high luminal K+ concentration found in the epididymal duct of the rat.  相似文献   

5.
The effect of cAMP on Ca(2+)-permeable channels from Arabidopsis thaliana leaf guard cell and mesophyll cell protoplasts was studied using the patch clamp technique. In the whole cell configuration, dibutyryl cAMP was found to increase a hyperpolarization-activated Ba(2+) conductance (I(Ba)). The increase of I(Ba) was blocked by the addition of GdCl(3). In excised outside-out patches, the addition of dibutyryl cAMP consistently activated a channel with particularly fast gating kinetics. Current/voltage analyses indicated a single channel conductance of approximately 13 picosiemens. In patches where we measured some channel activity prior to cAMP application, the data suggest that cAMP enhances channel activity without affecting the single channel conductance. The cAMP activation of these channels was reversible upon washout. The results obtained with excised patches indicate that the cAMP-activated I(Ba) seen in the whole cell configuration could be explained by a direct effect of cAMP on the Ca(2+) channel itself or a close entity to the channel. This work represents the first demonstration using patch clamp analysis of the presence in plant cell membranes of an ion channel directly activated by cAMP.  相似文献   

6.
Application of Ca2+ to the inner surface of red-cell membranes activates unitary currents that can be measured in cell-attached and cell-free membrane patches. Ca2+ can be replaced by Pb2+ to activate the single channels. In addition to internal Ca2+ external K+ has to be present. The channels are preferentially permeable to K+ with a selectivity ratio PK:PNa of about 15:1 as estimated from measurement of reversal potentials. The dependence of channel activity on Ca2+ is compatible with the conception that the binding of two Ca2+ is necessary to open a single channel. Both the channel activity and the single-channel conductance exhibit inward rectification. External and internal Na+ inhibit the K+ currents. The reported results suggest that the unitary current events are responsible for the Ca2+-dependent K+ permeability known from measurement on cell suspensions. Therefore, comparison of the two techniques allows calculation of the number of K+ channels per red cell, which on average is about 10.  相似文献   

7.
Ionic conductances of squid giant fiber lobe neurons   总被引:6,自引:3,他引:3       下载免费PDF全文
The cell bodies of the neurons in the giant fiber lobe (GFL) of the squid stellate ganglion give rise to axons that fuse and thereby form the third-order giant axon, whose initial portion functions as the postsynaptic element of the squid giant synapse. We have developed a preparation of dissociated, cultured cells from this lobe and have studied the voltage-dependent conductances using patch-clamp techniques. This system offers a unique opportunity for comparing the properties and regional differentiation of ionic channels in somatic and axonal membranes within the same cell. Some of these cells contain a small inward Na current which resembles that found in axon with respect to tetrodotoxin sensitivity, voltage dependence, and inactivation. More prominent is a macroscopic inward current, carried by Ca2+, which is likely to be the result of at least two kinetically distinct types of channels. These Ca channels differ in their closing kinetics, voltage range and time course of activation, and the extent to which their conductance inactivates. The dominant current in these GFL neurons is outward and is carried by K+. It can be accounted for by a single type of voltage-dependent channel. This conductance resembles the K conductance of the axon, except that it partially inactivates during relatively short depolarizations. Ensemble fluctuation analysis of K currents obtained from excised outside-out patches is consistent with a single type of K channel and yields estimates for the single channel conductance of approximately 13 pS, independently of membrane potential. A preliminary analysis of single channel data supports the conclusion that there is a single type of voltage-dependent, inactivating K channel in the GFL neurons.  相似文献   

8.
Voltage-gated, Ca2+ release channels have been characterized at the vacuolar membrane of broad bean guard cells using patch clamps of excised, inside-out membrane patches. The most prevalent Ca2+ release channel had a conductance of 27 pS over voltages negative of the reversal potential (Erev) (cytosol referenced to vacuole), with 5,10, or 20 mM Ca2+ as the charge carrier on the vacuolar side and 50 mM K+ on the cytosolic side. The single-channel current saturated at ~2.6 pA. The relative permeability of the channel was in the range of a Pca2+:Pk+ ratio of 6:1. Divalent cations could act as charge carriers on the vacuolar side with a conductance series of Ba2+ > Mg2+ > Sr2+ > Ca2+ and a selectivity sequence of Ca2+ [approximately equals to] Ba2+ [approximately equals to] Sr2+ > Mg2+. The channel was gated open by cytosol-negative (physiological) transmembrane voltages, increases in vacuolar Ca2+ concentration, and increases in the vacuolar pH. The channel was potently inhibited by the Ca2+ channel blockers Gd3+ (half-maximal inhibition at 10.3 [mu]M) and nifedipine (half-maximal inhibition at 77 [mu]M). The stilbene derivative 4,4[prime]-diisothiocyano-2,2[prime]-stilbene disulfonate was also inhibitory (half-maximal inhibition for a 4-min incubation period at 6.3[mu]M). The 27-pS channel coresides in individual guard cell vacuoles with a less frequently observed 14-pS Ca2+ release channel that had similar, although not identical, voltage dependence and gating characteristics and a lower selectivity for Ca2+ over K+. The requirement for two channels with a similar function at the vacuolar membrane of guard cells is discussed.  相似文献   

9.
NO-induced activation of cGMP-dependent protein kinase (PKG) increases the open probability of large conductance Ca2+-activated K+ channels and results in smooth muscle relaxation. However, the molecular mechanism of channel regulation by the NO-PKG pathway has not been determined on cloned channels. The present study was designed to clarify PKG-mediated modulation of channels at the molecular level. The cDNA encoding the alpha-subunit of the large conductance Ca2+-activated K+ channel, cslo-alpha, was expressed in HEK293 cells. Whole cell and single channel characteristics of cslo-alpha exhibited functional features of native large conductance Ca2+-activated K+ channels in smooth muscle cells. The NO-donor sodium nitroprusside increased outward current 2.3-fold in whole cell recordings. In cell-attached patches, sodium nitroprusside increased the channel open probability (NPo) of cslo-alpha channels 3.3-fold without affecting unitary conductance. The stimulatory effect of sodium nitroprusside was inhibited by the PKG-inhibitor KT5823. Direct application of PKG-Ialpha to the cytosolic surface of inside-out patches increased NPo 3.2-fold only in the presence of ATP and cGMP without affecting unitary conductance. A point mutation of cslo-alpha in which Ser-1072 (the only optimal consensus sequence for PKG phosphorylation) was replaced by Ala abolished the PKG effect on NPo in inside-out patches and the effect of SNP in cell attached patches. These results indicate that PKG activates cslo-alpha by direct phosphorylation at serine 1072.  相似文献   

10.
Single potassium channels in the membrane of human malignant glioma cells U-118MG were studied using the technique of patch clamp in cell-attached and inside-out configurations. Three types of potassium channels were found which differed from each other under conditions close to physiological in their conductance and gating characteristics. The lowest-conductance channel (20 pS near the reversal potential) showed a mild outward rectification up to 45 pS at positive voltages and spontaneous modes of high and low activity. At extreme values of potentials its activity was generally low. The intermediate conductance channel had an S-shaped I-V curve, giving a conductance of 63 pS at reversal, and a low and voltage independent opening probability. The high-conductance (215 pS) channel was found to be activated by both membrane potential and Ca2+ ions and blocked by internal sodium at high voltages. The current-voltage curves of all three channel types displayed saturation.  相似文献   

11.
The patch-clamp technique was used to investigate the properties of a cation-selective channel in the basolateral membrane of microdissected collagenase-treated fragments of cortical thick ascending limbs of Henle's loop from mouse kidney. The channel activity was seldom observed in cell-attached patches (2 out 15 studied cases). In inside-out excised patches immersed in symmetrical NaCl Ringer's solutions, the unit channel conductance was ohmic and ranged from 22 to 33 pS (mean, 26.8 +/- 0.6 pS, n = 24). When NaCl was replaced by KCl (n = 8) or sodium gluconate (n = 2) on the cytoplasmic side of the membrane, single-channel currents still reversed at 0 mV and the conductance was unchanged. The reversal potential was +28.8 +/- 0.4 mV (n = 8) when a NaCl concentration (140 vs. 42 mmol/l) gradient was applied, close to the expected value (approx. 30 mV) for a cation selective channel. The channel was found to discriminate poorly between Na+, K+, Cs+, and Li+ ions. The activity of the channel was not clearly voltage-dependent but was dependent upon the free Ca2+ concentration on the cytoplasmic side of the membrane. We conclude that the channel resembles the non-selective cation channel which has been previously described in several tissues.  相似文献   

12.
The currents through single Ca2+-activated K+ channels were studied in excised inside-out membrane patches of human erythrocytes. The effects of temperature on single-channel conductance, on channel gating and on activation by Ca2+ were investigated in the temperature range from 0 up to 47 degrees C. The single-channel conductance shows a continuous increase with increasing temperature; an Arrhenius plot of the conductance gives the activation energy of 29.6 +/- 0.4 kJ/mol. Reducing the temperature alters channel-gating kinetics which results in a significant increase of the probability of the channel being open (Po). The calcium dependence of Po is affected by temperature in different ways; the threshold concentration for activation by Ca2+ is not changed, the Ca2+ concentration of half-maximal channel activation is reduced from 2.1 mumol/l at 20 degrees C to 0.3 mumol/l at 0 degrees C, the saturation level of the dependence is reduced for temperatures higher then about 30 degrees C. The relevance of the obtained data for the interpretation of the results known from flux experiments on cells in suspensions is discussed.  相似文献   

13.
The patch-clamp technique was employed to investigate the response of single L-type Ca2+ channels to the protease trypsin applied to the intracellular face of excised membrane patches from guinea pig ventricular myocytes. Calpastatin and ATP were used to prevent run-down of Ca2+ channel activity monitored with 96 mM Ba2+ as charge carrier in the presence of 2.5 microM (-)-BAYK 8644. Upon application of trypsin (100 micrograms/ml) channel activity was enhanced fourfold and remained elevated upon removal of trypsin, as expected of a proteolytic, irreversible modification. The trypsin effect was not mediated by a proteolytic activation of protein kinases, as evidenced by the insensitivity of this effect to protein kinase inhibitors. Trypsin-modified Ca2+ channels exhibited the usual run-down phanomenon upon removal of calpastatin and ATP. In ensemble average currents trypsin-induced changes of channel function are apparent as a threefold increase in peak current and a reduction in current inactivation. At the single channel level these effects were based on about a twofold increase in both Ca2+ channels' availability and open probability. Neither the actual number of channels in the patch nor their unitary conductance as well as reversal potential was changed by trypsin. The Ca(2+)-induced inactivation was not impaired, as judged by a comparable sensitivity of trypsin-modified Ca2+ channels to intracellular Ca2+. Similarly, trypsin treatment did not affect the sensitivity of Ca2+ channels to phenylalkylmine inhibition. The observed alterations in channel function are discussed in terms of possible structural correlates.  相似文献   

14.
Low-conductance states of K+ channels in adult mouse skeletal muscle   总被引:1,自引:0,他引:1  
Single-channel currents were recorded from Ca2+-activated or ATP-sensitive K+ channels in inside-out membrane patches excised from isolated mouse toe muscles. In addition to the closed and fully open configurations, both types of channels may exhibit several intermediate low-conductance states which are clustered near multiples of elementary conductance units. The units are 1/8 or 1/6 of the channel conductance for Ca2+-activated channels and 1/4 or 1/3 for ATP-sensitive channels. Normally, low-conductance states are rare, but they occur more frequently directly after patch excision. An increased probability of low-conductance states of ATP-sensitive K+ channels was also observed in the presence and during washout of the internal channel blocker adenine. The results suggest that Ca2+-activated and ATP-sensitive K+ channels are composed of several membrane pores with strong positive cooperativity among the elementary conductance units.  相似文献   

15.
Voltage-gated n-type K(V) and Ca(2+)-activated K+ [K(Ca)] channels were studied in cell-attached patches of activated human T lymphocytes. The single-channel conductance of the K(V) channel near the resting membrane potential (Vm) was 10 pS with low K+ solution in the pipette, and 33 pS with high K+ solution in the pipette. With high K+ pipette solution, the channel showed inward rectification at positive potentials. K(V) channels in cell-attached patches of T lymphocytes inactivated more slowly than K(V) channels in the whole-cell configuration. In intact cells, steady state inactivation at the resting membrane potential was incomplete, and the threshold for activation was close to Vm. This indicates that the K(V) channel is active in the physiological Vm range. An accurate, quantitative measure for Vm was obtained from the reversal potential of the K(V) current evoked by ramp stimulation in cell-attached patches, with high K+ solution in the pipette. This method yielded an average resting Vm for activated human T lymphocytes of -59 mV. Fluctuations in Vm were detected from changes in the reversal potential. Ionomycin activates K(Ca) channels and hyperpolarizes Vm to the Nernst potential for K+. Elevating intracellular Ca2+ concentration ([Ca2+]i) by ionomycin opened a 33-50-pS channel, identified kinetically as the CTX-sensitive IK-type K(Ca) channel. The Ca2+ sensitivity of the K(Ca) channel in intact cells was determined by measuring [Ca2+]i and the activity of single K(Ca) channels simultaneously. The threshold for activation was between 100 and 200 nM; half-maximal activation occurred at 450 nM. At concentrations > 1 microM, channel activity decreased. Stimulation of the T-cell receptor/CD3 complex using the mitogenic lectin, PHA, increased [Ca2+]i, and increased channel activity and current amplitude resulting from membrane hyperpolarization.  相似文献   

16.
Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.  相似文献   

17.
Cyclic nucleotide-gated (CNG) channels have been shown to be blocked by diltiazem, tetracaine, polyamines, toxins, divalent cations, and other compounds. Dequalinium is an organic divalent cation which suppresses the rat small conductance Ca(2+)-activated K(+) channel 2 (rSK2) and the activity of protein kinase C. In this study, we have tested the ability of dequalinium to block CNGA1 channels and heteromeric CNGA1+CNGB1 channels. When applied to the intracellular side of inside-out excised patches from Xenopus oocytes, dequalinium blocks CNGA1 channels with a K(1/2) approximately 190 nM and CNGA1+CNGB1 channels with a K(1/2) approximately 385 nM, at 0 mV. This block occurs in a state-independent fashion, and is voltage dependent with a zdelta approximately 1. Our data also demonstrate that dequalinium interacts with the permeant ion probably because it occupies a binding site in the ion conducting pathway. Dequalinium applied to the extracellular surface also produced block, but with a voltage dependence that suggests it crosses the membrane to block from the inside. We also show that at the single-channel level, dequalinium is a slow blocker that does not change the unitary conductance of CNGA1 channels. Thus, dequalinium should be a useful tool for studying permeation and gating properties of CNG channels.  相似文献   

18.
M Chua  W J Betz 《Biophysical journal》1991,59(6):1251-1260
The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system.  相似文献   

19.
Depletion of intracellular calcium stores induces transmembrane Ca2+ influx. We studied Ca(2+)- and Ba(2+)-permeable ion channels in A431 cells after store depletion by dialysis of the cytosol with 10 mM BAPTA solution. Cell-attached patches of cells held at low (0.5 microM) external Ca2+ exhibited transient channel activity, lasting for 1-2 min. The channel had a slope conductance of 2 pS with 200 mM CaCl2 and 16 pS with 160 mM BaCl2 in the pipette. Channel activity quickly ran down in excised inside-out patches and was not restored by InsP3 and/or InsP4. Thapsigargin induced activation in cells kept in 1 mM external Ca2+ after BAPTA dialysis. These channels represent one Ca2+ entry pathway activated by depletion of internal calcium stores and are clearly distinct from previously identified calcium repletion currents.  相似文献   

20.
The light-activated channels of Drosophila photoreceptors transient receptor potential (TRP) and TRP-like (TRPL) show voltage-dependent conductance during illumination. Recent studies implied that mammalian members of the TRP family, which belong to the TRPV and TRPM subfamilies, are intrinsically voltage-gated channels. However, it is unclear whether the Drosophila TRPs, which belong to the TRPC subfamily, share the same voltage-dependent gating mechanism. Exploring the voltage dependence of Drosophila TRPL expressed in S2 cells, we found that the voltage dependence of this channel is not an intrinsic property since it became linear upon removal of divalent cations. We further found that Ca(2+) blocked TRPL in a voltage-dependent manner by an open channel block mechanism, which determines the frequency of channel openings and constitutes the sole parameter that underlies its voltage dependence. Whole cell recordings from a Drosophila mutant expressing only TRPL indicated that Ca(2+) block also accounts for the voltage dependence of the native TRPL channels. The open channel block by Ca(2+) that we characterized is a useful mechanism to improve the signal to noise ratio of the response to intense light when virtually all the large conductance TRPL channels are blocked and only the low conductance TRP channels with lower Ca(2+) affinity are active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号