首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Either S3-coupled spleen cells (S3-SC) or soluble S3 activates two populations of regulatory T cells, T suppressor cells (Ts) and contrasuppressor T cells (Tcs). The latter cells function to mask the activity of Ts in unfractionated T cell populations, so that Ts can be detected only after removal of Tcs. Activation of Tcs by S3 may be required for induction of an antibody response to S3. This is suggested by the findings that Tcs are activated only by immunogenic doses of S3, that Tcs are not detectable in the spleens of mice tolerant to S3, and that (CBA/N X BALB/c)F1 male (xid) mice, which are genetically unresponsive to S3, do not develop Tcs after immunization with S3. Moreover, the kinetics of activation of Tcs by S3 closely parallels the kinetics of the antibody response to S3. Tcs have no detectable activity in the absence of Ts, indicating that these cells do not function as amplifier or helper T cells.  相似文献   

2.
Type III pneumococcal polysaccharide (S3) coupled to spleen cells (S3-SC) has been shown to activate S3-specific Ts and Tcs in mice. Ts activation required I-J identity between carrier SC and Ts donors whereas I-A identity was required for Tcs activation. The carrier SC therefore presumably function as APC for Ts and Tcs activation by S3 since they are apparently not represented by APC present in the Ts and Tcs donors. The properties of the APC required for activation of S3-specific Ts and Tcs were determined by coupling S3 to various spleen cell subpopulations and assessing the ability of the various S3-SC populations to activate Ts and Tcs. The results indicate that Ts and Tcs are preferentially activated when S3 is presented on distinct cell types. S3-specific Ts were activated when S3 was coupled to plastic adherent cells. These cells are nonadherent to anti-Ig and nonfunctional in cyclophosphamide (Cy)-treated mice and their function is eliminated following treatment of cells with either anti-I-A or anti-I-J and C. In contrast, S3-specific Tcs were activated when S3 was coupled to anti-Ig adherent SC which bear I-A and the B cell marker J11d. These cells are functional in Cy-treated mice and their function is resistant to treatment with anti-I-J and C. Thus presentation of S3 on distinct cell types results in the preferential activation of T cells having opposing immunoregulatory function.  相似文献   

3.
A Ts cell subset has been identified in the spleens of responder mice 3 to 6 wk after immunization with an optimally immunogenic dose of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). These Ts were positively selected by panning procedures by using a mAb (1248 A4.10) produced by immunization of rats with semipurified mouse GAT-specific, single polypeptide chain suppressor factor. These Ts cells inhibited the activity of virgin Th cells but not memory Th cells and this activity was genetically restricted by genes which are linked to the Ig H chain (Igh) locus on chromosome 12. Use of the Igh recombination strain, BAB.14, which has a crossover near the VHCH region junction, demonstrated that the genes regulating the Igh restriction map telomeric to the VH genes. The Igh-linked restriction regulated the interaction of A4.10+ Ts cells with virgin T cells and not B cells. However, A4.10+ Ts did not act directly on Lyt-2-Th cells, but required the presence of Lyt-2+ cells for suppression. Suppression by GAT-primed A4.10+-Ts cells also required syngenicity at Igh-linked genes by both Lyt-2- and Lyt-2+ T cells. These results indicated that A4.10+-Ts cells were inducer Ts cells which activated Lyt-2+ effector Ts cells which prevented primary GAT specific Th cell activity. The interaction between A4.10+-Ts inducer and effector Ts cells and/or the interaction of the effector Ts and its target cell were restricted by genes linked to the Igh constant region.  相似文献   

4.
5.
The cellular and molecular characteristics of anti-idiotype-induced suppression have been investigated. We have shown that i.v. immunization of A/J or C.AL-20 mice with rabbit antibodies against the major cross-reactive idiotype on A/J anti-ABA antibodies induces splenic suppressor T cells (Ts) able to suppress T cell-mediated cytolytic and delayed-type hypersensitivity responses to ABA. In these studies, we compare the T suppressor activity manifested by anti-Id-induced suppressor cells with that described previously after conventional antigen priming. Results indicate that i.v. injection of anti-idiotypic antibodies primes for efferent level Ts; in contrast, i.v. administration of ABA-coupled cells induces afferent level suppressor cells. Soluble cell lysates, containing suppressor factor(s) derived from these anti-idiotype-induced Ts, can also mediate suppression of T cell immune responses in an efferent manner. Factor-mediated suppression is MHC-unrestricted and is also observed in mice pretreated with cyclophosphamide, suggesting that this activity is analogous to third-order suppression. Furthermore, this factor suppresses the T cell-mediated DTH and CTL responses in an antigen-nonspecific but Igh-restricted manner. These latter results suggest that the cellular elements conferring antigen specificity and Igh restriction are separate. The implications of these findings to the relationship between idiotypic elements, antigen-binding structures, and Igh restriction elements on immunoregulatory T cells are discussed.  相似文献   

6.
In the companion paper (J. Rossert et al., Cell. Immunol. 137, 1991), we showed by using limiting dilution analysis that Lewis (LEW) rats injected with HgCl2 and immunized with myelin (LEWHg/MYE) exhibit anti-basic protein CD4+ T helper cells (Th), at least 10-fold more frequent CD8+ T suppressor cells (Ts), and T contrasuppressor cells (Tcs). These Tcs cells were shown to be CD4+ T cells adhering to Vicia villosa (VV) lectin and allowed Th cells to proliferate despite the presence of Ts cells. The CD8+ Ts cells might be responsible for the protection from experimental allergic encephalomyelitis (EAE) observed in about 70% of LEW rats injected with HgCl2. The concomitant presence of CD4+ Tcs cells might explain that 30% of the rats escaped this protection. The aim of this work is to demonstrate in vivo the roles of CD8+ Ts cells and Tcs cells in mercury-induced protection from EAE. It will be shown that LEWHg/MYE rats depleted of CD8+ cells as well as LEWHg/MYE rats transferred with VV lectin-adherent Tcs cells develop EAE. These data demonstrate that CD8+ Ts cells are responsible for HgCl2-induced protection and that Tcs cells are involved in the control of Ts cells in vivo.  相似文献   

7.
Type III pneumococcal polysaccharide (S3) is unable to activate S3-specific contrasuppressor T cells (Tcs) in mice depleted of B cells by chronic anti-IgM treatment or in immune defective xid mice that lack the B cell subset required for anti-S3 antibody responses. The inability of S3 to activate Tcs in xid mice was shown to be due to a requirement of B cells for Tcs activation rather than to an absence of Tcs in xid mice. The B cells from normal mice that are required for Tcs activation apparently function to present the S3 Ag to Tcs. S3 physically coupled to spleen cells (S3-SC) prepared from normal BCF1 SC could activate Tcs in both xid and BCF1 mice whereas S3-SC prepared from xid SC or B cell-depleted BCF1 SC could not activate Tcs in either strain. B cell APC function was abrogated by 3000 R irradiation and by treatment of the B cells with either chloroquine or paraformaldehyde. Interestingly, B cells from mice previously immunized with S3 were unable to function in Tcs activation; preimmunization of B cell donors with an irrelevant Ag or with a T-dependent form of S3 had no effect on their ability to function as APC. These latter observations are discussed in terms of the in vivo persistence of polysaccharide Ag and their ability to induce B cell tolerance under the experimental conditions used for these experiments. The results of this study provide evidence that B cells play an important and apparently obligatory role in the activation of Tcs by S3; B cells apparently function to present Ag to Tcs, resulting in the activation of this regulatory T cell subset.  相似文献   

8.
A profound state of specific tolerance for the contact sensitivity reaction can be produced by i.v. exposure to hapten on the surface of syngeneic macrophages. When the same haptenated cells are incubated with specific antibody to form cell-bound Ag-antibody complexes, i.v. injection induces immunity rather than tolerance. We observe that such cell-bound Ag-antibody complexes induce not only effector cells for contact sensitivity but also hapten-specific contrasuppressor T (Tcs) cells, which are capable of rendering effector cells resistant to the inhibitory effects of Ts cells. Whereas the induction of the effector cells of contact sensitivity by cell-bound complexes required I region compatibility between the injected cells and the recipient, the induction of Tcs cells showed no genetic restriction. On the other hand, induction of contrasuppression required intact Fc on the complexed antibody, inasmuch as F(ab')2 fragments of specific antibody did not induce immunity. In addition, Tcs cells could also be induced by Ag-antibody complexes on opsonized TNP-mouse RBC treated with anti-TNP antibody. Immunity induced by cell-bound Ag-antibody complexes was observed only when antibodies of the IgM, IgG3, or IgG1 isotypes are used to generate the complexes. Further studies demonstrated that the Tcs cells induced in this way displayed the phenotype of Tcs cells described in other systems (Lyt-1+,2- I-J+, Vicia villosa lectin-adherent) and released a hapten-specific contrasuppressor factor. These studies indicate that Tcs cells can be induced independently of other T cells (such as the effector cells of contact sensitivity) and are likely to be responsible for some of the immunoregulatory effects of cell-bound Ag-antibody complexes. The role of antibody isotype in the induction of Tcs cells is discussed.  相似文献   

9.
In the present study, we have isolated and characterized the Lyt-1+, -2- T contrasuppressor (Tcs) cells from mice systemically primed with SRBC. Adoptive transfer of splenic Tcs cells from these mice abrogates oral tolerance and supports IgM and IgG anti-SRBC plaque-forming cell (PFC) responses; however, unlike the responses seen after transfer of Tcs cells derived from orally primed mice, low IgA responses were seen. Mice systemically primed with lower SRBC doses (0.01 to 1%) exhibited contrasuppression only within the L3T4- T cell subset, whereas mice primed with a high dose of SRBC (10%), harbored Lyt-1+, -2- Tcs cells in both the L3T4+ and L3T4- subsets. Both the L3T4- and L3T4+ Tcs cell subsets supported IgM and IgG responses when adoptively transferred to orally tolerized mice, and when added to tolerized spleen cell cultures. Splenic Tcs cells from systemically primed mice supported mainly IgG1 and IgG2b subclass anti-SRBC PFC responses, a pattern also seen with Tcs cells derived from orally primed mice. Both L3T4+ and L3T4- Tcs cells from systemically primed mice exhibited well established characteristics of contrasuppressor cells including binding to Vicia villosa lectin and expression of I-J. The splenic effector Tcs cells which support IgM, IgG1 and IgG2b anti-SRBC PFC responses are antigen-specific, since both L3T4- and L3T4+ Tcs cells from spleens of mice primed with 10% SRBC reverse tolerance to SRBC, but not to horse erythrocytes (HRBC). Further, both L3T4- and L3T4+ Tcs cells from HRBC-primed mice reverse tolerance to IgM and IgG anti-HRBC, but not to anti-SRBC responses. Isolation of T3-positive Lyt-1+, -2- and L3T4- Tcs cell subsets by flow cytometry followed by adoptive transfer, showed that effector Tcs cells express T3 and presumably contain an Ag-R (TCR-T3 complex). These studies show that systemic priming with heterologous RBC induces splenic Ag specific Tcs cells in a dose-dependent manner, which support IgM and IgG subclass responses, but not IgA responses.  相似文献   

10.
The genetic susceptibility to murine alpha TBM disease is a dominant trait that maps to H-2K. In previous studies we have shown that the critical difference between susceptible (SJL) and nonsusceptible (B10.S(8R] mice is the phenotype of the tubular Ag-specific effector T cells (TDTH). In SJL mice, these TDTH are Lyt-2+, whereas in B10.S(8R) mice the TDTH are L3T4+. These phenotypic differences have an important functional correlate: Lyt-2+ TDTH are nephritogenic, whereas L3T4+ TDTH are typically not nephritogenic. Both mouse strains have the potential to differentiate both L3T4+ and Lyt-2+ TDTH. The preferential selection of a single TDTH phenotype in each is the result of differential T cell regulation. In the present studies, we have examined the contribution of suppressor and contrasuppressor T cells in the regulation of TDTH phenotype selection. Our studies show that in both SJL and B10.(8R) mice, after exposure to Ag, a suppressor T cell subpopulation functions to inhibit the nephritogenic Lyt-2+ TDTH. In SJL, but not B10.S(8R) mice, this suppression is counterbalanced by Lyt-2+, Vicia Villosa lectin-adherent T cells. Such contrasuppressor function is mediated through a T cell-derived soluble protein (TcsF), which is Ag-binding and recognized by alpha I-JS antisera. This functional TcsF activity maps, as does susceptibility to disease, to H-2K. In the presence of genetically compatible TcsF, the TDTH phenotype in nonsusceptible mice switches to that of susceptible mice. These Lyt-2+ TDTH from nonsusceptible mice are fully capable of inducing tubulointerstitial nephritis following adoptive transfer. Our studies describe a new role for Tcs cells and augment our understanding of their etiopathogenetic role in autoimmunity.  相似文献   

11.
We have previously observed that replication and nuclear location of the murine Igh locus are developmentally regulated during B cell differentiation. In non-B, B, and plasma cells, sequences near the 3' end of the Igh locus replicate early in S while upstream Vh sequences replicate late in S, and the Igh locus is located near the nuclear periphery. In fact, in MEL non-B cells, replication of a 500-kb segment containing Igh-C and flanking sequences occurs progressively later throughout S by 3' to 5' unidirectional fork movement. In contrast, in pro- and pre-B cells, the entire 3-Mb Igh locus is located away from the nuclear periphery and replicates early in S by forks progressing in both directions. In this study, using an 18-81 (pre-B) x BW5147 (T) cell fusion system in which Igh expression is extinguished, we found that in all Igh alleles, Vh sequences replicated later in S than 3' Igh sequences (similar to that detected in BW5147), but the Igh locus was situated away from the nuclear periphery (similar to that observed in 18-81). Thus, pre-B cell-derived Igh genes had changes in replication timing, but not in nuclear location, whereas T cell-derived Igh genes changed their nuclear location but not their replication timing. These data are consistent with the silencing of a pre-B cell-specific replication program in the fusion hybrid cells and independent regulation of the nuclear location of Igh loci.  相似文献   

12.
研究了创伤小鼠反抑制T细胞(Tcs)比例、功能的变化及创伤血清、巨噬细胞、抑制性T细胞(Ts)对正常小鼠Tcs细胞的影响。结果表明,创伤小鼠脾细胞中VVL~ 细胞百分率于伤后一过性减少,Tcs细胞在T淋转、IL-2、IL-2R检测系统中的反抑制活性均明显受抑;创伤小鼠血清、巨噬细胞、Ts细胞在体外对正常Tcs细胞反抑制活性(T淋转、IL-2、IL-2R检测系统)均具有不同程度的抑制作用,创伤后4天小鼠血清在体内对正常小鼠脾脏VVL~ 细胞百分率无明显影响,但可明显降低正常小鼠Tcs细胞的反抑制活性。表明创伤可致Tcs细胞比例及功能发生改变,创伤后血清、巨噬细胞、Ts细胞参与介导了Tcs细胞功能的受抑过程。  相似文献   

13.
Continuous gastric intubation of mice with the T cell-dependent antigen sheep erythrocytes (SRBC) leads to a state of systemic unresponsiveness to parenteral SRBC challenge, a state termed oral tolerance. The systemic unresponsiveness of mice rendered orally tolerant to SRBC, however, is converted to humoral immune responsiveness by adoptive transfer of effector T contrasuppressor (Tcs) cells. In this study, the authors have isolated and characterized the Tcs cell subset, from the spleens of orally immunized mice, which abrogates oral tolerance. This Tcs cell is a novel cell type, which can be separated from functional T suppressor (Lyt-2+) and T helper (L3T4+) cells, and the effector Tcs cell exhibits a Lyt-1+, 2-, L3T4- phenotype. Furthermore, contrasuppression is not mediated by B cells, including those of the Lyt-1+ phenotype. Adoptive transfer of splenic Lyt-1+, 2-, L3T4- T cells from C3H/HeJ mice given oral SRBC for 21 to 28 days and splenic Lyt-1+, 2-, L3T4- T cells of C3H/HeN mice orally immunized for a shorter interval abrogated oral tolerance. Furthermore, separation of Lyt-1+ T cells into L3T4+ and L3T4- subsets by flow cytometry resulted in Lyt-1+, L3T4+ T cells with helper but not contrasuppressor function, whereas the Lyt-1+, L3T4- T cell fraction abrogated oral tolerance even though it was without helper activity. This Tcs cell subset was also effective when added to cultures of tolerized spleen cells derived from SRBC-fed mice. The effector Tcs cells are antigen-specific, because Tcs cells from SRBC-immunized mice reverse tolerance to SRBC but not to horse erythrocytes (HRBC), and Tcs cells from HRBC-immunized mice reverse tolerance to HRBC but not to SRBC. When splenic T3 (CD3)-positive T cells (Lyt-1+, 2-, and L3T4-) were separated into Vicia villosa-adherent and nonadherent subpopulations, active contrasuppression was associated with the T3-positive and Vicia villosa-adherent T cell fraction. Thus, a distinct Lyt-1+, 2-, L3T4- T cell subset that contains a T3-T cell receptor complex, which can regulate oral tolerance, is present in spleens of orally immunized mice.  相似文献   

14.
Two signals are required for the in vitro activation of Lyt2+ T suppressor cells (Ts) from mice tolerized with 2,4-dinitrobenzene sulfonate (DNBS) to produce soluble suppressor factors (SSF) which suppress the transfer of contact sensitivity to dinitrofluorobenzene (DNFB). Recognition of DNP/class I MHC (signal one) stimulates the Ts to synthesize SSF. Release of SSF requires a soluble mediator (signal two) produced by the interaction of L3T4+ T cells from tolerant mice with I-A on metabolically functional cells in the DNP-presenting cell population. The purpose of this study was to examine the nature of this second Ts activation signal. Coculture of tolerant spleen cells and glutaraldehyde-fixed (Glu-) DNP-labeled spleen cells (DNP-SC) resulted in the synthesis but not release of SSF. Addition of either IL-1 or IL-2 to these cultures induced SSF release. Treatment of such cultured cells with the anti-murine IL-2 receptor antibody PC 61.5.3 blocked the IL-2- and IL-1-stimulated release of SSF. Release of SSF was also blocked when tolerant cells were cultured with (unfixed) DNP-SC in the presence of a monoclonal anti-IL-2 antibody. IL-2 but not IL-1 was able to stimulate the Ts to release synthesized SSF in the absence of L3T4+ TH activity. First, addition of IL-2 to cocultures of tolerant cells and DNP-presenting I-A- cells induced release of the synthesized SSF, whereas addition of IL-1 did not. Second, IL-2 also stimulated SSF release in cocultures of L3T4+ T cell-depleted tolerant cells and Glu-DNP-SC, whereas IL-1 did not. Tolerant cells pretreated with IL-2 and then washed were able to synthesize and release SSF upon culture with Glu-DNP-SC. Pretreatment of tolerant cells with IL-1 did not stimulate SSF release upon subsequent culture with Glu-DNP-SC. These results indicate that the Lyt2+ Ts from DNBS-tolerant mice express IL-2 receptors and IL-2 is the lymphokine which induces the Ts to release synthesized SSF. Thus, IL-2 provides a differentiative signal during the functional activation of these regulatory T cells.  相似文献   

15.
Ts1, or inducer suppressor T cells, share many phenotypic and functional characteristics with helper/inducer subset of T cells. In order to evaluate the relationship between these cell types, we made a series of new Ts1 hybridomas by the fusion of Ts1 cells with the functionally TCR alpha/beta-negative BW thymoma (BW 1100). Three Ts1 hybridomas (CKB-Ts1-38, CKB-Ts1-53, and CKB-Ts1-81) were established that express TCR and produce Ag-specific suppressor factors constitutively, thus making it possible to study the nature and specificity of Ag receptors, MHC restriction, and lymphokine production by the Ts1 hybridomas. Results presented in this report demonstrate that all the Ts1 hybridomas described here express CD3-associated TCR-alpha beta. These three Ts1 hybridomas recognize Ag (NP-KLH) specifically in a growth inhibition assay and this recognition is restricted by IE molecules. Two of the hybridomas also produce IL-2 or IL-2 and IL-4 upon Ag-specific activation. Thus, by these three criteria the Ts1 hybridomas appear indistinguishable from Th cells. These three Ts1 hybridomas, however, release suppressor factors (TsF1) in the supernatant that suppress both in vivo DTH and in vitro PFC responses in an Ag-specific manner. Like the TsF1 factors characterized previously, the suppression mediated by these factors are Igh restricted and lack H-2 restriction. These factors mediate suppression when given in the induction phase but not during the effector phase of the immune response. The TsF1 factors are absorbed by Ag (NP-BSA), and anti-TCR affinity columns and the suppressor activity can be recovered by elution. The data are consistent with the interpretation that Ts1 inducer-suppressor T cells are related to Th cells; the feature that distinguishes these cells is the ability to produce Ag-binding factors that specifically suppress immune responses.  相似文献   

16.
The capacity of staphylococcal enterotoxins to stimulate all T cells bearing certain T cell receptors has recently generated a great deal of interest. These toxins are believed to bind directly both to the TCR:CD4 complex via its V beta domains and to class II MHC molecules on accessory cells prior to T cell activation. Previous studies from this laboratory have demonstrated that staphylococcal enterotoxin B (SEB) is capable of inducing multiple T suppressor cell populations which can inhibit in vitro antibody responses. Additional studies have demonstrated that the suppressive activity of these cells is mediated, at least in part, by an I-J-restricted suppressor factor. Efforts to characterize the inhibitory activity of this factor have demonstrated that the suppressive element is capable of activating both early and late acting suppressor cell populations in vitro. Analysis by both positive and negative selection shows that cells bearing the Lyt1-2+ surface marker phenotype are active early, whereas Lyt1+2+ cells are active both early and late in the antibody response. Additional experiments using various strains of mice as sources of suppressor factor and of naive splenocyte populations have demonstrated that activation of suppressor-effector cells by this suppressor factor is restricted at the I-J, but not Igh, gene locus. These studies suggest that this SEB-induced suppressor factor alone provides the signals necessary for the induction and activation of suppressor-effector cell activity.  相似文献   

17.
Coculture of spleen cells from mice tolerized with 2,4-dinitrobenzenesulfonate (DNBS) and DNP-labeled spleen cells (DNP-SC) activates Lyt-2+ T suppressor cells (Ts) to synthesize and release a suppressor factor (SSF) into the supernatant, which suppresses the transfer of contact sensitivity to DNFB. The purpose of the present study was to examine in greater detail the signals required to activate DNBS-primed Ts to produce SSF. The supernatant from cultures of tolerant cells and glutaraldehyde-fixed DNP-SC did not have SSF. In contrast, the soluble cell lysate from these cultures did contain the suppressive activity. Pretreatment of glutaraldehyde-fixed DNP-SC with either anti-DNP or anti-class I, but not anti-class II MHC, antibodies blocked SSF synthesis. The addition of IL 1 to cultures of DNBS-tolerant cells and glutaraldehyde fixed DNP-SC restored the ability of the Ts to release the synthesized factor. These results indicate that Ts recognition of the hapten/class I MHC determinant stimulates the synthesis of SSF, and a costimulator is required to induce the release of the factor. The supernatants from cultures of either L3T4-depleted tolerant cells and DNP-SC or tolerant cells and anti-I-A antibody-treated DNP-SC had no SSF activity. The addition of a costimulator (IL 1) also restored the ability of the Ts to release the synthesized factor in cultures of L3T4-depleted tolerant cells and DNP-SC. These results suggest that an L3T4 cell in the DNBS-primed cell population interacts with I-A determinants on a cell in the DNP-stimulator population to initiate the generation of the mediator required for SSF release. This further suggests that the Ts is unable to induce the costimulator from the hapten-presenting cell during interaction with the DNP/class I MHC ligand. Therefore, the production of SSF is regulated not only by the presentation of the appropriate hapten/MHC determinant but also by the interactions of cells that function in generating the costimulator needed to induce release of the suppressor factor.  相似文献   

18.
When cultured with autologous antigen-primed Leu-3+ lymphoblasts, Leu-2+ cells differentiate into suppressor T cells (Ts) that specifically inhibit the responses of fresh autologous Leu-3+ cells to the priming antigen. We have shown previously that the Leu-4/T3 (CD-3) molecular complex and HLA-A,B molecules on the surface of Leu-3+ inducer blasts are recognized by Leu-2+ Ts during their differentiation. This study examines the role of various cell surface molecules expressed by Leu-2+ Ts during the inductive and effector phases of suppression. Leu-2+ cells were treated in the absence of complement with a variety of monoclonal antibodies recognizing distinct human lymphoid antigens either before or after their activation with alloantigen-primed Leu-3+ blasts. Antibodies to Leu-2/T8 (CD-8) and lymphocyte function-associated antigen-1 (LFA-1) (CDw-18) molecules inhibited not only the generation but also the effector function of Leu-2+ Ts. Although antibodies to Leu-4/T3 (CD-3) and Leu-5/T11 (CD-2) molecules caused profound inhibition of the activation of Ts, these antibodies failed to inhibit the effector function of Ts. On the contrary, anti-Leu-4 antibody consistently augmented the suppressor effect of Ts. Antibodies directed against Leu-1/T1 (CD-5), Leu-3/T4 (CD-4), LFA-3, and class I (HLA-A,B,C) and class II (HLA-DR,DQ) major histocompatibility complex molecules had no effect on either the generation or the effector function of Ts. These results suggest the involvement of Leu-2/T8 (CD-8), Leu-4/T3 (CD-3), Leu-5/T11 (CD-2), and LFA-1 (CDw-18) molecules on the surfaces of Leu-2+ cells in the activation and effector functions of Ts.  相似文献   

19.
We have previously shown that a single i.p. injection of the monovalent synthetic antigen, L-tyrosine-p-azophenyltrimethylammonium [tyr(TMA)] in complete Freund's adjuvant induces an anti-idiotypic T suppressor cell (Ts2) population that can be detected 6 wk later by its ability to shut down delayed-type hypersensitivity (DTH) specific for the TMA hapten. In this paper we present evidence that 2 wk after tyr(TMA) administration, a subset of Ts, termed Ts1, appears that is both functionally and phenotypically distinct from the late appearing Ts2 population. The early occurring Ts1 act only at the induction phase of the DTH response and can also suppress this response intrinsically. This latter point is in marked contrast to our previous observation that the tyr(TMA)-induced anti-idiotypic Ts2 fail to function intrinsically and can only be detected upon adoptive transfer into naive mice. Ts1 bear idiotypic receptors and are Ly-1+,2- in contrast to the anti-idiotypic Ly-1-,2+ Ts2 population. In addition, unlike the Ts2 population, Ts1 are comparatively nylon wool-adherent. Adsorption of Ts1 on either antigen- or idiotype-coated petri dishes indicate that the suppressor activity can be transferred only by antigen-binding cells. Cellfree factors prepared from spleens containing the Ts1 population can suppress DTH only if administered at the induction phase of the response, in contrast to the factors derived from the Ts2 population that act both at induction as well as effector phases, suggesting that Ts1 and Ts2 can function via soluble mediators. Finally, we show that when Ts1-bearing mice are primed and boosted for anti-TMA antibody formation, the resulting response was overall reduced with respect to the idiotype-positive and negative plaque-forming cells that differs from the Ts2-bearing hosts wherein the idiotypic component is preferentially suppressed. The appearance of Ts1 before the detection of Ts2 in the same experimental animals is discussed with reference to a normal physiologic sequence of events involved in suppressor pathways.  相似文献   

20.
We have previously shown that a single i.p. injection of the monovalent antigen, L-tyrosine-p-azophenyltrimethylammonium in complete Freund's adjuvant induces a Ly-1+2-, idiotype-bearing, and antigen-binding first-order T suppressor (Ts1) population. We showed that soluble factors extracted from these cells could suppress delayed-type hypersensitivity responses if administered at the induction phase of the response. In this paper we additionally characterize the suppressor factor, TsF1, with respect to its biologic, serologic, and chemical properties. The studies show that the TsF1 is neither allotype nor H-2 restricted and can induce anti-idiotypic T suppressor cells (Ts2), but it requires the presence of antigen to do so. The factor binds antigen, bears I-J encoded determinants, is resistant to reduction and alkylation, and elutes as a single chain factor after adsorption onto monoclonal anti-I-J antibody-coupled Sepharose beads in the presence of dithiothreitol (DTT). This is in marked contrast to TsF2 (derived from Id-specific Ts2-containing spleen cells), which lost its suppressive activity after reduction and alkylation, and behaves as a two chain factor after adsorption and elution from anti-I-J-coupled beads in the presence of DTT. The TsF1 is discussed with respect to the properties of it and those of TsF1 from other similar idiotype-dominated antigen systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号