首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The cytoplasmic concentrations of Cl([Cl]i) and Ca2+ ([Ca2+]i) were measured with the fluorescent indicators N-(ethoxycarbonylmethyl)-6-methoxyquinilinum bromide (MQAE) and fura-2 in pancreatic β-cells isolated from ob/ob mice. Steady-state [Cl]i in unstimulated β-cells was 34 mM, which is higher than expected from a passive distribution. Increase of the glucose concentration from 3 to 20 mM resulted in an accelerated entry of Cl into β-cells depleted of this ion. The exposure to 20 mM glucose did not affect steady-state [Cl]i either in the absence or presence of furosemide inhibition of Na+, K+, 2 Cl co-transport. Glucose-induced oscillations of [Ca2+]i were transformed into sustained elevation in the presence of 4,4′ diisothiocyanato-dihydrostilbene-2,2′-disulfonic acid (H2DIDS). A similar effect was noted when replacing 25% of extracellular Cl with the more easily permeating anions SCN, I, NO3 or Br. It is concluded that glucose stimulation of the β-cells is coupled to an increase in their Cl permeability and that the oscillatory Ca2+ signalling is critically dependent on transmembrane Cl fluxes.  相似文献   

2.
CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl, Br, SCN, and I) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate.  相似文献   

3.
A distinctive feature of the voltage-dependent chloride channels ClC-0 (the Torpedo electroplaque chloride channel) and ClC-1 (the major skeletal muscle chloride channel) is that chloride acts as a ligand to its own channel, regulating channel opening and so controlling the permeation of its own species. We have now studied the permeation of a number of foreign anions through ClC-1 using voltage-clamp techniques on Xenopus oocytes and Sf9 cells expressing human (hClC-1) or rat (rClC-1) isoforms, respectively. From their effect on channel gating, the anions presented in this paper can be divided into three groups: impermeant or poorly permeant anions that can not replace Cl as a channel opener and do not block the channel appreciably (glutamate, gluconate, HCO3 , BrO3 ); impermeant anions that can open the channel and show significant block (methanesulfonate, cyclamate); and permeant anions that replace Cl at the regulatory binding site but impair Cl passage through the channel pore (Br, NO3 , ClO3 , I, ClO4 , SCN). The permeability sequence for rClC-1, SCN ∼ ClO4 > Cl > Br > NO3 ∼ ClO3 > I >> BrO3 > HCO3 >> methanesulfonate ∼ cyclamate ∼ glutamate, was different from the sequence determined for blocking potency and ability to shift the P open curve, SCN ∼ ClO4 > I > NO3 ∼ ClO3 ∼ methanesulfonate > Br > cyclamate > BrO3 > HCO3 > glutamate, implying that the regulatory binding site that opens the channel is different from the selectivity center and situated closer to the external side. Channel block by foreign anions is voltage dependent and can be entirely accounted for by reduction in single channel conductance. Minimum pore diameter was estimated to be ∼4.5 Å. Anomalous mole-fraction effects found for permeability ratios and conductance in mixtures of Cl and SCN or ClO4 suggest a multi-ion pore. Hydrophobic interactions with the wall of the channel pore may explain discrepancies between the measured permeabilities of some anions and their size.  相似文献   

4.
(1) Thylakoids isolated from leaves of two salt-tolerant higher plant species were found to require high (greater than 250 mM) concentrations of Cl for maximal rates of photosynthetic O2 evolution and maximum variable chlorophyll a fluorescence yield. These activities were also tolerant to extremely high (2–3 M) salt concentrations. Their pH dependence was markedly different in the absence and presence of sufficient salt levels. (2) When Cl was provided as CaCl2, as opposed to MgCl2, KCl or NaCl, higher rates of O2 evolution were obtained, suggesting that Ca2+ has an important role in Photosystem II reactions. (3) The site of Cl action was located on the electron donor side of Photosystem II. (4) O2 evolution in the presence of optimal Cl concentrations showed a pH dependence closely matched by that of 35Cl-NMR line broadening, which is indicative of Cl binding. This pH-dependent 35Cl-NMR line-width broadening was not altered significantly by treatment of the thylakoids with EDTA; it was, however, abolished by heat treatment. (5) Only anions with similar ionic radii (Br, NO3) were effective in replacing Cl. Small anions such as F and OH were inhibitory; larger ions had no effect. The inhibition by F is due, at least in part, to displacement of Cl. The selectivity is attributed to a combination of steric and ionic field effects. (6) It is proposed that Cl facilitates Photosystem II electron transport by reversible ionic binding to the O2-evolving complex itself or to the thylakoid membrane in close proximity to it.  相似文献   

5.
Summary The properties of an anion-selective channel observed in basolateral membranes of microdissected, collagenase-treated, cortical thick ascending limbs of Henle's loop from mouse kidney were investigated using patch-clamp single-channel recording techniques. In basal conditions, single Cl currents were detected in 8% of cell-attached and excised, inside-out, membrane patches whereas they were observed in 24% of cell-attached and 67% of inside-out membrane patches when tubular fragments were preincubated with Forskolin (10–5 m) or 8-bromo-cAMP (10–4 m) and isobutylmethylxanthine (10–5 m). The channel exhibited a linear current-voltage relationship with conductances of about 40 pS in both cell-attached and cell-free membrane configurations. AP Na + P Cl ratio of 0.05 was estimated in the presence of a 142/42mm NaCl concentration gradient applied to inside-out membrane patches. Anionic selectivity of the channel followed the sequence Cl>Br>No 3 F; gluconate was not a permeant species. The open-state probability of the channel increased with membrane depolarization in cell-attached, i.e.,in situ membrane patches. In excised, inside-out, membrane patches, the channel was predominantly open with the open-state probability close to 0.8 over the whole range of potentials tested (–60 to +60 mV). The channel activity was not a function of internal calcium concentration between 10–9 and 10–3 m. We suggest that this Cl channel, whose properties are distinct from those in other epithelia, could account for the well-documented conductance which mediates Cl exit in the basolateral step of NaCl absorption in thick ascending limb of Henle's loop.  相似文献   

6.
At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B (also known as anoctamin2), encode Ca2+-activated Cl channels (CaCCs), which are found in various cell types and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to investigate the relationship between anion permeation and gating, two processes typically viewed as independent, in TMEM16B expressed in HEK 293T cells. The permeability ratio sequence determined by substituting Cl with other anions (PX/PCl) was SCN > I > NO3 > Br > Cl > F > gluconate. When external Cl was substituted with other anions, TMEM16B activation and deactivation kinetics at 0.5 µM Ca2+ were modified according to the sequence of permeability ratios, with anions more permeant than Cl slowing both activation and deactivation and anions less permeant than Cl accelerating them. Moreover, replacement of external Cl with gluconate, or sucrose, shifted the voltage dependence of steady-state activation (G-V relation) to more positive potentials, whereas substitution of extracellular or intracellular Cl with SCN shifted G-V to more negative potentials. Dose–response relationships for Ca2+ in the presence of different extracellular anions indicated that the apparent affinity for Ca2+ at +100 mV increased with increasing permeability ratio. The apparent affinity for Ca2+ in the presence of intracellular SCN also increased compared with that in Cl. Our results provide the first evidence that TMEM16B gating is modulated by permeant anions and provide the basis for future studies aimed at identifying the molecular determinants of TMEM16B ion selectivity and gating.  相似文献   

7.
A unique property of basolateral membrane Cl channels from the mTAL is that the Cl concentration facing the intracellular aspects of these channels is a determinant of channel open time probability (P 0 ). The K 1/2 for maximal activation of P 0 by Cl facing intracellular domains of these channels is 10 mm Cl. The present experiments evaluated the nature of these Cl-interactive sites. First, we found that the impermeant anion isethionate, when exposed to intracellular Cl channel faces, could augment P 0 with a K 1/2 in the range of 10 mm isethionate without affecting conductance (g Cl, pS). Second, pretreatment of the solutions facing the intracellular aspects of the channels with either 1 mm phenylglyoxal (PGO), an arginine-specific reagent, or the lysine/terminal amine reagent trinitrobenzene sulfonic acid (TNBS, 1 mm), prevented the activation of P 0 usually seen when the Cl concentration of solutions facing intracellular channel domains was raised from 2 to 50 mm. However, when the Cl channel activity was increased by first raising the Cl concentration bathing intracellular channel faces from 2 to 50 mm, subsequent addition of either PGO or TNBS to solutions bathing intracellular Cl channel faces had no effect on P 0 . We conclude that the intracellular aspects of these Cl channels contain Cl-interactive loci (termed [Cl] i ) which are accessible to impermeant anions in intracellular fluids and which contain arginineand lysine-rich domains which can be inactivated, at low ambient Cl or isethionate concentrations, by interactions with PGO or TNBS.We acknoeledge the able technical assistance of Anna Grace Stewart. Clementine M. Whitman provided her customary excellent secretarial assistance. This work was supported by Veteterans Administration Merit Review Grants to T. E.Andreoli and to W. B. Reeves. C. J. Winters is a Veterans Administration Associate Investigator.  相似文献   

8.
The effects of monovalent cations - inorganic alakali metal cations and organic quanternary ammonium cations - and monovalent inorganic anions on ADP-induced aggregation of bovine platelets were investigated. In the presence of K+, Rb+, Cs+, choline or tetramethylammonium, aggeregation proceeded. However, aggregation was markedly restricted in media containing Li+, Na+, tetrabutylammonium or dimethyldibenzylammonium. With anions, aggregation proceeded in the order Cl > Br > I > Clo4 > SCN. The effects of cations significantly depended on Ca2+ concentration, whereas those of the anions depended little of Ca2+. Anions such as SCN and ClO4 markedly decreased the fluorescence of the surface charge probe 2-p-tuluidinylnaphthalene-6-sulfonate, whereas cations had less pronouced effects. The relative effects of the anions on the fluorescence were consistent with their relative inhibitory effects on aggregation. These results suggest that inhibition of platelet aggregation by the anions is due to a change in the surface change of the platelet plasma membrane. On the other hand, kinetic analysis suggests that the effects of monovalent cations on platelet aggregation are due to their competition with Ca2+ during the process of aggregation.  相似文献   

9.
Summary We evaluated the effects of vawrying aqueous Cl concentrations, and of the arginyl- and lysyl-specific reagent phenylglyoxal (PGO), on the properties of Cl channels fused from basolaterally enriched renal medullary vesicles into planar lipid bilayers. The major channel properties studied were the anion selectivity sequence, anionic requirements for, channel activity. and the efects of varying Cl concentrations and/or PGO on the relation between holding voltageV H -mV) and open-time probability (P o).Reducingcis Cl concentrations, in the range 50–320mm, produced a linear reduction in fractional open time (P v) with a half-maximal reduction inP o atcis Cl170mM. Channel activity was sustained by equimolar replacement ofcis Cl with F, but not with impermeant isethionate. Fortrans solutions, the relation between Cl concentration andP 0 at 10mm Cl. Reducingcis Cl had no effect on the gating charge (Z) for channel opening, but altered significantly the voltage-independent, energy (G) for channel opening.Phenylglyoxal (PGO) reducedZ and altered G for Cl channel activity when added tocis, but nottrans solutions, Furthermore, in the presence ofcis PGO, reducing thecis Cl concentration had no effect onZ but altered G. Thus we propose thatcis PGO and,cis Cl concentrations affect separate sites determining channel activity at the extracellular faces of, these Cl channels.  相似文献   

10.
Summary Ionic channels in a human monocyte cell line (U937) were studied with the inside-out patch-clamp technique. A Ca2+-activated K+ channel and three Cl-selective channels were observed. The Ca2+-activated K+ channel had an inward-rectifying current-voltage relationship with slope conductance of 28 pS, and was not dependent on membrane potential. Among the three Cl channels, and outward-rectifying 28-pS channel was most frequently observed. The permeability ratio (Cl/Na+) was 4–5 and CH3SO 4 was also permeant. The channel became less active with increasing polarizations in either direction, and was inactive beyond ±120 mV. The channel, observed as bursts, occasionally had rapid events within the bursts, suggesting the presence of another mode of kinetics. Diisothiocyanatostilbene-disulfonic acid (DIDS) blocked the channel reversibly in a dose-dependent manner. The second 328-pS Cl channel had a linear currentvoltage relationship and permeability ratio (Cl/Na+) of 5–6. This channel became less active with increasing polarizations and inactive beyond ±50 mV. DIDS blocked the channel irreversibly. The channel had multiple subconductance states. The third 15-pS Cl channel was least frequently observed and least voltage sensitive among the Cl channels. Intracellular Ca2+ or pH affected none of the three Cl channels. All three Cl channels had a latent period before being observed, suggesting inhibitory factor(s) presentin situ. Activation of the cells with interferon-, interferon-A or 12-O-tetradecanoylphorbol-13-acetate (TPA) caused no change in the properties on any of the channels.  相似文献   

11.
We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30–75 nS. The dose response curve for calcium exhibited an EC50 of about 26 μm. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between −80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a PNa/PCl of 0.034. The halide permeability sequence was PCl > PF > PI > PBr indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN, acetate, and gluconate, with the permeability sequence PCl > PSCN > Pacetate > Pgluconate. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 \A. Received: 16 April 1997/Revised: 3 October 1997  相似文献   

12.
Summary Chloride channels were detergent-extracted fromTorpedo electroplax plasma membrane vesicles and reconstituted into liposomes by rapid detergent removal and a freeze-thawsonication procedure. Concentrative uptake of36Cl, driven by a Cl gradient was used to determine conductance properties of reconstituted channels. Chloride flux assayed by this method is strongly selective for Cl over cations, is blocked by SCN, inactivated by treatment with DIDS, and exhibits an anion selectivity sequence Cl>Br>F>SO 4 2– , as does the voltagegated Cl channel fromTorpedo observed in planar lipid bilayers. The channels are localized to the noninnervated face of the electrocyte, and a novel trapped-volume method is used to estimate a channel density on the order of 500 pmol/mg protein. An initial fractionation of the membrane extract by anion exchange chromatography yields fivefold enrichment of the channel activity.  相似文献   

13.
GCAC1 is a strongly voltage-dependent anion channel in the guard-cell plasma membrane of Vicia faba . In patch–clamp experiments, we have investigated the permeation and gating properties of GCAC1 with respect to its anion dependence in the whole-cell and excised-patch configuration. The relative permeability followed the order SCN > NO3 > Br > Cl, while the single-channel conductances in symmetrical anionic solutions exhibited a nearly inverse sequence. The Cl dependence of inward currents (Cl release) is characterized by a maximum single-channel conductance of 89 pS half-saturating at 87 mM cytoplasmic chloride. In addition to this substrate saturation, anion release was also dependent on the external Cl activity ( K m = 16 mM). In the presence of SCN and Cl, the single-channel conductance exhibited an anomalous mole-fraction dependence, identifying GCAC1 as a multi-ion single-file pore. Using anions with increasing ionic size, a minimum pore diameter of 0.5 nm was assumed from their relative permeabilities. In line with an anion-selective channel, a tenfold increase in the extracellular anion activity shifted the reversal potential by –59.8 mV. Simultaneously, the half-activation potential shifted negatively by about 23 mV. A further analysis of the anion dependence revealed that extracellular rather than cytosolic anions affect the gating process of GCAC1. From anion substitution experiments, we conclude that anion concentration and species determines both permeation and gating of the plant anion channel GCAC1.  相似文献   

14.
The transmembrane protein TMEM16A forms a Ca2+-activated Cl channel that is permeable to many anions, including SCN, I, Br, Cl, and HCO3, and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca2+-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide–gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca2+] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both.  相似文献   

15.
Summary The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl conductance is increased 14-and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl conductance is rate limiting. An A23187-induced activation of42K and36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: (i) inhibited by quinine which blocks the Ca2+-activated K+ channel. (ii) unaffected by substitution of NO 3 or SCN for Cl, and (iii) inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl conductance. The Cl conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl transport pathway. The activated anion transport pathway is unselective, carrying both Cl, Br, NO 3 , and SCN. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by42K flux experiments and indirectly in media where the dominating anion (SCN) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from42K flux measurements at high external K+, and from net K flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.  相似文献   

16.
Summary The apical membrane of the rabbit corneal endothelium contains a potassium-selective ionic channel. In patch-clamp recordings, the probability of finding the channel in the open state (P o) depends on the presence of either HCO 3 or Cl in the bathing medium. In a methane sulfonate-containing bath,P o is <0.05 at all physiologically relevant transmembrane voltages. With 0mm [HCO 3 ] o at +60 mV,P o was 0.085 and increased to 0.40 when [HCO 3 ] o was 15mm. With 4mm [Cl] o at +60 mV,P o was 0.083 and with 150mm Cl,P o increased to 0.36. LowP o's are also found when propionate, sulphate, bromide, and nitrate are the primary bath anions. The mechanism of action of the anion-stimulated K+ channel gating is not yet known, but a direct action of pH seems unlikely. The alkalinization of cytoplasm associated with the addition of 10mm (NH4)2SO4 to the bath and the acidification accompanying its removal do not result in channel activation nor does the use of Nigericin to equilibrate intracellular pH with that of the bath over the pH range of 6.8 to 7.8. Channel gating also is not affected by bathing the internal surface of the patch with cAMP, cGMP, GTP--s, Mg2+ or ATP. Blockers of Na/H+ exchange, Na+–HCO 3 cotransport, Na+–K+ ATPase and carbonic anhydrase do not block the HCO 3 stimulation ofP o. Several of the properties of the channel could explain some of the previously reported voltage changes that occur in corneal endothelial cells stimulated by extracellular anions.  相似文献   

17.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

18.
Summary Cl channels from basolaterally-enriched rabbit outer renal medullary membranes are activated either by increases in intracellular Cl activity or by intracellular protein kinase A (PKA). Phosphorylation by PKA, however, is not obligatory for channel activity since channels can be activated by intracellular Cl in the absence of PKA. The PKA requirement for activation of Cl channels in certain secretory epithelia is, in contrast, obligatory. In the present studies, we examined the effects of PKA and intracellular Cl concentrations on the properties of Cl channels obtained either from basolaterally-enriched vesicles derived from highly purified suspensions of mouse medullary thick ascending limb (mTALH) segments, or from apical membrane vesicles obtained from two secretory epithelia, bovine trachea and rabbit small intestine. Our results indicate that the Cl channels from mTALH suspensions were virtually identical to those previously described from rabbit outer renal medulla. In particular, an increase in intracellular (trans) Cl concentration from 2 to 50 mm increased both channel activity (P o) and channel conductance (g Cl, pS). Likewise, trans PKA increased mTALH Cl channel activity by increasing the activity of individual channels when the trans solutions were 2 mm Cl. Under the latter circumstance, PKA did not activate quiescent channels, nor did it affect g Cl. Moreover, when mTALH Cl channels were inactivated by reducing cis Cl concentrations to 50 mm, cis PKA addition did not affect P o. These results are consistent with the view that these Cl channels originated from basolateral membranes of the mTALH.Cl channels from apical vesicles from trachea and small intestine were completely insensitive to alterations in trans Cl concentrations and demonstrated markedly different responses to PKA. In the absence of PKA, tracheal Cl channels inactivated spontaneously after a mean time of 8 min; addition of PKA to trans solutions reactivated these channels. The intestinal Cl channels did not inactivate with time. Trans PKA addition activated new channels with no effect on basal channel activity. Thus the regulation of Cl channel activity by both intracellular Cl and by PKA differ in basolateral mTALH Cl channels compared to apical Cl channels from either the tracheal or small intestine.We acknowledge the able technical assistance of Steven D. Chasteen. Clementine M. Whitman provided her customary excellent secretarial assistance. This work was supported by Veterans Administration Merit Review Grants to T.E. Andreoli and to W.B. Reeves. C.J. Winters is a Veterans Administration Associate Investigator.  相似文献   

19.
Cultured mouse MTAL cells contain more mRNA encoding the Cl channel mcClC-Ka, which mediates CTAL Cl absorption, than mRNA encoding the Cl channel mmClC-Ka, which mediates MTAL Cl absorption. mmClC-Ka and mcClC-Ka have three functional differences: 1) mmClC-Ka open time probability, P o, increases with increasing cytosolic Cl, but variations in cytosolic Cl do not affect P o in mcClC-Ka; 2) mmClC-Ka is gated by (ATP + PKA), while (ATP + PKA) have no effect on P o in mcClC-Ka; and 3) mmClC-Ka channels have single-ion occupancy, while mcClC-Ka channels have multi-ion occupancy. Using basolateral vesicles from MTAL cells fused into bilayers, we evaluated the effects of 1 mM cytosolic phenylglyoxal (PGO), which binds covalently to lysine or arginine, on Cl channels. With PGO pretreatment, Cl channels were uniformly not gated either with increases in cytosolic-face Cl or with (ATP + PKA) at 2 mm cytosolic-face Cl; and they exhibited multi-ion occupancy kinetics typical for mcClC-Ka channels. Thus, in basolateral MTAL membranes, blockade of Cl access to arginine or lysine residues on mmClC-Ka by PGO results in Cl channels having the functional characteristics of mcClC-Ka channels.  相似文献   

20.
The ionic fluxes associated with the ATP-dependent acidification of endocytic vesicles were studied in a preparation isolated from rabbit reticulocytes enriched for transferrin-transferrin receptor complexes. No vesicle acidification was observed in the absence of intra- and extravesicular ions (sucrosein/sucroseout), while maximal acidification was observed with NaClin/KClout·K in + was a poor substitute for Na in + , and Cl out could be replaced by other anions with the following efficacy of acidification: Cl>Br>I>PO 4 3– >gluconate>SO 4 2– . Flux studies using36Cl and22Na+ showed that the vesicles had a permeability for Cl and Na+, and that ATP-dependent H+ pumping was accompanied by a net influx of Cl and a net efflux of Na+ provided that there was a Na+ concentration gradient. After 3 mins, the time necessary to maximal acidification, the electrical charge generated by the entrance of H+ was countered to about 45% by the Cl influx and to about 42% by the Na+ efflux. These studies demonstrated that both Cl and Na+ fluxes are necessary for optimal endocytic vesicle acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号