首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Release of sialic acid from the glycoproteins of the normal human erythrocyte surface by neuraminidase was investigated. The glycoproteins of the membrane were separated by electrophoresis in sodium dodecylsulfate polyacrylamide gels. Sialic acid was determined in the sliced gel by a modification of the 2-thiobarbituric acid method, revealing three sialic acid-containing glycoproteins. Treatment of intact erythrocytes with neuraminidase to remove varying amounts of sialic acid indicates that all the glycoproteins are essentially equally accessible to the neuraminidase when 20%–60% of the sialic acid is removed. Similar but not quite identical results were obtained with isolated erythrocyte membranes.Treatment of intact cells with the lectins concanavalin A or phytohemagglutinin-P resulted in shielding of about 25% and 50%, respectively, of the sialic acid from neuraminidase. Concanavalin A blocked sialic acid release over long time periods and with high concentrations of neuraminidase. In contrast, the sialic acid shielding by phytohemagglutinin-P can be overcome by high concentrations of neuraminidase. Both lectins were found to shield the various glycoproteins selectively, with different patterns of shielding. Wheat germ agglutinin exhibited no detectable effect on the susceptibility of the erythrocyte sialic acid to neuraminidase.  相似文献   

2.
The reversibility of phosphoethanolamine transferase (EC 2.7.8.1) in rat brain is demonstrated in this paper. Microsomal ethanolamine glycerophospholipids were prelabeled with an intracerebral injection of [3H]ethanolamine 4 h before killing young rats. Labeled CDPethanolamine was produced by incubation of the microsomes with CMP, although to a lesser extent than for the previously observed release of CDPcholine. Ethanolamine and choline glycerophospholipids were labeled with [2-3H]glycerol by incubation with primary cultures of rat brain. Microsomes from rat brains, with diisopropyl phosphofluoridate for inhibition of lipases, were incubated with the labeled glycerophospholipids separately, and labeled diacylglycerols were produced. The kinetic parameters of phosphoethanolamine transferase and phosphocholine transferase (EC 2.7.8.2) were compared by incubating rat brain microsomes with [3H]CMP. Inclusion of AMP in the reaction mixture was necessary in order to inhibit the hydrolysis of CMP by an enzyme with the properties of 5'-nucleotidase (EC 3.1.3.5). For phosphoethanolamine transferase and phosphocholine transferase respectively, the Km values for CMP were 40 and 125 microM and the V values were 2.3 and 21.6 nmol/h per mg protein. The reversibility of both enzymes permits the interconversion of the diacylglycerol moieties of choline and ethanolamine glycerophospholipids. During brain ischemia, a principal pathway for degradation of ethanolamine glycerophospholipids may be by reversal of phosphoethanolamine transferase followed by hydrolysis of diacylglycerols by the lipase.  相似文献   

3.
1. The neuraminidase activity of homogenates of the mucosa of the middle and distal thirds of the small intestine of rats increased about 5-fold between birth and 4 to 8 days of age, and then gradually declined to the much lower adult activity by 24 days. No comparable changes occurred in the proximal third. 2. In 8-day-old rats, the neuraminidase activity of the middle and distal thirds of the small intestine was about 10 times greater than that of the proximal third, 20 times greater than that of the colon and at least 100 times greater than that of the liver, brain, gastric mucosa or pancreas. 3. In all other species investigated (mice, rabbits, cats and guinea pigs), the neuraminidase activity of the middle and distal thirds of the small intestine was greater in suckling animals than in adults. 4. The sialic acid content of rat milk increased about 2-fold between birth and 8 days post partum and then declined. 5. There was a highly significant positive correlation between the intestinal neuraminidase activity of suckling animals of various species and ages and the sialic acid content of milk obtained from the corresponding species and stage of lactation. 6. It is suggested that the intestinal neuraminidase of suckling mammals functions primarily to remove sialic acid from various components of milk, thus providing sialic acid for the synthesis of sialoglycoproteins and gangliosides by the young.  相似文献   

4.
Incubation of primary nerve cell cultures and of crude synaptosomal preparations with neuraminidase released sialic acid from both gangliosides and sialoglycoproteins. After this treatment, the pattern of ganglioside distribution was severely modified with a decrease of polysialogangliosides (GD1b, GT1b, GT1L, GQ1) and a dramatic increase in monosialoganglioside GM1. The choline influx into neuraminidase treated cells and organelles was reduced by 30–50% but the efflux was unmodified. In particular the high affinity mechanism of choline uptake disappeared and the low affinity mechanism was modified in both cases. The disappearance of the high affinity uptake mechanism was not followed by a decreased acetylcholine synthesis as it should be if the current theories on choline uptake and acetylcholine synthesis are correct. Our present data thus confirm our previous hypothesis that choline metabolism regulates choline uptake rather than the other way round as is suggested by the theories most widely accepted at present. Choline uptake was unaffected by pretreatment of cells and organelles with tetanus toxin suggesting that the effect of neuraminidase on the choline uptake were either mediated through glycoproteins or through gangliosides other than those which bind to tetanus toxin (GD1b and GT1b). Several speculative models for explaining the effect of neuraminidase on choline uptake are proposed.  相似文献   

5.
Abstract: Ethanolamine and choline glycerophospholipids are the major phospholipids of brain membranes. During brain development, the accumulation of these phospholipids is most intense when myelination occurs. In order to gain knowledge about the regulatory mechanisms for synthesis of these lipids in relation to membrane synthesis, we investigated the activities of the 1,2-diradyl-sn-gIycerol: CDPethanolamine phosphoethanolarnine transferase and 1,2-diradyl-sri-glycerol:CDPcholine phosphocholine transferase during chicken brain development. Diacyl, alkenylacyl, and alkylacylglycerols are substrates for both enzymes. The specific activities of microsomal phospho-ethanolamine and phosphocholine transferases are constant between the 8th and 18th day of embryonic life. The specific activities of both enzymes double around hatching, which is the period of intense myelination and marked ac-cumulation of ethanolamine and choline glycerophospholipids in brain. At the same time, the amount of microsomes increases by 50%; thus the total activities increase threefold. Four days after hatching the specific activities of both enzymes are at adult values. Similar results were obtained in the presence of exogenous diacyl or alkylacylglycerols. During brain development the apparent Km, value of rnicrosomal phosphoethanolamine transferase for CDP ethanolamine increases when assayed with diaclyglycerols or alkylacyl-glycerols a s lipid substrates. The apparent Km, value of phosphocholine trans-ferase for CDP choline does not change during brain development in the presence of exogenous diacylglycerols, but increases in the presence of exogenous alkylacylglycerols. These changes in Km, values may be due to the appearance of glial isoenzyme at the beginning of myelination. The apparent Km, values of diacylglycerol phosphocholine, alklyacylglycerol phosphocholine, and diacyl-glycerol phosphoethanolamine transferases for their CDP bases are similar in adult brain microsomes and are threefold higher than the apparent Km, value of alkylacylglycerolphosphoethanolamine transferase. The high affinity of alkylacylglycerolphosphoethanolamine transferase for CDPethanolamine may be responsible for the preferential synthesis of ethanolamine plasmalogens in brain.  相似文献   

6.
Neuraminidase treatment of lymphocytes is known to cause changes of cellular responses in several biological phenomena, but the molecules modified on the cell surface by neuraminidase are not known in detail. Rabbit thymocytes, which contain tissue-characteristic gangliosides, were treated with Vibrio cholerae neuraminidase, and the susceptibility of the cell surface sialic acid residues was examined. The amount of sialic acid released from the thymocytes at the highest level was 42.4 nmol per 1 X 10(9) cells, among which 26.5% was from gangliosides. Ninety-three percent of the VI3NeuGc-nLc6Cer, 84% of the IV3NeuGc-nLc4Cer, and 50% of the II3NA2-LacCer in the thymocytes was hydrolyzed to nLc6Cer, nLc4Cer, and LacCer, respectively, but II3NA-LacCer was completely cryptic. Also, among the molecular species of II3NA2-LacCer, C20:0- to C24:0-containing, but not C16:0- to C18:0-containing molecules, were susceptible to neuraminidase. After neuraminidase treatment, nLc4Cer and nLc6Cer became the major glycosphingolipids, and a 15-fold increase of radioactivity incorporated into the glycosphingolipids was observed by the galactose oxidase-sodium borotritide procedure, suggesting that the beta-galactose of the glycosphingolipids produced by neuraminidase treatment is accessibly to the several ligands which are functionally associated with lymphocytes.  相似文献   

7.
Abstract: N′-Acetyl-d -[6-3H]mannosamine was administered to 13- and 28-day-old rats by intraventricular injection. At various time intervals following the injection, synaptic membranes were prepared and the incorporation of radiolabel into sialic acid residues released from endogenous glycoproteins and gangliosides by intrinsic sialidase determined. Radiolabel was incorporated into synaptic membrane gangliosides and glycoproteins, and at all times tested, >90% of the label was associated with sialic acid. Sialic acid released from endogenous glycoproteins by intrinsic sialidase present in 28-day membranes incorporated only 20–25% as much radiolabel per nmole as sialic acid released by mild acid hydrolysis or by exogenous neuraminidase. In contrast, sialic acid released from glycoproteins present in 13-day-old membranes by intrinsic sialidase, mild acid hydrolysis, or exogenous neuraminidase all were similarly labelled. At both ages the specific radioactivity (cpm/nmol) of sialic acid released from gangliosides by the intrinsic enzyme was similar to the total ganglioside sialic acid released by mild acid hydrolysis. The results identify glycoprotein substrates for intrinsic synaptic membrane sialidase as a distinct metabolic class in the mature brain and suggest the occurrence of a developmentally related change in the metabolism of these glycoproteins.  相似文献   

8.
B Ulrich-Bott  B Klem  R Kaiser  J Spranger  M Cantz 《Enzyme》1987,38(1-4):262-266
Organs obtained at autopsy from a patient with sialidosis were analyzed for 'bound' sialic acid and their ganglioside and neutral glycolipid patterns determined. The water-soluble bound sialic acid was increased between 10- and 17-fold in visceral organs, but only about 2-fold in the brain, when compared to normal controls. Lipid-bound sialic acid was increased up to 8-fold in visceral organs due to elevated amounts of gangliosides GM3, GD3 and probably GM4 and LM1, whereas the brain showed no deviation from controls. An alteration of the neutral glycolipid pattern was also observed. The results indicate an impaired catabolism of gangliosides in sialidosis in addition to that of sialyloligosaccharides and sialoglycoproteins.  相似文献   

9.
Rough and smooth microsomes and Golgi membranes isolated from rat liver were treated with proteolytic enzymes under conditions which removed 30–40% of the surface proteins without seriously disrupting the membrane structure. This treatment also removed 40–60% of protein-bound mannose, galactose and glucosamine. When protease treatment was combined with neuraminidase treatment, 80% of the sialic acid was removed from intact rough microsomal and Golgi vesicles and about half of the sialic acid of smooth microsomes was solubilized. It appears that half, or probably more, of the membrane glycoproteins are associated with the cytoplasmic surface of these membranes.  相似文献   

10.
Chick brain precursor neurons were observed to introduce sialic acid biosynthetically into only three specific gangliosides: monosialosyl lactosyl ceramide (GM3), disialosyl lactosyl ceramide (GD3), and disialosyl gangliotrihexosyl ceramide (GD2), when sialic acid was labeled metabolically by its obligate precursor, [3H] ManNAc. Sialosyl donor CMP-[3H]NeuAc supplied in the culture medium gave rise uniquely to surface-labeled GD3. Thus sialosyl transferase/GD3 synthase activity is expressed both intraneuronally and in the neuronal exofacial surface. Upon epidermal growth factor-induced onset of neurite outgrowth, labeled complex sialosyl gangliotetrahexosyl ceramide species of gangliosides began to appear in the embryonic neuronal plasma membrane. However, intraneuronal and exofacial sialosyl transferase/GD3 synthase activities remained constant, with or without neurite outgrowth. Moreover, simpler species of gangliosides maintained a steady quantitative sialosyl level (1.6 +/- 0.2 micrograms of sialic acid/mg of protein), whereas more complex species completely absent before neurite outgrowth accrued and reached 4.8 +/- 0.9 micrograms of sialic acid/mg of protein with full neurite development. This analysis of developmental patterns of ganglioside sialosylation has provided evidence that stable neurite outgrowth depends upon generation by the neuron of special plasma membrane with a massive content of complex higher species of gangliosides.  相似文献   

11.
A metastatic model for large-cell lymphoma/lymphosarcoma has been developed by sequential selection in vivo of the murine RAW117 cell line for enhanced liver metastasis or in vitro for loss of lectin-binding properties. The metastatic variants obtained from such selections show alterations in cell surface lectin-binding components, such as the wheat germ agglutinin (WGA)-reactive sialoglycoproteins. Detergent lysates from RAW117 cells were analyzed by polyacrylamide gel electrophoresis (PAGE) followed by reaction with 125I-labeled WGA. The [125I]WGA became bound to a diffuse band of Mr 120 000-200 000 in the gels that overlapped with the major sialoglycoprotein band revealed by the periodate-sodium borotritide labeling. However, the [125I]WGA reactivity diminished when gels were pretreated with mild acid to remove sialic acid in situ. The binding of [125I]WGA to the glycoprotein(s) was greater in the high liver-colonizing RAW117-H10 subline than in the parental RAW117-P line. Another lectin with different saccharide specificity, Ricinus communis agglutinin I (RCAI), became bound to a similar class of sialoglycoproteins, as well as to glycoproteins of lower Mr, but only when the gels were pretreated with mild acid to remove sialic acid. These differences in the relative RCAI-binding intensities after chemical removal of sialic acid were similar to those seen with WGA and indicate that differences in WGA reactivity of this class of sialoglycoproteins were not due to increased sialylation of the carbohydrate chains. Sialic acid was removed from RAW117 cells by neuraminidase treatment, and lysates were analysed for [125I]RCAI reactivity after electrophoresis. The migration of the glycoproteins was not affected by neuraminidase, indicating that the diffuseness of the major sialoglycoprotein band was not due to differences in sialylation. [125I]WGA reactivity to the sialoglycoprotein components, before and after Smith degradation in situ, strongly suggests that the oligosaccharide back-bones are highly branched and asparagine-linked. Only the high Mr portion of the diffuse sialoglycoprotein band was stained with peanut agglutinin (PNA) after in situ removal of sialic acid. To determine whether the expression of the sialoglycoprotein was causally related to liver metastasis, the amounts of sialoglycoproteins in RAW117 cells obtained by in vitro selection for increased or decreased metastasis were examined. Binding of [125I]WGA to intact cells and affinity chromatography of vectorially radiolabeled cell surface proteins on WGA-agarose were performed, and the results indicated that the in vitro selected high liver-colonizing RAW117 variants possesses high WGA r  相似文献   

12.
The transverse distribution of enzyme proteins and phospholipids within microsomal membranes was studied by analyzing membrane composition after treatment with proteases and phospholipases. Upon trypsin treatment of closed microsomal vesicles, NADH- and NADPH-cytochrome c reductases as well as cytochrome b5 were solubilized or inactivated, while cytochrome P-450 was partially inactivated. When microsomes were exposed to a concentration of deoxycholate which makes them permeable to macromolecules but does not disrupt the membrane, the detergent alone was sufficient to release four enzymes: nucleoside diphosphatase, esterase, beta-glucuronidase, and a portion of the DT-diaphorase. Introduction of trypsin into the vesicle lumen inactivated glucose-6-phosphatase completely and cytochrome P-450 partially. The rest of this cytochrome, ATPase, AMPase, UDP-glucuronyltransferase, and the remaining 50% of DT-diaphorase activity were not affected by proteolysis from either side of the membrane. Phospholipase A treatment of intact microsomes in the presence of albumin hydrolyzed all of the phosphatidylethanolamine, phosphatidylserine, and 55% of the phosphatidylcholine. From this observation, it was concluded that these lipids are localized in the outer half of the bilayer of the microsomal membrane; Phosphatidylinositol, 45% of the phosphatidylcholine, and sphingomyelin are tentatively assigned to the inner half of this bilayer. It appears that the various enzyme proteins and phospholipids of the microsomal membrane display an asymmetric distribution in the transverse plane.  相似文献   

13.
The receptivity of human erythrocytes to invasion by Plasmodium falciparum merozoites can be decreased by neuraminidase or trypsin treatment, an observation that supports a role for the erythrocyte sialoglycoproteins (glycophorins) in invasion. We have found that alpha 1-acid glycoprotein (AGP), added to in vitro cultures, can restore invasion of enzyme-treated human erythrocytes. AGP is structurally different from the glycophorins although it does carry 12% sialic acid. Its ability to restore receptivity to desialylated cells is dependent on its sialic acid complement, its concentration, and its binding to the erythrocyte surface. We present evidence that AGP forms a bridge between the merozoite and the enzyme-treated erythrocyte that allows the stronger and more complex interactions of invasion to proceed. We suggest that the glycophorins play the same role on the surface of the intact erythrocyte.  相似文献   

14.
Using the sialic acid-specific lectin, limulin (LPA; from Limulus polyphemus hemolymph), the distribution and nature of sialoglycoconjugates on the surface of rat pancreatic cells has been investigated. Binding of rhodaminated LPA (Rh-LPA) or horseradish peroxidase-conjugated LPA (HRP-LPA) to fixed-frozen sections of adult rat pancreas resulted in intense linear staining of the apical surface of acinar cells with fainter staining on the basal but not the lateral cell surfaces. LPA binding was specific in that it could be abolished by 1) pretreatment of tissue sections with neuraminidase or periodic acid; 2) competition with sialic acid; and 3) incubation in Ca2+ -free buffers. Pretreatment of sections with proteases abolished LPA binding to the apical surfaces of acinar cells and also enhanced LPA binding to the lateral cell surface. Lipid extraction of sections following protease treatment markedly reduced LPA binding to the acinar cell periphery. These results suggest that LPA binding sites on the acinar cell apical surface may be primarily sialoglycoproteins, while those on the basolateral surfaces may consist in part of gangliosides. Electron microscopy of collagenase-dispersed acini exposed to HRP-LPA confirmed binding of LPA to the basal plasmalemma and, in addition, revealed staining of basal lamina when present. LPA binding to the acinar cell surface was not affected by digestion of tissue sections with hyaluronidase, heparinase, collagenase, or 6 M guanidine-HCl. Control experiments indicated that rat pancreatic secretory proteins contain undetectable amounts of sialoglycoproteins and thus that the apical localization of LPA is not due to adherent secretory proteins. Islets of Langerhans were always uniformly and heavily stained with LPA conjugates; this staining was protease insensitive. Appearance of LPA binding sites was examined on embryonic pancreatic epithelia. At day 15 of gestation, Rh-LPA stained the entire periphery of the epithelial cells, including the lateral cell surface, although more intense staining was already noted on the apical surface. This pattern persisted through day 17 of gestation, but by day 19 an adult staining pattern was observed with loss of staining of the lateral cell surfaces.  相似文献   

15.
Neuraminidase in Calf Retinal Outer Segment Membranes   总被引:1,自引:1,他引:0  
Abstract: An enzyme catalyzing the hydrolysis of sialic acid ( N -acetylneuraminic acid: NeuNAc)-containing glycoconjugates has been found in bovine retinal rod outer segment (ROS) membranes. The enzymatic activity is optimal at pH 4.0 and is stimulated by 0.15% Triton X-100. Total activity was determined by the release of NeuNAc from endogenous and exogenous substrates (GDla). The ROS enzyme preferentially hydrolyses the ROS gangliosides, possibly because they are more accessible than the glycoproteins as substrates for the neuraminidase. Release of NeuNAc from gangliosides leads to important changes in the ganglioside patterns; whereas the amounts of GM1 increased throughout the incubation, the levels of polysialogangliosides GTlb and GD3 diminished owing to their rapid hydrolysis. The finding that gangliosides are hydrolysed more extensively than glycoproteins suggests that endogenous ROS gangliosides may be the principal source of metabolically available sialic acid in ROS. It was also observed that the activity of ROS neuraminidase is not affected by illumination of the membranes.  相似文献   

16.
Synaptic plasma membranes were prepared from cortices of rats varying in post-natal age between 4 and 30 days. Sialic acid associated with synaptic plasma membrane glycoproteins and gangliosides increased 75% and 50%, respectively, between 4 and 30 days. The amount of sialic acid released from these membrane constituents by intrinsic synaptic sialidase increased 2-4-fold over the same period. Incubation of synaptic plasma membranes with exogenous gangliosides or glycopeptides demonstrated a 2-3-fold increase in sialidase activity during development. The major gangliosides present in synaptic plasma membranes at all ages were GT1, GD1a, GD1b and GM1. Intrinsic sialidase hydrolyzed 50-70% of endogenous GT1 and GD1a gangliosides at all ages. Endogenous GD1b ganglioside was poorly hydrolyzed in young rats and its susceptibility to enzymic hydrolysis increased during development. When exogenous GD1a and GD1b were used as substrates a preferential increase in activity against GD1b occurred during development, the ratio of activity (GD1a/GD1b) decreasing from 3.6 to 1.6 between 7 and 30 days. 10- and 30-day-old synaptic plasma membranes contained complex mixtures of sialoglycoproteins, an increase in the relative concentrations of lower molecular weight sialoglycoproteins occurring during development. Intrinsic sialidase present in 10- and 30-day-old synaptic plasma membranes acted upon all molecular weight classes of sialoglycoproteins.  相似文献   

17.
We have studied the activities of 2′,3′-cyclic nucleotide 3′-phosphohydrolase, 1,2-diacylglycerol: CDPethanolamine phosphoethanolamine transferase (EC 2.7.8.1), and 1,2-diacylglycerol: CDPcholine phosphocholine transferase (EC 2.7.8.2) in developing rat brain gray matter and white matter. The specific activity of cyclic nucleotide phosphohydrolase was 5–8 fold higher in white matter than in gray matter at all ages. No significant changes were observed during development. The specific activity of phosphocholine transferase was 2 to 3 fold higher than phosphoethanolamine transferase at all ages both in gray and white matter. Both phosphocholine transferase and phosphoethanolamine transferase increased more than 2 fold in specific activity between 14 and 90 days of age. The total activity of phosphocholine transferase also showed an increase during development. The apparentK m values for nucleotides and dicaprin were similar in gray matter and white matter. Except for lowK m values for nucleotides at 14 days of age, no significant changes were observed during development. Changes in rates of glycerophospholipid synthesis may be partly due to the specific activities of these enzymes but are also determined by the quantities of substrates and inhibitors and by affinities for the substrates. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

18.
A highly sensitive method for quantification of sialic acids in gangliosides was developed. The sialic acids, released by hydrolysis of gangliosides, were converted to fluorescent derivatives with 1,2-diamino-4,5-(methylenedioxy)benzene (DMB) and separated on a reversed-phase C18 column with an isocratic elution. As little as 0.1-1.0 nmol of sialic acid in ganglioside was quantified. The use of acetate buffer instead of water in the mobile phase could prevent damage on the column and reduce background peaks derived from the reagents. When gangliosides were subjected to acid hydrolysis, the velocity of hydrolysis varied depending on their structures and a part of the sialic acid liberated decomposed with prolonged heating time. Therefore gangliosides were hydrolyzed by Arthrobacter ureafaciens neuraminidase in the presence of sodium cholate after addition of an internal standard. For the internal standard, GM3 with N-propionylneuraminic acid (GM3(NeuPr)) was synthesized from GM3(NeuAc) by N-deacylation followed by N-propionylation. Folch partition was used to decrease lipophilic materials included in the sample, and the sialic acids released were recovered from the upper phase. The present method has a satisfactory sensitivity in the simultaneous quantification of NeuAc and NeuGc in purified gangliosides as well as in crude lipid fractions containing a variety of gangliosides.  相似文献   

19.
The naturally occurring sialic acids can have different types of N- and O-substitutions, resulting in more than 20 known isomers and compounds. Most methods for the detailed study of these various sialic acids require that the molecules be first released from their alpha-glycosidic linkage. When mild acid hydrolysis is used for this purpose, significant destruction of O-substituent groups occur. On the other hand, the presence of O-substituent groups renders the sialic acid molecule partially or completely resistant to the action of the currently known neuraminidase. To circumvent this problem, we searched for a neuraminidase whose activity is not affected by O-substitution. We reasoned that because Streptococcus sanguis from the human oral cavity is continually exposed to O-substituted sialic acids, its extracellular neuraminidase might not be blocked by O-substitution. We therefore purified this enzyme 3100-fold (56% yield) using ammonium sulfate precipitation, N-(p-aminophenyl)oxamic acid-agarose affinity chromatography, and chromatography on quaternary aminoethyl (QAE)-Sephadex, sulfopropyl (SP)-Sephadex, and Sephacryl S-200. The purified preparation is free of other significant glycosidase activities and proteolytic activities. It is capable of quantitatively releasing all the O-acetylated sialic acids that we studied with the single exception of the 4-O-acetylated sialic acid of equine submaxillary mucin. The activity of the enzyme is also not restricted by the type pf sialic acid linkage or the nature of the underlying oligosaccharide. However, it has maximal activity on gangliosides only in the presence of detergents. The general properties of this enzyme are described and its substrate specificities are contrasted with those of the commonly used neuraminidase from Vibrio cholerae.  相似文献   

20.
Abstract— Sialoglycoproteins and gangliosides were characterized in various bovine brain regions by determining the amount of sialic acid. Expressed per g dry weight, the gangliosidic sialic acid ranged from 11·20 to 1·93 μmol and the glycoprotein sialic acid from 8·93 to 1·84 μmol in grey and white matter respectively (values not corrected for incomplete release and breakdown during hydrolysis). Both the sialoglycoproteins and the gangliosides occur in highest concentration in areas predominating in neuronal cell bodies (cerebral grey, cerebellar grey, caudate nucleus). The lowest concentrations are found in those areas, consisting largely of myelinated fibre tracts and glial cells (pons, medulla, corpus callosum, cerebral white). Relative to the gangliosides the sialoglycoproteins are somewhat more concentrated in white matter.
The sialidase activity was investigated with endogenous substrate as well as with additional gangliosides or sialoglycopeptides. In all conditions the activity was much greater in grey matter than in white matter. The regional sialidase distribution more or less parallels the distribution of sialic acid in the various regions. At high substrate level the sialoglycopeptides inhibit the sialidase activity. There are indications that gangliosides are a far better substrate for brain sialidase than glycoproteins or glycopeptides. The possible significance of this phenomenon is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号