首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding and predicting population spread rates is an important problem in basic and applied ecology. In this article, we link estimates of invasion wave speeds to species traits and environmental conditions. We present detailed field studies of wind dispersal and compare nonparametric (i.e., data-based) and mechanistic (fluid dynamics model-based) dispersal kernel and spread rate estimates for two important invasive weeds, Carduus nutans and Carduus acanthoides. A high-effort trapping design revealed highly leptokurtic dispersal distributions, with seeds caught up to 96 m from the source, far further than mean dispersal distances (approx. 2 m). Nonparametric wave speed estimates are highly sensitive to sampling effort. Mechanistic estimates are insensitive to sampling because they are obtained from independent data and more useful because they are based on the dispersal mechanism. Over a wide range of realistic conditions, mechanistic spread rate estimates were most sensitive to high winds and low seed settling velocities. The combination of integrodifference equations and mechanistic dispersal models is a powerful tool for estimating invasion spread rates and for linking these estimates to characteristics of the species and the environment.  相似文献   

2.
In flowering plants, pollen dispersal is often the major contributing component to gene flow, hence a key parameter in conservation genetics and population biology. A cost-effective method to assess pollen dispersal consists of monitoring the dispersal of fluorescent dyes used as pollen analogues. However, few comparisons between dye dispersal and realized pollen dispersal have been performed to validate the method. We investigated pollen dispersal in two small populations of the insect-pollinated herb Primula elatior from urban forest fragments using direct (paternity analyses based on microsatellite DNA markers) and indirect (fluorescent dyes) methods. We compared these methods using two approaches, testing for the difference between the distance distributions of observed dispersal events and estimating parameters of a dispersal model, and related these results to dye dispersal patterns in three large populations. Dye and realized (based on paternity inference) pollen dispersal showed exponential decay distributions, with 74.2?C94.8% of the depositions occurring at <50?m and a few longer distance dispersal events (up to 151?m). No significant difference in curve shape was found between dye and realized pollen dispersal distributions. The best-fitting parameters characterizing the dye dispersal model were consistent with those obtained for realized pollen dispersal. Hence, the fluorescent dye method may be considered as reliable to infer realized pollen dispersal for forest herbs such as P. elatior. However, our simulations reveal that large sample sizes are needed to detect moderate differences between dye and realized pollen dispersal patterns because the estimation of dispersal parameters suffers low precision.  相似文献   

3.
What is the required minimum landscape size for dispersal studies?   总被引:2,自引:0,他引:2  
Among small animals dispersal parameters are mainly obtained by traditional methods using population studies of marked individuals. Dispersal studies may underestimate the rate and distance of dispersal, and be biased because of aggregated habitat patches and a small study area. The probability of observing long distance dispersal events decreases with distance travelled by the organisms. In this study a new approach is presented to solve this methodological problem. An extensive mark-release-recapture programme was performed in an area of 81 km(2) in southern Sweden. To estimate the required size of the study area for adequate dispersal measures we examined the effect of study area size on dispersal distance using empirical data and a repeated subsampling procedure. In 2003 and 2004, two species of diurnal burnet moths (Zygaenidae) were studied to explore dispersal patterns. The longest confirmed dispersal distance was 5600 m and in total 100 dispersal events were found between habitat patches for the two species. The estimated dispersal distance was strongly affected by the size of the study area and the number of marked individuals. For areas less than 10 km(2) most of the dispersal events were undetected. Realistic estimates of dispersal distance require a study area of at least 50 km(2). To obtain adequate measures of dispersal, the marked population should be large, preferably over 500 recaptured individuals. This result was evident for the mean moved distance, mean dispersal distance and maximum dispersal distance. In general, traditional dispersal studies are performed in small study areas and based on few individuals and should therefore be interpreted with care. Adequate dispersal measures for insects obtained by radio-tracking and genetic estimates (gene flow) is still a challenge for the future.  相似文献   

4.
Mark-recapture methods cannot estimate both mortality and dispersal rates of a wild population simultaneously. However, when an artificially cultured population is released into an area, the initial population size and the initial population distribution are usually known. If artificially cultured individuals are released with marks or distinguished from wild individuals or if no wild individual exists in the study area, we can estimate both the mortality and dispersal rates of the artificial population. The numbers of dispersed and dead individuals are estimated from the dispersal rate from the diffusion model and the total decreasing rate estimated from a mark-recapture data. We can estimate both the time-dependent and time-independent dispersal rates from the data. We choose the best fit model that has the smallest value of Akaike's Information Criteria. We also consider ‘concentric circles approximation” of spatial distribution, in which the cumulative and frequency distributions are analytically obtained.  相似文献   

5.

Background

Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific.

Principal Findings

In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered.

Conclusions/Significance

We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.  相似文献   

6.
Until recently, studies examining the geographical distribution of insects in the Tuscan Archipelago have focused on paleogeography as the primary influence on species distributions. However, for flying insects such as Hymenoptera that may be able to disperse over water, current geographical location is likely to be more important in determining present distributions within the Archipelago. Here we compare mainland and island wasp populations using genetic variation and cuticular hydrocarbon composition of the vespid wasp Polistes dominulus, and species composition of wasps in the family Pompilidae. Both chemical and genetic data result in similar clustering of P. dominulus populations that reflect present geographical location. Moreover, we found current geographical distance to be significantly correlated with P. dominulus population genetic differentiation and Pompilidae faunal composition. These data suggest that dispersal over present sea distances is more important in determining population differentiation and species distribution in the Tuscan Archipelago than paleogeography.  相似文献   

7.
Nuphar luteum (Nymphaceae) is a water lily indigenous to the glacial lakes of the Rocky Mountains of the western United States. The seeds are negatively buoyant, but are dispersed across the water surface in two different manners: (1) within the floating fruits, and (2) within a buoyant, but water-soluble matrix that surrounds the seeds. Seed dispersal via fruits results in a clumped distribution, while seed dispersal mediated by the buoyant matrix results in scattered seed distributions. Experimental release of tagged fruits and seeds in nature show that fruit and seeds can travel up to 80 m/h on the water surface. Although seeds only float for about 72 h, this is adequate time for dispersal, especially in small glacial lakes that are connected via streams. By comparing historical lake-specific population distributions of N. luteurn using aerial photographs taken over a 36 year period we found little change in the overall intralake distribution of each population. We believe these historical patterns to be related to the mechanisms of fruit and seed dispersal.  相似文献   

8.
1. I investigated the effects of dispersal on communities of keystone predators and prey. I obtained two key results. 2. First, a strong trade-off between competitive ability and predator susceptibility allows consumer coexistence over a large resource productivity range, but it also lowers the predator-susceptible superior competitor's abundance and increases its risk of extinction. Thus, unexpectedly, dispersal plays a more important role in coexistence when predator-mediated coexistence is strong rather than weak. The interplay between the trade-off, small population sizes resulting from transient oscillations, and dispersal leads to qualitatively different species distributions depending on the relative mobilities of the consumers and predator. These differences yield comparative predictions that can be tested with data on trade-off strength, dispersal rates, and species distributions across productivity gradients. 3. Second, there is an asymmetry between species in their dispersal effects: the predator-resistant inferior competitor's dispersal has a large effect, but the predator-susceptible superior competitor's dispersal has no effect, on coexistence and species' distributions. The inferior competitor's dispersal also mediates the predator's dispersal effects: the predator's dispersal has no effect when the inferior competitor is immobile, and a large effect when it is mobile. The net outcome of the direct and indirect effects of the inferior competitor's dispersal is a qualitative change in the species' distributions from interspecific segregation to interspecific aggregation. 4. The important point is that differences between species in how they balance resource acquisition and predator avoidance can lead to unexpected differences in their dispersal effects. While consumer coexistence in the absence of dispersal is driven largely by the top predator, consumer coexistence in the presence of dispersal is driven largely by the predator-resistant inferior competitor.  相似文献   

9.
Previous studies have shown that the dispersal of plant seeds to oceanic islands is largely attributable to birds. However, few studies have assessed the role of adhesive dispersal by birds even though this mechanism has long been recognized as a major vector of seed transport. Some data point to the possibility that adhesive transport by seabirds transfers alien plant seeds in island ecosystems. In the present study, we examined the seed-dispersing ability of seabirds among islands in the oceanic Ogasawara Islands, Japan. We used capture surveys to examine the frequency of seeds adhering to seabirds and tested the salt tolerances of the seeds. The distributions of the plant species were examined and the relationships between plant and seabird distributions were analyzed using generalized linear models. Seeds of nine plant species, including aliens, were detected on 16–32?% of captured seabirds. Seeds included those generally considered to be dispersed by wind or internally transported by birds in their guts. Seeds exposed to NaCl solution isotonic with seawater for up to 8?h suffered little or no loss of viability. Analyses of plant distributions demonstrated positive relationships between the distributions of some plants and seabirds. These results show that seabirds effectively disperse seeds of both native and introduced plant species. This is the first study to comprehensively assess adhesive seed dispersal by seabirds; it provides essential information on long-distance dispersal.  相似文献   

10.
In a wild population of banner-tailed kangaroo rats, heritability of dispersal was estimated using two measures of dispersal tendency: distance moved from the natal site and likelihood of leaving the natal home range. Neither of the heritability measures was significantly different from 0. The results indicate that the main causes of variation in dispersal behaviour in this species are environmental, and suggest that there is no class of ‘innate’ dispersers. The possibility cannot be excluded that this population retains modest additive genetic variance for dispersal tendency. The survival consequences of dispersal in kangaroo rats are known to depend on population density and to change significantly between years, so that selection should maintain genetic variation in dispersal tendencies. Modest genetic variation for dispersal tendencies, especially if dispersal is a conditional trait, will be extremely difficult to detect in field studies.  相似文献   

11.
Summary The purpose of this study was to simultaneously measure pollen dispersal distance and actual pollen-mediated gene-flow distance in a wind-pollinated herb, Plantago lanceolata. The pollen dispersal distribution, measured as pollen deposition in a wind tunnel, is leptokurtic, as expected from previous studies of wind-pollinated plants. Gene-flow, measured as seeds produced on rows of male-sterile inflorescences in the wind tunnel, is non-leptokurtic, peaking at an intermediate distance. The difference between the two distributions results from the tendency of the pollen grains to cluster. These pollen clusters are the units of gene dispersal, with clusters of intermediate and large size contributing disproportionately to gene-flow. Since many wind-pollinated species show pollen clustering (see text), the common assumption for wind-pollinated plants that gene-flow is leptokurtic requires re-examination. Gene-flow was also measured in an artifical outdoor population of male-steriles, containing a single pollen source plant in the center of the array. The gene flow distribution is significantly platykurtic, and has the same general properties outdoors, where wind speed and turbulence are uncontrolled, as it does in the wind tunnel. I estimated genetic neighborhood size based on my measure of gene-flow in the outdoor population. The estimate shows that populations of Plantago lanceolata will vary in effective number from a few tens of plants to more than five hundred plants, depending on the density of the population in question. Thus, the measured pollen-mediated gene-flow distribution and population density will interact to produce effective population sizes ranging from those in which there is no random genetic drift to those in which random genetic drift plays an important role in determining gene frequencies within and among populations. Despite the platykurtosis in the distribution, pollen-mediated gene dispersal distances are still quite limited, and considerable within and among-population genetic differentiation is to be expected in this species.  相似文献   

12.
Individual‐based, spatially explicit models provide a mechanism to understand distributions of individuals on the landscape; however, few models have been coupled with population genetics. The primary benefits of such a combination is to assess performance of population‐genetic estimators in realistic situations. kernelpop represents a flexible framework to implement almost any arbitrary population‐genetic and demographic model in a spatially explicit context using a variety of dispersal kernels. Estimates of type I error associated with genome scans in metapopulations are provided as an illustration of this software's utility.  相似文献   

13.
Research on endozoochorous seed dispersal is needed to further understand plant ecology and evolution. There are several methods for calculating the distribution of seed dispersal distances, although many studies use the “combination of gut retention time and movement data” (CGM) method to determine the potential seed dispersal distance distribution (PSD). However, there have been no evaluations of between PSD values acquired by CGM and seed dispersal distance distributions calculated using other methods. The main purpose of this study was to compare methods of determining seed dispersal distance distributions using raccoon dogs (Nyctereutes procyonoides). We calculated estimated seed dispersal distance distribution (ESD) using the bait-marker method and PSD using the CGM method. There were no differences between the ESD and PSD results with regard to basic dispersal distance distributions. The results indicate that if the region from which animal movement data was acquired and the region from which markers for the bait-marker method have been collected are the same, the distance distributions using the two methods may match. Additionally, though there were differences in seed mimic gut retention times (GRTs) between the two baits used (median GRT, fruits: 8 h 50 min, animal materials: 12 h 55 min), there were no differences in PSD between the two baits. This indicates that disperser movement has a stronger effect on dispersal distance distribution than GRT when using the CGM method.  相似文献   

14.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration.  相似文献   

15.
Aim The development of accurate models predicting species range shifts in response to climate change requires studies on the population biology of species whose distributional limits are in the process of shifting. We examine the population biology of an example system using the recent northward range expansion of the marine neogastropod Kelletia kelletii (Forbes, 1852). Location This is a marine coastal shelf neogastropod species whose range extends from Isla Asuncion (Baja California, Mexico) to Monterey (CA, USA). Research sites spanned the extent of the range. Methods We examine abundance distributions and size frequency distributions of K. kelletii for evidence of factors determining historic and contemporary distributional patterns. Population studies were supplemented by historic and contemporary hydrographic data, including seawater temperature data from California Cooperative Oceanic Fisheries Investigations (CalCOFI ) and National Data Buoy Center (NDBC), and seawater circulation data. Results The structure of recently established populations varied dramatically from that of historic populations. Markedly low densities and irregular size frequency distributions characterized recently established populations and suggested only occasionally successful recruitment. The point of transition between historic and recently established populations also corresponded to the location of a gradient in seawater temperature and the confluence of two major oceanic currents. The accumulated data suggest that temperature and/or barriers to dispersal could have set both contemporary patterns in population structure as well as the former northern range limit. Main conclusions Early life stages play a critical role in determining distributional patterns of K. kelletii. Dispersal barriers and temperature limitation are two plausible mechanisms that could determine both contemporary and historic distributional patterns. Future studies on this species should attempt to tease apart the relative importance of these factors in maintaining the populations at the northern edge of the range.  相似文献   

16.
Interactions between two species competing for space were studied using stochastic spatially explicit lattice-based simulations as well as pair approximations. The two species differed only in their dispersal strategies, which were characterized by the proportion of reproductive effort allocated to long-distance (far) dispersal versus short-distance (near) dispersal to adjacent sites. All population dynamics took place on landscapes with spatially clustered distributions of suitable habitat, described by two parameters specifying the amount and the local spatial autocorrelation of suitable habitat. Whereas previous results indicated that coexistence between pure near and far dispersers was very rare, taking place over only a very small region of the landscape parameter space, when mixed strategies are allowed, multiple strategies can coexist over a much wider variety of landscapes. On such spatially structured landscapes, the populations can partition the habitat according to local conditions, with one species using pure near dispersal to exploit large contiguous patches of suitable habitat, and another species using mixed dispersal to colonize isolated smaller patches (via far dispersal) and then rapidly exploit those patches (via near dispersal). An improved mean-field approximation which incorporates the spatially clustered habitat distribution is developed for modeling a single species on these landscapes, along with an improved Monte Carlo algorithm for generating spatially clustered habitat distributions.   相似文献   

17.
The genetic structure of a population provides critical insights into patterns of kinship and dispersal. Although genetic evidence of kin structure has been obtained for multiple species of social vertebrates, this aspect of population biology has received considerably less attention among solitary taxa in which spatial and social relationships are unlikely to be influenced by kin selection. Nevertheless, significant kin structure may occur in solitary species, particularly if ecological or life history traits limit individual vagility. To explore relationships between genetic structure, kinship, and dispersal in a solitary vertebrate, we compared patterns of genetic variation in two demographically distinct populations of the talar tuco-tuco (Ctenomys talarum), a solitary species of subterranean rodent from Buenos Aires Province, Argentina. Based on previous field studies of C. talarum at Mar de Cobo (MC) and Necochea (NC), we predicted that natal dispersal in these populations is male biased, with dispersal distances for males and females being greater at NC. Analyses of 12 microsatellite loci revealed that in both populations, kin structure was more apparent among females than among males. Between populations, kinship and genetic substructure were more pronounced at MC. Thus, our findings were consistent with predicted patterns of dispersal for these animals. Collectively, these results indicate that populations of this solitary species are characterized by significant kin structure, suggesting that, even in the absence of sociality and kin selection, the spatial distributions and movements of individuals may significantly impact patterns of genetic diversity among conspecifics.  相似文献   

18.
Gilroy JJ  Lockwood JL 《PloS one》2012,7(5):e38091
Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly 'fat-tailed' at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms.  相似文献   

19.
Dispersal, gene flow, and population structure   总被引:35,自引:0,他引:35  
The accuracy of gene flow estimates is unknown in most natural populations because direct estimates of dispersal are often not possible. These estimates can be highly imprecise or even biased because population genetic structure reflects more than a simple balance between genetic drift and gene flow. Most of the models used to estimate gene flow also assume very simple patterns of movement. As a result, multiple interpretations of population structure involving contemporary gene flow, departures from equilibrium, and other factors are almost always possible. One way to isolate the relative contribution of gene flow to population genetic differentiation is to utilize comparative methods. Population genetic statistics such as FST, heterozygosity and Nei's D can be compared between species with differing dispersal abilities if these species are otherwise phylogenetically, geographically and demographically comparable. Accordingly, the available literature was searched for all groups that meet these criteria to determine whether broad conclusions regarding the relationships between dispersal, population genetic structure, and gene flow estimates are possible. Allozyme and mtDNA data were summarized for 27 animal groups in which dispersal differences can be characterized. In total, genetic data were obtained for 333 species of vertebrates and invertebrates from terrestrial, freshwater and marine habitats. Across these groups, dispersal ability was consistently related to population structure, with a mean rank correlation of -0.72 between ranked dispersal ability and FST. Gene flow estimates derived from private alleles were also correlated with dispersal ability, but were less widely available. Direct-count heterozygosity and average values of Nei's D showed moderate degrees of correlation with dispersal ability. Thus, despite regional, taxonomic and methodological differences among the groups of species surveyed, available data demonstrate that dispersal makes a measurable contribution to population genetic differentiation in the majority of animal species in nature, and that gene flow estimates are rarely so overwhelmed by population history, departures from equilibrium, or other microevolutionary forces as to be uninformative.  相似文献   

20.
Marine biologists have gone through a paradigm shift, from the assumption that marine populations are largely ‘open’ owing to extensive larval dispersal to the realization that marine dispersal is ‘more restricted than previously thought’. Yet, population genetic studies often reveal low levels of genetic structure across large geographic areas. On the other side, more direct approaches such as mark‐recapture provide evidence of localized dispersal. To what extent can direct and indirect studies of marine dispersal be reconciled? One approach consists in applying genetic methods that have been validated with direct estimates of dispersal. Here, we use such an approach—genetic isolation by distance between individuals in continuous populations—to estimate the spatial scale of dispersal in five species of coral reef fish presenting low levels of genetic structure across the Caribbean. Individuals were sampled continuously along a 220‐km transect following the Mesoamerican Barrier Reef, population densities were estimated from surveys covering 17 200 m2 of reef, and samples were genotyped at a total of 58 microsatellite loci. A small but positive isolation‐by‐distance slope was observed in the five species, providing mean parent‐offspring dispersal estimates ranging between 7 and 42 km (CI 1–113 km) and suggesting that there might be a correlation between minimum/maximum pelagic larval duration and dispersal in coral reef fishes. Coalescent‐based simulations indicate that these results are robust to a variety of dispersal distributions and sampling designs. We conclude that low levels of genetic structure across large geographic areas are not necessarily indicative of extensive dispersal at ecological timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号