首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Inside-out membrane vesicles of human red cells, prepared according to the method of Steck et al. (1970) Science 168, 255-257) have sufficiently low cation permeability to allow the examination of the side-specific interactions of ligands with the asymmetric sodium pump complex. In accordance with the known properties of the pump in intact cells the following results were observed: (a) ATP-dependent sodium influx and (b) maximal (sodium, potassium)-ATPase with K+ present inside the vesicles with larger than or equal to 20 micronM ATP. With much lower [ATP], K+ inhibited sodium-activated ATPase. K+ was inhibitory at either surface. Inhibition was different on the two sides since cytoplasmic (extravesicular) Na+ counteracted inhibition by cytoplasmic (extravesicular) K+ but not inhibition by K+ at the plasma or external membrane surface, i.e. intravesicular K+. A decrease in the steady state level of the phosphenzyme intermediate of sodium-activated ATPase was caused also by K+ at either surface. The effect of cytoplasmic K+ is compatible with its competitive inhibition of activation of phosphorylation of the enzyme by cytoplasmic Na+. At 37 degrees, the inhibitory effect of external K+ is due to interaction with the phosphoenzyme to form a stable complex of K+ with the dephosphenzyme resulting in a decreased overall reaction rate but increased turnover of the phosphoenzyme (E-P + K leads to EK + Pi). At 0 degree, external K+ inhibits by interacting with the unphosphorylated enzyme to form an occluded enzyme-K complex. This results in a decreased overall rate but relatively small change in apparent turnover of the phosphoenzyme. At 0 degree, but not at 37 degrees, external Na+ counteracted the inhibitory effects of external K+.  相似文献   

3.
4.
5.
6.
Virulence, as determined in a mouse model, and the virulence factor activities of catalase, superoxide dismutase, and listeriolysin O were examined in a parental strain (10403S) and in a nonhemolytic mutant strain (DP-L224) of Listeria monocytogenes. The cells were propagated in media containing various concentrations of sodium chloride or potassium chloride. Strains 10403S and DP-L224 exhibited significant increases in catalase activity and listeriolysin O activity when grown in medium containing either salt at 428 mM. The superoxide dismutase activities for both strains increased when they were grown in medium containing either salt. The superoxide dismutase activity was significantly increased only when cells were propagated in medium containing no salt compared with that when they were propagated in medium containing either salt at 1,112 mM. In addition, the listeriolysin O activity was highest for cells propagated in medium containing KCl at 428 mM, while the activity was significantly less for cells propagated in medium containing NaCl at an equal concentration. Virulence was examined in mouse livers and spleens after intravenous infection, and approximate 50% lethal doses were determined after intragastric and intraperitoneal infection. Each method of infection indicated that listeriolysin O is required for virulence, while growth in salt-containing medium or the production of higher levels of catalase, superoxide dismutase, and listeriolysin O do not appear to enhance the virulence of L. monocytogenes.  相似文献   

7.
8.
Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.  相似文献   

9.
10.
We have measured the contents of Na+ and K+ in isolated chromaffin granules. Total contents varied between 227 and 283 nmol/mg of protein, equivalent to matrix concentrations of 53-66 mM. The value found depended on the isolation buffer used, and the ratio of the two ions reflected the composition of the buffer. We then measured the free concentration of each of these ions, and of Ca2+, in the matrix, by using a null-point method with acridine-fluorescence quenching. This monitored H+ fluxes induced by an ionophore in the presence of known concentrations of the ion in the supporting medium. In contrast with organic constituents of the matrix, which have low activity coefficients, Na+ and K+ were found to have activity coefficients around 0.8 Ca2+, however, was strongly bound: its free concentration was only 0.03% of the total.  相似文献   

11.
12.
13.
Evidence has accumulated that several factors, which have been proposed as mediators of exercise hyperemia, can modulate adrenergic neurotransmission in blood vessels. Adenosine and the adenine nucleotides depress the response of isolated blood vessels of the dog to nerve stimulation more than that to exogenous norepinephrine; this difference is explained by a decreased release of the neurotransmitter. Potassium, hyperosmolarity, and acidosis also depress adrenergic neurotransmission in isolated veins. These results are consistent with the hypothesis that metabolic changes in the vicinity of the adrenergic neuroeffector junction are capable of decreasing the output of neurotransmitter to the blood vessels in the exercising muscle.  相似文献   

14.
15.
Inwardly rectifying potassium channels.   总被引:9,自引:0,他引:9  
Inwardly rectifying potassium (Kir) channels regulate the resting membrane potential of the cell and thereby modulate the electrical activity of cardiac and neuronal cells, insulin secretion and epithelial K(+) transport. Considerable progress in understanding the molecular structure of Kir channels and the way in which they are regulated by extracellular and intracellular modulators has been made during the past year.  相似文献   

16.
17.
Potassium (K+) channels are critical for a variety of cell functions, including modulation of action potentials, determination of resting membrane potential, and development of memory and learning. In addition to their role in regulating myocyte excitability, cardiac K+ channels control heart rate and coronary vascular tone and are implicated in the development of arrhythmias. We report here the cloning and sequencing of a k+ channel gene, KCNA1, derived from a human cardiac cDNA library and the chromosomal localization of the corresponding genomic clone. Oligonucleotides based on a delayed rectifier K+ channel gene were used in PCR reactions with human genomic DNA to amplify the S4-S6 regions of several different K+ channel genes. These sequences were used to isolate clones from a human cardiac cDNA library. We sequenced one of these clones, HCK1. HCK1 contains putative S2-S6 domains and shares approximately 70% sequence homology with previously isolated Shaker homologues. HCK1 was used to screen human cosmid libraries and a genomic clone was isolated. By sequencing the genomic clones, a putative S1 domain and translation initiation sequences were identified. Genomic mapping using human-rodent somatic cell panels and in situ hybridization with human metaphase chromosomes have localized KCNA1 to the distal short arm of human chromosome 12. This work is an important step in the study of human cardiac K+ channel structure and function and will be of use in the study of human inherited disease.  相似文献   

18.
With near normal monovalent ionic concentrations, the rate of increase of the potassium conductance after a depolarizing voltage-clamp step is slowed when the external calcium concentration is increased. This trend in the rise-time with changes in calcium is reversed when the axointernal potassium concentration is reduced (150 mM) and the periaxonal concentration is increased (50 mM); that is, the rise-time decrease with increasing calcium concentration. Furthermore, the degree of sigmoidality of the K-conductance time-course always increase when the rise-times increase for a given test potential. In the case of calcium surface-charge screening, these effects may be caused by a shifted distribution of K-ions within the channels following the altered ion gradient, and by a consequent shift in the reciprocal electrostatic interactions between the ionic charges and channel-gate charges.  相似文献   

19.
Barley ( Hordeum vulgare L. cv. CM 72) was grown for a 28-day period and stressed with treatments of 125 mol m−3 NaCl or KC1 with low Ca2+ (0.4 mol m−3 Ca2+) or high Ca2+ (10 mol m−3 Ca2+). Plants were harvested periodically so that relative growth rate (RGR), net assimilation rate (NAR) and leaf area ratio (LAR) could be calculated using the functional approach to plant growth analysis. Relative growth rate declined with time for all treatments, including controls. Salinity inhibited RGR relative to control values by day 10. High Ca2+ improved the growth of salt-stressed plants in both NaCl-salinity and KCl-salinity. KC1 proved more toxic than NaCl, especially for KCI-salinity plants with low Ca2+, which died by day 28. Net assimilation rate, but not LAR, was highly correlated with RGR for all treatments. This indicates that the photosynthetic-assimilatory machinery was limiting RGR and not the leaf area of the plant.  相似文献   

20.
R Simantov 《Life sciences》1978,23(25):2503-2508
Mouse pituitary tumor cells grown in tissue culture release endorphins spontaneously to the culture medium. Depolarization of these cells by incubation with high K+ concentration (56 mM) increased 2–3 folds the release of endorphins. The K+ evoked release was Ca++ dependent by that: a, removal of Ca++ ions inhibited 90% of K+ stimulated release. b, ethyleneglycol-bis (β-aminoethyl ether) N,N′-tetraacetic acid (EGTA) inhibited release of endorphins in the presence of high K+ and Ca++. It is suggested that dual regulatory system inhibit and/or stimulate in-vivo release of endorphins from the pituitary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号