首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natural selection influences synonymous mutations and synonymouscodon usage in many eukaryotes to improve the efficiency oftranslation in highly expressed genes. Recent studies of genecomposition in eukaryotes have shown that codon usage also variesindependently of expression levels, both among genes and atthe intragenic level. Here, we investigate rates of evolution(Ks) and intensity of selection (s) on synonymous mutationsin two groups of genes that differ greatly in the length oftheir exons, but with equivalent levels of gene expression andrates of crossing-over in Drosophila melanogaster. We estimates using patterns of divergence and polymorphism in 50 Drosophilagenes (100 kb of coding sequence) to take into account possiblevariation in mutation trends across the genome, among genesor among codons. We show that genes with long exons exhibithigher Ks and reduced s compared to genes with short exons.We also show that Ks and s vary significantly across long exons,with higher Ks and reduced s in the central region comparedto flanking regions of the same exons, hence indicating thatthe difference between genes with short and long exons can bemostly attributed to the central region of these long exons.Although amino acid composition can also play a significantrole when estimating Ks and s, our analyses show that the differencesin Ks and s between genes with short and long exons and acrosslong exons cannot be explained by differences in protein composition.All these results are consistent with the Interference Selection(IS) model that proposes that the Hill-Robertson (HR) effectcaused by many weakly selected mutations has detectable evolutionaryconsequences at the intragenic level in genomes with recombination.Under the IS model, exon size and exon-intron structure influencethe effectiveness of selection, with long exons showing reducedeffectiveness of selection when compared to small exons andthe central region of long exons showing reduced intensity ofselection compared to flanking coding regions. Finally, ourresults further stress the need to consider selection on synonymousmutations and its variation—among and across genes andexons—in studies of protein evolution.  相似文献   

2.
Roze D  Barton NH 《Genetics》2006,173(3):1793-1811
In finite populations, genetic drift generates interference between selected loci, causing advantageous alleles to be found more often on different chromosomes than on the same chromosome, which reduces the rate of adaptation. This "Hill-Robertson effect" generates indirect selection to increase recombination rates. We present a new method to quantify the strength of this selection. Our model represents a new beneficial allele (A) entering a population as a single copy, while another beneficial allele (B) is sweeping at another locus. A third locus affects the recombination rate between selected loci. Using a branching process model, we calculate the probability distribution of the number of copies of A on the different genetic backgrounds, after it is established but while it is still rare. Then, we use a deterministic model to express the change in frequency of the recombination modifier, due to hitchhiking, as A goes to fixation. We show that this method can give good estimates of selection for recombination. Moreover, it shows that recombination is selected through two different effects: it increases the fixation probability of new alleles, and it accelerates selective sweeps. The relative importance of these two effects depends on the relative times of occurrence of the beneficial alleles.  相似文献   

3.
A study of greenhouse-grown and field populations ofSolarium caripense Humboldt & Bonpland ex Dunal,S. tabanoense Correll, andS. trachycarpum Bitter & Sodiro, all diploid species (n = 12) of high altitudes of southern Central America and northern South America, revealed great morphological variation. Polygonographs utilizing seven characters (number of leaflets, leaf index, length of pubescence, number of flowers, anther length, corolla index, and pollen diameter) showed a wide range of variation and led to recognition of six morphologically distinct groups. Hybridizations with greenhouse populations showed that five of the morphological groups are reproductively isolated as well. A complex pattern of genetic variation involving various degrees and combinations of low crossing success, low seed set, lowered F1 pollen fertility, and nonreciprocal crossability was found. Examinations of meiotic figures from hybrids revealed no gross chromosomal structural differences. Evidence indicates that genetic differences, including gene-cytoplasm interactions, are significant isolating barriers. A key to the species studied plus appropriate taxonomic notes are provided.Solanum heiseri is described as new, andS. trachycarpum is placed inS. sect.Basarthrum seriesCaripensia.  相似文献   

4.
A pair of mutations at different loci (or sites) which are singly deleterious but restore normal fitness in combination may be called compensatory neutral mutations. Population dynamics concerning evolutionary substitutions of such mutants was developed by making use of the diffusion equation method. Based on this theory and, also, by the help of Monte Carlo simulation experiments, a remarkable phenomenon was disclosed that the double mutants can easily become fixed in the population by random drift under continued mutation pressure if the loci arc tightly linked, even when the single mutants are definitely deleterious. More specifically, I consider two loci with allelesA andA’ in the first locus, and allelesB andB’in the second locus, and assign relative fitnesses 1, 1-s’, 1-s’ and 1 respectively to the four gene combinationsAB, A’B, AB’ andA’B’, wheres’ is the selection coefficient against the single mutants (s’ > 0). Letv be the mutation rate per locus per generation and assume that mutation occurs irreversibly fromA toA’ at the first locus, and fromB toB’ at the second locus, whereA andB are wild type genes, andA’ andB’ are their mutant alleles. In a diploid population of effective size N e (or a haploid population of 2N e breeding individuals), it was shown that the average time (T) until joint fixation of the double mutant (A’B’) starting from the state in which the population consists exclusively of the wild type genes (AB) is not excessively long even for large 4N e s’ values. In fact, assuming2N e v = 1 we have -T = 54Ne for 4Nes’ = 400, and -T = 128Ne for 4N e s’ = 1000. These values are not unrealistically long as compared with -T~ 5N e obtained for 4N e s’ = 0. The approximate analytical treatment has also been extended to estimate the effect of low rate crossing over in retarding fixation. The bearing of these findings on molecular evolution is discussed with special reference to coupled substitutions at interacting amino acid (or nucleotide) sites within a folded protein (orrna) molecule. It is concluded that compensatory neutral mutants may play an important role in molecular evolution.  相似文献   

5.
Charlesworth B 《Genetics》2012,190(1):5-22
The process of evolution at a given site in the genome can be influenced by the action of selection at other sites, especially when these are closely linked to it. Such selection reduces the effective population size experienced by the site in question (the Hill-Robertson effect), reducing the level of variability and the efficacy of selection. In particular, deleterious variants are continually being produced by mutation and then eliminated by selection at sites throughout the genome. The resulting reduction in variability at linked neutral or nearly neutral sites can be predicted from the theory of background selection, which assumes that deleterious mutations have such large effects that their behavior in the population is effectively deterministic. More weakly selected mutations can accumulate by Muller's ratchet after a shutdown of recombination, as in an evolving Y chromosome. Many functionally significant sites are probably so weakly selected that Hill-Robertson interference undermines the effective strength of selection upon them, when recombination is rare or absent. This leads to large departures from deterministic equilibrium and smaller effects on linked neutral sites than under background selection or Muller's ratchet. Evidence is discussed that is consistent with the action of these processes in shaping genome-wide patterns of variation and evolution.  相似文献   

6.
Charlesworth B 《Genetics》2012,191(1):233-246
In the putatively ancestral population of Drosophila melanogaster, the ratio of silent DNA sequence diversity for X-linked loci to that for autosomal loci is approximately one, instead of the expected "null" value of 3/4. One possible explanation is that background selection (the hitchhiking effect of deleterious mutations) is more effective on the autosomes than on the X chromosome, because of the lack of crossing over in male Drosophila. The expected effects of background selection on neutral variability at sites in the middle of an X chromosome or an autosomal arm were calculated for different models of chromosome organization and methods of approximation, using current estimates of the deleterious mutation rate and distributions of the fitness effects of deleterious mutations. The robustness of the results to different distributions of fitness effects, dominance coefficients, mutation rates, mapping functions, and chromosome size was investigated. The predicted ratio of X-linked to autosomal variability is relatively insensitive to these variables, except for the mutation rate and map length. Provided that the deleterious mutation rate per genome is sufficiently large, it seems likely that background selection can account for the observed X to autosome ratio of variability in the ancestral population of D. melanogaster. The fact that this ratio is much less than one in D. pseudoobscura is also consistent with the model's predictions, since this species has a high rate of crossing over. The results suggest that background selection may play a major role in shaping patterns of molecular evolution and variation.  相似文献   

7.
On the basis of established knowledge of microbial genetics one can distinguish three major natural strategies in the spontaneous generation of genetic variations in bacteria. These strategies are: (1) small local changes in the nucleotide sequence of the genome, (2) intragenomic reshuffling of segments of genomic sequences and (3) the acquisition of DNA sequences from another organism. The three general strategies differ in the quality of their contribution to microbial evolution. Besides a number of non-genetic factors, various specific gene products are involved in the generation of genetic variation and in the modulation of the frequency of genetic variation. The underlying genes are called evolution genes. They act for the benefit of the biological evolution of populations as opposed to the action of housekeeping genes and accessory genes which are for the benefit of individuals. Examples of evolution genes acting as variation generators are found in the transposition of mobile genetic elements and in so-called site-specific recombination systems. DNA repair systems and restriction-modification systems are examples of modulators of the frequency of genetic variation. The involvement of bacterial viruses and of plasmids in DNA reshuffling and in horizontal gene transfer is a hint for their evolutionary functions. Evolution genes are thought to undergo biological evolution themselves, but natural selection for their functions is indirect, at the level of populations, and is called second-order selection. In spite of an involvement of gene products in the generation of genetic variations, evolution genes do not programmatically direct evolution towards a specific goal. Rather, a steady interplay between natural selection and mixed populations of genetic variants gives microbial evolution its direction.  相似文献   

8.
In this work it is proposed that in evolution amino acid substitutions implying strong physico chemical and structural differences are more relevant and more frequent than substitutions between similar amino acids. This analysis is made over a group of protein families representing about 10 000 substitutions and as examples the evolutionary trees of fibrinopeptides A and calcitonins were constructed and compared.  相似文献   

9.
Five taxa ofSolanum sect.Basarthrum were studied in an effort to clarify their taxonomic position and to determine the effective evolutionary mechanisms. Methods included an analysis of chromosome number and behavior, artificial hybridizations and a study of herbarium material. The data suggest thatS. canense andS. suaveolens are closely related and that 5.suaveolens may have been the progenitor ofS. canense. The only successful interspecific cross involving one of these two species was vigorous but highly sterile. Evidence from both morphology and crossing studies indicates a close relationship betweenS. basendopogon andS. caripense. Hybrids between these two species with relatively high fertility through the F3 generation were secured. The status ofS. basendopogon f.obtusum remains a problem since there is but one collection of the typical form. The placement ofS. sanctae-marthae in sect.Basarthrum is considered problematic. Virtually none of 170 interspecific crosses with this species were successful. Seed size and the presence and size of a seed wing are proposed as useful morphological characters in sect.Basarthrum. There is apparently a correlation between short styles and self-compatibility. All species are diploid (n = 12) and no chromosomal or meiotic aberrations were noted in the species or hybrids. Most of the more than 1,000 interspecific crosses failed. Most of the hybrid fruits bore no seeds or seeds which did not germinate. The primary barriers separating species are considered to be strong prefertilization isolating mechanisms and ecogeographic factors.  相似文献   

10.
A huge part of the genomes of most Triticeae species is formed by different families of repetitive DNA sequences. In this paper the phylogenetic distribution of two major classes of the repeats, retrotransposons and tandemly organized DNA sequences, are considered and compared with the evolution of gene-rich regions and generally accepted Triticeae phylogenetic relationships. In Hordeum, LTR-containing retrotransposons are dispersed along the chromosomes and are consistent with the existing picture of the phylogeny of Hordeum. Another retrotransposon class, LINEs, have evolved independently from LTR-retrotransposons. Different retrotransposon classes appear to have competed for genome space during the evolution of Hordeum. Another class of repeats, tandemly organized DNA sequences, tends to cluster at the functionally important regions of chromosomes, centromeres and telomeres. The distribution of a number of tandem DNA families in Triticeae is not congruent with generally accepted phylogenetic relationships. While natural selection is the dominant factor determining the structure of genic regions we suggest that the contribution of random events is important in the evolution of repetitive DNA sequences. The interplay of stochastic processes, molecular drive, and selection determines the structure of chromosomal regions, notably at centromeres and telomeres, stabilizing and differentiating species-specific karyotypes. Thus, the evolution of these regions may occur largely independently of the evolution of gene-rich regions.  相似文献   

11.
The fixation of weakly selected mutations can be greatly influenced by strong directional selection at linked loci. Here, I investigate a two-locus model in which weakly selected, reversible mutations occur at one locus and recurrent strong directional selection occurs at the other locus. This model is analogous to selection on codon usage at synonymous sites linked to nonsynonymous sites under strong directional selection. Two approximations obtained here describe the expected frequency of the weakly selected preferred alleles at equilibrium. These approximations, as well as simulation results, show that the level of codon bias declines with an increasing rate of substitution at the strongly selected locus, as expected from the well-understood theory that selection at one locus reduces the efficacy of selection at linked loci. These solutions are used to examine whether the negative correlation between codon bias and nonsynonymous substitution rates recently observed in Drosophila can be explained by this hitchhiking effect. It is shown that this observation can be reasonably well accounted for if a large fraction of the nonsynonymous substitutions on genes in the data set are driven by strong directional selection.  相似文献   

12.
Variation within and between European populations of Silene pratensis has been determined at different levels: morphological, biochemical and genetic. The various data sets were analysed separately and comparison of the patterns led to a number of conclusions concerning the evolution of the species. Coinciding patterns were found for flavone glycosylating genes, seed, pollen and capsule morphology. Together with observations on habitat and with some historical evidence, these patterns elucidated the evolutionary history of S. pratensis in Europe since the last Ice Age. The isozyme data and the flower morphology, on the other hand, presents us with knowledge about the ontogenesis and the influence of the environment on S. pratensis. Finally we can begin to determine the evolutionary relationships within section Elisanthe by comparing the variation of S. pratensis with the variation known for other species.  相似文献   

13.
Several models of multiple slightly deleterious alleles are reviewed and theoretical consequences of slightly negative selection are discussed in conjunction with evolution and variation at the molecular level. Facts are organized which may be satisfactorily explained by the hypothesis of very slightly deleterious mutations. They are: (1) There appears to be an upper limit in heterozygosity for protein loci as measured by electrophoresis. (2) The excess of rare alleles is more pronounced in Drosophila than in man. (3) Correlation of heterozygosities at a locus among sibling species of the Drosophila willistoni group is too high compared to what is expected by the strict neutral theory, while it is not so among human races and between man and chimpanzee. (4) The rate of protein divergence is exceptionally high in Hawaiian Drosophila.  相似文献   

14.
S Pálsson  P Pamilo 《Genetics》1999,153(1):475-483
The effects of recessive, deleterious mutations on genetic variation at linked neutral loci can be heterozygosity-decreasing because of reduced effective population sizes or heterozygosity-increasing because of associative overdominance. Here we examine the balance between these effects by simulating individual diploid genotypes in small panmictic populations. The haploid genome consists of one linkage group with 1000 loci that can have deleterious mutations and a neutral marker. Combinations of the following parameters are studied: gametic mutation rate to harmful alleles (U), population size (N), recombination rate (r), selection coefficient (s), and dominance (h). Tight linkage (r 相似文献   

15.
Molecular clocks based upon amino acid sequences in proteins have played a major role in the clarification of evolutionary phylogenies. Creationist criticisms of these methods sometimes rely upon data that might initially seem to be paradoxical. For example, human cytochrome c differs from that of an alligator by 13 amino acids but differs by 14 amino acids from a much more closely related primate, Otolemur garnettii. The apparent anomaly is resolved by taking into consideration the variable substitution rate of cytochrome c, particularly among primates. This paper traces some of the history of extensive research into the topic of rate heterogeneity in cytochrome c including data from cytochrome c pseudogenes.  相似文献   

16.
Frank Livingstone played a central role in defining the population genetics of the sickle cell mutation at position 6 of the human beta globin gene, the most famous amino acid substitution in evolutionary biology. Its discovery occurred at a time when traditional, 19th-century principles of natural selection were being joined with the newly discovered mechanics of DNA structure and protein synthesis to produce Neo-Darwinian theory. When combined with the epidemiology of malaria in Africa, differential mortality for both homozygotes, and the resulting advantage of the heterozygote, sickle cell became the classic balanced polymorphism. Human HLA-A has 237 molecular alleles. The histocompatibility system has as its primary function the presentation of peptides to T-cell receptors and plays an essential role in the immune system. Nearly all of the alleles are codominant and fully functional. Despite almost 30 years of disease-association studies with HLA-A, no convincing evidence has been found for differential fertility or mortality at this locus. Yet the dogma in the histocompatibility field is that this extensive human polymorphism is maintained by "balancing selection." Explaining HLA-A polymorphism is what one might call the sickle-cell-effect. This one mutation, coming as it did at the historical convergence of Darwinian theory and modern genetics, and carrying with it the strong relationship between mutation, disease, and allele frequency, has conditioned our discussion of human genetic variation and population genetics. Has the strength of this early idea made evolutionary biologists uncritical of systems like HLA-A and retarded the search for new mechanisms of molecular evolution? Is it now time to move away from a focus on mutation and polymorphism in evolutionary genetics and toward a systems theory that would explain the origin and evolution of hemoglobin and HLA-A and the biochemical pathways that surround them?  相似文献   

17.
Epistasis and the evolution of recombination are closely intertwined: epistasis generates linkage disequilibria (i.e. statistical associations between alleles), whereas recombination breaks them up. The mutational deterministic hypothesis (MDH) states that high recombination rates are maintained because the breaking up of linkage disequilibria generated by negative epistasis enables more efficient purging of deleterious mutations. However, recent theoretical and experimental work challenges the MDH. Experimental evidence suggests that negative epistasis, required by the MDH, is relatively uncommon. On the theoretical side, population genetic models suggest that, compared with the combined effects of drift and selection, epistasis generates a negligible amount of linkage disequilibria. Here, we assess these criticisms and discuss to what extent they invalidate the MDH as an explanation for the evolution of recombination.  相似文献   

18.
The evolution of self-fertilization is associated with a large reduction in the effective rate of recombination and a corresponding decline in effective population size. If many spontaneous mutations are slightly deleterious, this shift in the breeding system is expected to lead to a reduced efficacy of natural selection and genome-wide changes in the rates of molecular evolution. Here, we investigate the effects of the breeding system on molecular evolution in the highly self-fertilizing plant Arabidopsis thaliana by comparing its coding and noncoding genomic regions with those of its close outcrossing relative, the self-incompatible A. lyrata. More distantly related species in the Brassicaceae are used as outgroups to polarize the substitutions along each lineage. In contrast to expectations, no significant difference in the rates of protein evolution is observed between selfing and outcrossing Arabidopsis species. Similarly, no consistent overall difference in codon bias is observed between the species, although for low-biased genes A. lyrata shows significantly higher major codon usage. There is also evidence of intron size evolution in A. thaliana, which has consistently smaller introns than its outcrossing congener, potentially reflecting directional selection on intron size. The results are discussed in the context of heterogeneity in selection coefficients across loci and the effects of life history and population structure on rates of molecular evolution. Using estimates of substitution rates in coding regions and approximate estimates of divergence and generation times, the genomic deleterious mutation rate (U) for amino acid substitutions in Arabidopsis is estimated to be approximately 0.2-0.6 per generation.  相似文献   

19.
The evolution of sociality represented a major transition point in biological history. The most advanced societies, such as those displayed by social insects, consist of reproductive and nonreproductive castes. The caste system fundamentally affects the way natural selection operates. Specifically, selection acts directly on reproductive castes, such as queens, but only indirectly through the process of kin selection on nonreproductive castes, such as workers. In this study, we present theoretical analyses to determine the rate of substitution at loci expressed exclusively in the queen or worker castes. We show that the rate of substitution is the same for queen- and worker-selected loci when the queen is singly mated. In contrast, when a queen is multiply mated, queen-selected loci show higher rates of substitution for adaptive alleles and lower rates of substitution for deleterious alleles than worker-selected loci. We compare our theoretical expectations to previously obtained genomic data from the honeybee, Apis mellifera, where queens mate multiply and the fire ant, Solenopsis invicta, where queens mate singly and find that rates of evolution of queen- and worker-selected loci are consistent with our predictions. Overall, our research tests theoretical expectations using empirically obtained genomic data to better understand the evolution of advanced societies.  相似文献   

20.
Protein adaptations to the physical environment play critical roles in determining the biogeographical distributions of species. The study of closely related species in habitats differing slightly in temperature or pressure offers an excellent experimental approach for discerning environmental thresholds of protein perturbation and the types of amino acid substitutions that are effective in maintaining optimal protein properties. These adaptations may involve amino acid replacements other than at the active site residues involved in catalysis or binding, a discovery with implications for the debate between adherents to the Neutralist and Selectionist points of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号