首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase (ACC oxidase), an enzyme involved in the biosynthesis of ethylene, has been studied in ripening fruits of tomato (Lycopersicum esculentum Mill.). Two types of antibody have been raised against (i) a synthetic peptide derived from the reconstructed pTOM13 clone (pRC13), a tomato cDNA encoding ACC oxidase, and considered as a suitable epitope by secondary-structure predictions; and (ii) a fusion protein overproduced in Escherichia coli expressing the pRC13 cDNA. Immunoblot analysis showed that, when purified by antigen affinity chromatography, both types of antibody recognized a single band corresponding to ACC oxidase. Superimposition of Calcofluor white with immunofluorescence labeling, analysed by optical microscopy, indicated that ACC oxidase is located at the cell wall in the pericarp of breaker tomato and climacteric apple (Malus × domestica Borkh.) fruit. The apoplasmic location of the enzyme was also demonstrated by the observation of immunogold-labeled antibodies in this region by both optical and electron microscopy. Transgenic tomato fruits in which ACC-oxidase gene expression was inhibited by an antisense gene exhibited a considerable reduction of labeling. Immunocytological controls made with pre-immune serum or with antibodies pre-absorbed on their corresponding antigens gave no staining. The discrepancy between these findings and the targeting of the protein predicted from sequences of ACC-oxidase cDNA clones isolated so far is discussed.  相似文献   

3.
In vivo ethylene production by hypocotyl segments of sunflower seedlings and in vitro activity of 1-aminocyclopropane-1-carboxylic acid oxidase (formerly ethylene-forming enzyme) extacted from the same tissues increase with increasing concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and oxygen. ACC oxidase activity follows Michaelis-Menten kinetics. The apparent Km values of the enzyme towards ACC, estimated in vivo and in vitro, are respectively 219 M and 20.6 M. Both Km values towards O2 are similar, ca 10.6–11.4%. A decrease in concentration in one of the substrates (ACC or O2) results in an increase in in vivo apparent Km of ACC oxidase for the other substrate. On the contrary, Km values of the enzyme towards ACC or O2 estimated in vitro are not dependent upon the concentration of the other substrate (ACC or O2).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - MACC malonylate 1-aminocyclopropane-1-carboxylic acid - SD standard deviation  相似文献   

4.
The enzyme which converts 1-aminocyclo-propane-1-carboxylic acid (ACC) into ethylene, ACC oxidase, has been isolated from apple fruits (Malus x domestica Borkh. cv. Golden Delicious), and for the first time stabilized in vitro by 1,10-phenanthroline and purified 170-fold to homogeneity in a five-step procedure. The sodium dodecyl sulfate-denatured and native proteins have similar molecular weights (approx. 40 kDa) indicating that the enzyme is active in its monomeric form. Antibodies raised against a recombinant ACC oxidase over-produced in Escherichia coli from a tomato cDNA recognise the apple-fruit enzyme with high specificity in both crude extracts and purified form. Glycosylation appears to be absent because of (i) the lack of reactivity towards a mixture of seven different biotinylated lectins and (ii) the absence of N-linked substitution at a potential glycosylation site, in a sequenced peptide. Phenylhydrazine and 2-methyl-1-2-dipyridyl propane do not inhibit activity, indicating that ACC oxidase is not a prosthetic-heme iron protein. The partial amino-acid sequence of the native protein has strong homology to the predicted protein of a tomato fruit cDNA demonstrated to encode ACC oxidase.  相似文献   

5.
6.
Inhibition of wound-ethylene by eight structural analogues of 1-aminocyclopropane-1-carboxylic acid (ACC) studied seperately was investigated in unripe tomato fruit discs (Lycopersicum esculentum). The compounds tested were: trans-2-phenylcyclopropane-1-carboxylic acid (PCCA), cyclopropane-1,1-dicarboxylic acid (CDA), cyclopropylamine (CPA), cyclopropyl methyl ketone (CMK), chrysanthemyl alcohol (CHRA), 2-methyl cyclopropanecarboxylic acid (MCA), cyclopropanecarboxylic acid (CCA), 2-methyl-cyclopropane-methanol (2-MCM). The level of inhibition was a function of treatment concentration and time. Differential inhibition induced by the tested compounds was related to their structure.  相似文献   

7.
Tsu-Tsuen Wang  Shang Fa Yang 《Planta》1987,170(2):190-196
In order to understand the physiological significance of the in-vitro lipoxygenase (EC 1.13.11.12)-mediated ethylene-forming system (J.F. Bousquet and K.V. Thimann 1984, Proc. Natl. Acad. Sci. USA 81, 1724–1727), its characteristics were compared to those of an in-vivo ethylene-forming system. While oat (Avena sativa L.) leaves, as other plant tissues, preferentially converted only one of the 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC) isomers to 1-butene, the lipoxygenase system converted all four AEC isomers to 1-butene with nearly equal efficiencies. While the in-vivo ethylene-forming system of oat leaves was saturable with ACC with a Km of 16 M, the lipoxygenase system was not saturated with ACC even at 10 mM. In contrast to the in-vivo results, only 10% of the ACC consumed in the lipoxygenase system was converted to ethylene, indicating that the reaction is not specific for ethylene formation. Increased ACC-dependent ethylene production in oat leaves following pretreatment with linoleic acid has been inferred as evidence of the involvement of lipoxygenase in ethylene production. We found that pretreating oat leaves with linoleic acid resulted in increased ACC uptake and thereby increased ethylene production. A similar effect was observed with oleic acid, which is not a substrate of lipoxygenase. Since linoleic acid hydroperoxide can substitute for lipoxygenase and linoleic acid in this system, it is assumed that the alkoxy radicals generated during the decomposion of linoleic acid hydroperoxide are responsible for the degradation of ACC to ethylene. Our results collectively indicate that the reported lipoxygenase system is not the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - Epps N-(2-hydroxyethyl)-piperazine-N-3-propanesulfonic acid - LH linoleic acid - LOOH linoleic acid hydroperoxide - pyridoxal-P pyridoxal-phosphate This work was presented at the 12th International Conference on Plant Growth Substances, Heidelberg, FRG, August 1985 (Abstract No. PO 5-52)  相似文献   

8.
White light inhibits the conversion of 1-amino-cyclopropane-1-carboxylic acid (ACC) in discs of green leaves of tobacco (Nicotiana tabacum L.) and segments of oat (Avena sativa L.) leaves by from 60 to 90%. Etiolated oat leaves do not show this effect. The general nature of the effect is shown by its presence in both a mono- and a dicotyledon. Since the leaves have been grown and pre-incubated in light, yet can produce from 2 to 9 times as much ethylene in the dark as in the light, it follows that the light inhibition is fully reversible. The inhibition by light is about equal to that exerted in the dark by CoCl2; it can be partly reversed by dithiothreitol and completely by mercaptoethanol. Thus the light is probably acting, via the photosynthetic system, on the SH group(s) of the enzyme system converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

9.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

10.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

11.
Jörg R. Konze  Hans Kende 《Planta》1979,146(3):293-301
Homogenates of etiolated pea (Pisum sativum L.) shoots formed ethylene upon incubation with 1-aminocyclopropane-1-carboxylic acid (ACC). In-vitro ethylene formation was not dependent upon prior treatment of the tissue with indole-3-acetic acid. When homogenates were passed through a Sephadex column, the excluded, high-molecular-weight fraction lost much of its ethylene-synthesizing capacity. This activity was largely restored when a heat-stable, low-molecular-weight factor, which was retarded on the Sephadex column, was added back to the high-molecular-weight fraction. The ethylene-synthesizing system appeared to be associated, at least in part, with the particulate fraction of the pea homogenate. Like ethylene synthesis in vivo, cell-free ethylene formation from ACC was oxygen dependent and inhibited by ethylenediamine tetraacetic acid, n-propyl gallate, cyanide, azide, CoCl3, and incubation at 40°C. It was also inhibited by catalase. In-vitro ethylene synthesis could only be saturated at very high ACC concentrations, if at all. Ethylene production in pea homogenates, and perhaps also in intact tissue, may be the result of the action of an enzyme that needs a heat-stable cofactor and has a very low affinity for its substrate, ACC, or it may be the result of a chemical reaction between ACC and the product of an enzyme reaction. Homogenates of etiolated pea shoots also formed ethylene with 2-keto-4-mercaptomethyl butyrate (KMB) as substrate. However, the mechanism by which KMB is converted to ethylene appears to be different from that by which ACC is converted.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - KMB 2-keto-4-mercaptomethyl butyrate - SAM S-adenosylmethionine  相似文献   

12.
The IAA-oxidase system of olive tree (Olea europea) in the presence of its substrate, IAA, and cofactors, DCP and Mn2, forms ethylene from 1-aminocyclopropane-l-carboxylic acid (ACC) bound as a Schiffs base to pyridoxal phosphate. Similarly, olive leaf discs upon incubation with ACC liberate considerable amounts of ethylene. The results suggest that this IAA-oxidase system may be the one active in the last step in the biosynthesis of ethylene from methionine.  相似文献   

13.
The biosynthetic basis for the high rates of ethylene production by the apical region of etiolated pea (Pisum sativum L.) seedlings was investigated. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was quantified in extracts of various regions of seedlings by measuring isotopic dilution of a 2H-labelled internal standard using selected-ion-monitoring gas chromatography/mass spectrometry. The ACC levels in the apical hook and leaves were much higher than in the expanded internodes of the epicotyl. The capacity of excised tissue sections to convert exogenous ACC to ethylene was also much greater in the apical region, reflecting the distribution of soluble protein in the epicotyl.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - FW fresh weight - GC/MS coupled gas chromatography/mass spectrometry - HPLC high-performance liquid chromatography  相似文献   

14.
In preclimacteric apple fruits ( Malus × domestica Borkh. cv. Golden Delicious) ethylene production is controlled by the rates of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis, and by its metabolism to ethylene by the ethylene-forming enzyme and to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by malonyl CoA-ACC transferase. The onset of the climacteric in ethylene production is associated with an increase in the activity of the ethylene-forming enzyme in the pulp and with a rise in the activity of ACC synthase. Malonyl transferase activity is very high in the skin of immature fruit, decreases sharply before the onset of the climacteric, and remains nearly constant thereafter. More than 40% of the ACC synthesized in the skin and around 5% in the flesh, are diverted to MACC at early climacteric. At the climacteric peak there are substantial gradients in ethylene production between different portions of the tissue, the inner cortical tissues producing up to twice as much as the external tissues. This increased production is associated with, and apparently due to, increased content of ACC synthase. Less than 1% of the synthesized ACC is diverted to MACC in the flesh of climacteric apples. In contrast, the skin contains high activity of malonyl transferase, and correspondingly high levels [1000 nmol (g dry weight)−1] of MACC.  相似文献   

15.
Homogenates of hypocotyls of light-grown mung-bean (Vigna radiata (L.) Wilczek) seedlings catalyzed the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) from the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-coenzyme A. Apparent Km values for ACC and malonyl-CoA were found to be 0.17 mM and 0.25 mM, respectively. Free coenzyme A was an uncompetitive inhibitor with respect to malonyl-CoA (apparent Ki=0.3 mM). Only malonyl-CoA served as an effective acyl donor in the reaction. The d-enantiomers of unpolar amino acids inhibited the malonylation of ACC. Inhibition by d-phenylalanine was competitive with respect to ACC (apparent Ki=1.2 mM). d-Phenylalanine and d-alanine were malonylated by the preparation, and their malonylation was inhibited by ACC. When hypocotyl segments were administered ACC in the presence of certain unpolar d-amino acids, the malonylation of ACC was inhibited while the production of ethylene was enhanced. Thus, a close-relationship appears to exist between the malonylation of ACC and d-amino acids. The cis- as well as the trans-diastereoisomers of 2-methyl- or 2-ethyl-substituted ACC were potent inhibitors of the malonyltransferase. Treatment of hypocotyl segments with indole-3-acetic acid or CdCl2 greatly increased their content of ACC and MACC, as well as their release of ethylene, but had little, or no, effect on their extractable ACC-malonylating activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

16.
Maize plants, grown in aerated solution cultures, were exposed, at different growth stages, to ACC (1-aminocyclopropane-1-carboxylic acid) applied through the roots for up to 9 d. Total uptake of ACC increased with seedling size. During ACC treatment, ethylene evolution, by the shoots, proceeded at an almost constant rate per unit fresh weight that was up to 40-fold faster than that of untreated plants. This stimulation extended several days beyond the period of ACC uptake. The effects on growth and development were assessed when plants were 50–52-d old. ACC application shortened certain stem internodes, leaf-sheaths and laminae. The location of these effects depended on the time of application. The greatest shortening was induced by application, at the 4-leaf stage (10 d-old), prior to elongation of the cone of the shoot apex. This is ascribed to effects on meristematic tissue, in addition to those on elongating cells. An unexpected response to ACC treatment, at the 4-leaf stage, was an increase of up to four leaf-bearing stem nodes compared to untreated plants. This resulted in a parallel elevation of the uppermost ear-bearing axillary shoot to higher nodal positions. The length of leaves high in the canopy (nodes 11–16) was promoted by treating seedlings with ACC. The only clear effect of the ACC treatments on emergent axillary shoots per se was a retardation of silk elongation.  相似文献   

17.
18.
A sensitive and specific method is described for the routine assay of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in 100–200 mg fresh weight samples of green or etiolated tissue. The method involves high performance liquid chromatography (HPLC) and gas chromatography linked to mass spectrometry (GCMS) and uses 14C-labelled ACC as an internal standard, N-benzoyl n-propyl ACC as an easily prepared derivative for HPLC and GCMS, and N-benzoyl isobutyl ACC as an internal standard for GCMS. The procedure is faster and safer than an existing GCMS method and more specific and reliable than indirect assays widely in use. The method has been used to measure ACC in maize roots, young leaves of cucumber, and aerobic or anaerobic seedlings of rice.  相似文献   

19.
The antifungal antibiotics Sinefungin and A9145C isolated from Streptomyces griseolus and the synthetic nucleoside Siba, which are analogs of S-adenosylmethionine, inhibit the activity of 1-aminocyclopropane 1-carboxylic acid synthase from tomato fruits. Sinefungin and Siba were shown to be more potent inhibitors than A9145C. In extracts of green fruits, the enzyme activity was inhibited by Sinefungin with an I50 of 1 microM, which was similar to that caused by aminoethoxyvinylglycine, and by Siba with an I50 of 100 microM; in extracts from red tomatoes, the I50's were 25 microM and 100 microM, respectively. The inhibition of ACC synthase by these analogs could be reversed by gel filtration chromatography.  相似文献   

20.
The activity of the ethylene-forming enzyme (EFE) in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells was almost completely abolished within 10 min by 0.4 mM of the metal-chelating agent 1,10-phenanthroline. Subsequent addition of 0.4 mM FeSO4 immediately reversed this inhibition. A partial reversion was also obtained with 0.6 mM CuSO4 and ZnSO4, probably as a consequence of the release of iron ions from the 1,10-phenanthroline complex. The inhibition was not reversed by Mn2+ or Mg2+. Tomato cells starved of iron exhibited a very low EFE activity. Addition of Fe2+ to these cells caused a rapid recovery of EFE while Cu2+, Zn2+ and other bivalent cations were ineffective. The recovery of EFE activity in iron-starved cells was insensitive to cycloheximide and therefore does not appear to require synthesis of new protein. The EFE activity in tomato cells was induced by an elicitor derived from yeast extract. Throughout the course of induction, EFE activity was blocked within 10–20 min by 1,10-phenanthroline, and the induced level was equally rapidly restored after addition of iron. We conclude that iron is an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号