首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Src Homology (SH2) domains play critical roles in signaling pathways by binding to phosphotyrosine (pTyr)-containing sequences, thereby recruiting SH2 domain-containing proteins to tyrosine-phosphorylated sites on receptor molecules. Investigations of the peptide binding specificity of the SH2 domain of the Src kinase (Src SH2 domain) have defined the EEI motif C-terminal to the phosphotyrosine as the preferential binding sequence. A subsequent study that probed the importance of eight specificity-determining residues of the Src SH2 domain found two residues which when mutated to Ala had significant effects on binding: Tyr beta D5 and Lys beta D3. The mutation of Lys beta D3 to Ala was particularly intriguing, since a Glu to Ala mutation at the first (+1) position of the EEI motif (the residue interacting with Lys beta D3) did not significantly affect binding. Hence, the interaction between Lys beta D3 and +1 Glu is energetically coupled. This study is focused on the dissection of the energetic coupling observed across the SH2 domain-phosphopeptide interface at and around the +1 position of the peptide. It was found that three residues of the SH2 domain, Lys beta D3, Asp beta C8 and AspCD2 (altogether forming the so-called +1 binding region) contribute to the selection of Glu at the +1 position of the ligand. A double (Asp beta C8Ala, AspCD2Ala) mutant does not exhibit energetic coupling between Lys beta D3 and +1 Glu, and binds to the pYEEI sequence 0.3 kcal/mol tighter than the wild-type Src SH2 domain. These results suggest that Lys beta D3 in the double mutant is now free to interact with the +1 Glu and that the role of Lys beta D3 in the wild-type is to neutralize the acidic patch formed by Asp beta C8 and AspCD2 rather than specifically select for a Glu at the +1 position as it had been hypothesized previously. A triple mutant (Lys beta D3Ala, Asp beta C8Ala, AspCD2Ala) has reduced binding affinity compared to the double (Asp beta C8Ala, AspCD2Ala) mutant, yet binds the pYEEI peptide as well as the wild-type Src SH2 domain. The structural basis for such high affinity interaction was investigated crystallographically by determining the structure of the triple (Lys beta D3Ala, Asp beta C8Ala, AspCD2Ala) mutant bound to the octapeptide PQpYEEIPI (where pY indicates a phosphotyrosine). This structure reveals for the first time contacts between the SH2 domain and the -1 and -2 positions of the peptide (i.e. the two residues N-terminal to pY). Thus, unexpectedly, mutations in the +1 binding region affect binding of other regions of the peptide. Such additional contacts may account for the high affinity interaction of the triple mutant for the pYEEI-containing peptide.  相似文献   

2.
The final step of molybdenum cofactor biosynthesis in plants is catalyzed by the two-domain protein Cnx1. The G domain of Cnx1 (Cnx1G) binds molybdopterin with high affinity and transfers molybdenum to molybdopterin. Here, we describe the functional and structural characterization of structure-based Cnx1G mutants. For molybdopterin binding residues Thr542 and Ser573 were found to be important because different mutations of those residues resulted in 7- to 26-fold higher k(D) values for molybdopterin binding. Furthermore, we showed that the terminal phosphate of molybdopterin is directly involved in protein-pterin interactions as dephosphorylated molybdopterin binds with one magnitude of order lower affinity to the wild-type protein. Molybdopterin binding was not affected in mutants defective in Ser476, Asp486, or Asp515. However, molybdenum insertion was completely abolished, indicating their important role for catalysis. Based on these results we propose the binding of molybdopterin to a large depression in the structure of Cnx1G formed by beta5, alpha5, beta6, and alpha6, whereas the negatively charged depression formed by the loop between beta3 and alpha4, the N-terminal end of alpha2, the 3(10) helix, and the region between beta6 and alpha6 is involved in catalysis.  相似文献   

3.
Different beta(1) integrins bind Arg-Gly-Asp (RGD) peptides with differing specificities, suggesting a role for residues in the alpha subunit in determining ligand specificity. Integrin alpha(5)beta(1) has been shown to bind with high affinity to peptides containing an Arg-Gly-Asp-Gly-Trp (RGDGW) sequence but with relatively low affinity to other RGD peptides. The residues within the ligand-binding pocket that determine this specificity are currently unknown. A cyclic peptide containing the RGDGW sequence was found to strongly perturb the binding of the anti-alpha(5) monoclonal antibody (mAb) 16 to alpha(5)beta(1). In contrast, RGD peptides lacking the tryptophan residue acted as weak inhibitors of mAb 16 binding. The epitope of mAb 16 has previously been localized to a region of the alpha(5) subunit that contains Ser(156)-Trp(157). Mutation of Trp(157) (but not of Ser(156) or surrounding residues) to alanine blocked recognition of mAb 16 and perturbed the high affinity binding of RGDGW-containing peptides to alpha(5)beta(1). The same mutation also abrogated recognition of the alpha(5)beta(1)-specific ligand peptide Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA). Based on these findings, we propose that Trp(157) of alpha(5) participates in a hydrophobic interaction with the tryptophan residue in RGDGW, and that this interaction determines the specificity of alpha(5)beta(1) for RGDGW-containing peptides. Since the RGD sequence is recognized predominantly by amino acid residues on the beta(1) subunit, our results suggest that Trp(157) of alpha(5) must lie very close to these residues. Our findings therefore provide new insights into the structure of the ligand-binding pocket of alpha(5)beta(1).  相似文献   

4.
alpha v beta 1 and alpha v beta 3 are two related members of the integrin family of cell surface receptors both of which interact with their ligands through the Arg-Gly-Asp recognition sequence, alpha v beta 1 and alpha v beta 3 share the same cation-binding subunit, alpha v, suggesting a similar cation requirement for both integrins. Instead, we observed that Ca2+ exerts different effects on their binding function. The attachment of alpha v beta 3-loaded liposomes to vitronectin and the alpha v beta 3-mediated adhesion of U 251 cells to an Arg-Gly-Asp-containing peptide was supported equally well by Ca2+ and Mg2+. However, IMR 32 cells which bind to Arg-Gly-Asp-containing peptides through alpha v beta 1 adhered in Mg2+ but not in Ca2+. In agreement, Ca2+ did not support the attachment of alpha v beta 1-loaded liposomes to the macromolecular ligand fibronectin or the binding of alpha v beta 1 to Gly-Arg-Gly-Asp-Ser-Pro-Lys-Sepharose in affinity chromatography experiments. Furthermore, in the presence of a constant Mg2+ concentration, Ca2+ had opposite effects on the two receptors in that it inhibited the alpha v beta 1-mediated adhesion of IMR 32 cells to the peptide substrate while enhancing alpha v beta 3-mediated adhesion of U251 cells. The Ca2+ effects occurred at physiological cation concentrations and therefore, our data suggest a physiological role for Ca2+ as a regulator of integrin function and indicate a possible involvement of the beta subunits in cation binding.  相似文献   

5.
The integrin alpha(v)beta(3) is the major receptor mediating the attachment of osteoclasts to the extracellular matrix in bone and plays a critical role in bone resorption and bone remodeling. Most of the ligands interacting with the alpha(v)beta(3) receptor contain an Arg-Gly-Asp (RGD) motif. Recently, we have identified two small RGD peptides, containing a benzophenone moiety at either the carboxyl or amino terminus, that photo-cross-linked within the beta(3)[99-118] [Bitan, G., et al. (1999) Biochemistry 38, 3414-3420] or the beta(3)[167-171] [Bitan, G., et al. (2000) Biochemistry 39, 11014-11023] sequence, respectively, of the alpha(v)beta(3) receptor in a selective fashion. Here, we report the synthesis of a photoreactive analogue of echistatin (a 49-amino acid peptide), a potent RGD-containing antagonist of the alpha(v)beta(3) receptor both in vitro and in vivo. This bioactive analogue is substituted at position 45 with a p-benzoyl moiety (pBz(2)), located within the flexible C-terminal domain and removed 20 amino acid residues from the R(24)GD(26) triad. This C-terminal domain was reported to contribute to receptor binding affinity by acting as an auxiliary binding site. The radiolabeled (125)I-[Arg(35),Lys(45)(N(epsilon)-pBz(2))]-echistatin photo-cross-links effectively to a site within the beta(3)[209-220] sequence. Residues in this domain have been reported to be part of the metal ion-dependent adhesion site (MIDAS). Receptor fragments overlapping this domain were reported to bind to fibrinogen and block fibrinogen binding to alpha(IIb)beta(3), the platelet integrin receptor. Taken together, position 45 in echistatin, located within an auxiliary binding site in echistatin, cross-links to a site distinct from the two previously reported sites, beta(3)[99-118] and beta(3)[167-171], which cross-link to photophores flanking the RGD triad. These cross-linking data support the hypothesis that the ligand-bound conformation of the integrin beta(3) subunit differs from the known conformation of I domains.  相似文献   

6.
The catalytic domain of protein tyrosine phosphatase SHP-1 possesses distinct substrate specificity. It recognizes the P-3 to P-5 residues of its substrates via the beta5-loop-beta6 region. To study the substrate specificity further, we determined the structure of the catalytic domain of SHP-1 (C455S) complexed with a less-favorable-substrate peptide originated from SIRPalpha. The complex has disordered N-terminal peptide structure and reduced interactions between the N-terminal peptide and the beta5-loop-beta6 region. This could be the basis for the lower affinity of peptide pY(427) for the catalytic domain of SHP-1. In addition, by comparing the SHP-1/less-favorable peptide complex structure with the SHP-1/substrate complex structures, we identified a novel substrate-recognition site in the catalytic domain of SHP-1. This site was formed by helix alpha0 and the alpha5-loop-alpha6 motif of SHP-1, and specifically bound residues at the P + 4 and further C-terminal positions of peptide substrates.  相似文献   

7.
We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of conserved residues Ala,Met(+4),Leu(+7),Tyr(+11). The helical segment of alpha(404-451) is the same as that described in the electron crystallographic model structure of alphabeta-tubulin, while in beta(394-451) it extends for nine residues more, supporting the possibility of a functional coil --> helix transition at the C-terminus of beta-tubulin. These peptides may be employed to construct model complexes with microtubule associated protein binding sites.  相似文献   

8.
Most DNA polymerases interact with their cognate processive replication factor through a small peptide, this interaction being absolutely required for their function in vivo. We have solved the crystal structure of a complex between the beta sliding clamp of Escherichia coli and the 16 residue C-terminal peptide of Pol IV (P16). The seven C-terminal residues bind to a pocket located at the surface of one beta monomer. This region was previously identified as the binding site of another beta clamp binding protein, the delta subunit of the gamma complex. We show that peptide P16 competitively prevents beta-clamp-mediated stimulation of both Pol IV and alpha subunit DNA polymerase activities, suggesting that the site of interaction of the alpha subunit with beta is identical with, or overlaps that of Pol IV. This common binding site for delta, Pol IV and alpha subunit is shown to be formed by residues that are highly conserved among many bacterial beta homologs, thus defining an evolutionarily conserved hydrophobic crevice for sliding clamp ligands and a new target for antibiotic drug design.  相似文献   

9.
We have determined the solution structure of the PABC domain from Saccharomyces cerevisiae Pab1p and mapped its peptide-binding site. PABC domains are peptide binding domains found in poly(A)-binding proteins (PABP) and are a subset of HECT-family E3 ubiquitin ligases (also known as hyperplastic discs proteins (HYDs)). In mammals, the PABC domain of PABP functions to recruit several different translation factors to the mRNA poly(A) tail. PABC domains are highly conserved, with high specificity for peptide sequences of roughly 12 residues with conserved alanine, phenylalanine, and proline residues at positions 7, 10, and 12. Compared with human PABP, the yeast PABC domain is missing the first alpha helix, contains two extra amino acids between helices 2 and 3, and has a strongly bent C-terminal helix. These give rise to unique peptide binding specificity wherein yeast PABC binds peptides from Paip2 and RF3 but not Paip1. Mapping of the peptide-binding site reveals that the bend in the C-terminal helix disrupts binding interactions with the N terminus of peptide ligands and leads to greatly reduced binding affinity for the peptides tested. No high affinity or natural binding partners from S. cerevisiae could be identified by sequence analysis of known PABC ligands. Comparison of the three known PABC structures shows that the features responsible for peptide binding are highly conserved and responsible for the distinct but overlapping binding specificities.  相似文献   

10.
Integrins are a complex family of divalent cation-dependent cell adhesion receptors composed of one alpha and one beta subunit noncovalently bound to one another. A subset of integrins contains the alpha v subunit in association with one of several beta subunits (e.g. beta 3, beta 5, beta 1). We have recently identified a novel integrin beta subunit, beta 6, that is present in a number of epithelial cell lines. Using a polyclonal antibody raised against the carboxyl-terminal peptide of beta 6, we have now identified the integrin heterodimer, alpha v beta 6, on the surface of two human carcinoma cell lines. Using affinity chromatography of lysates from the pancreatic carcinoma cell line, FG-2, we demonstrate that alpha v beta 6 binds to fibronectin, but not to vitronectin or collagen I. In contrast, the alpha v beta 5 integrin, which is also expressed on FG-2 cells, binds exclusively to vitronectin. Immobilized collagen I does not interact with alpha v integrins, but binds beta 1-containing integrins. Both alpha v beta 6 and alpha v beta 5 are eluted from their respective immobilized ligands by a hexa-peptide containing the sequence Arg-Gly-Asp (RGD). RGD is highly effective in the presence of Ca2+, somewhat less effective in Mg2+, and virtually inactive in Mn2+. These results suggest that alpha v beta 6 functions as an RGD-dependent fibronectin receptor in FG-2 carcinoma cells. In agreement with this notion, cell adhesion assays show that FG-2 cell attachment to fibronectin is only partially inhibited by anti-beta 1 integrin antibodies, implying that other fibronectin receptors may be involved. Taken together with recent reports on the vitronectin receptor function of alpha v beta 5, our results suggest that the previously described carcinoma cell integrin, alpha v beta x (Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. (1989) Cell 57, 59-69), is a mixture of at least two different receptors: alpha v beta 5, mediating adhesion to vitronectin, and alpha v beta 6, mediating adhesion to fibronectin.  相似文献   

11.
S100B(beta beta) is a dimeric Ca2+-binding protein that interacts with p53, inhibits its phosphorylation by protein kinase C (PKC) and promotes disassembly of the p53 tetramer. Likewise, a 22 residue peptide derived from the C-terminal regulatory domain of p53 has been shown to interact with S100B(beta beta) in a Ca2+-dependent manner and inhibits its phosphorylation by PKC. Hence, structural studies of Ca2+-loaded S100B(beta beta) bound to the p53 peptide were initiated to characterize this interaction. Analysis of nuclear Overhauser effect (NOE) correlations, amide proton exchange rates, 3J(NH-H alpha) coupling constants, and chemical shift index data show that, like apo- and Ca2+-bound S100B(beta beta), S100B remains a dimer in the p53 peptide complex, and each subunit has four helices (helix 1, Glu2-Arg20; helix 2, Lys29-Asn38; helix 3, Gln50-Asp61; helix 4, Phe70-Phe87), four loops (loop 1, Glu21-His25; loop 2, Glu39-Glu49; loop 3, Glu62-Gly66; loop 4, Phe88-Glu91), and two beta-strands (beta-strand 1, Lys26-Lys28; beta-strand 2, Glu67-Asp69), which forms a short antiparallel beta-sheet. However, in the presence of the p53 peptide helix 4 is longer by five residues than in apo- or Ca2+-bound S100B(beta beta). Furthermore, the amide proton exchange rates in helix 3 (K55, V56, E58, T59, L60, D61) are significantly slower than those of Ca2+-bound S100B(beta beta). Together, these observations plus intermolecular NOE correlations between the p53 peptide and S100B(beta beta) support the notion that the p53 peptide binds in a region of S100B(beta beta), which includes residues in helix 2, helix 3, loop 2, and the C-terminal loop, and that binding of the p53 peptide interacts with and induces the extension of helix 4.  相似文献   

12.
Integrin alpha(v)beta(3) is an adhesion molecule involved in tumor invasion, angiogenesis, and metastasis. There is substantial interest in developing novel agents that bind to integrin alpha(v)beta(3). Here we report the synthesis and characterization of a fluorescent integrin alpha(v)beta(3) probe and its use in a nonradioactive, simple, sensitive fluorescence polarization (FP) assay to quantify binding to integrin alpha(v)beta(3). For assay validation, the FP assay was compared to a cell adhesion assay. In the two assays, probe binding to integrin alpha(v)beta(3) showed a similar dependence on probe concentration. The FP assay was successfully applied to measure the binding affinity to integrin alpha(v)beta(3) of several cyclic peptides containing the Arg-Gly-Asp (RGD) motif. The FP assay we describe here may be appropriate for high-throughput screening for integrin alpha(v)beta(3)-binding ligands used for anti-integrin therapy or noninvasive imaging of integrin expression.  相似文献   

13.
Glycoprotein (GP) IIb-IIIa is the major fibrinogen receptor on platelets and participates in platelet aggregation at the site of a wound. Integrin alpha v beta 3, which contains an identical beta-subunit, is expressed on endothelial cells and also serves as a fibrinogen receptor. Here, we demonstrate by several criteria that purified GPIIb-IIIa and integrin alpha v beta 3 bind to distinct sites on fibrinogen. First, a plasmin-generated fragment of fibrinogen lacking the RGD sequence at residues 572-574 retained the ability to bind GPIIb-IIIa, but failed to bind integrin alpha v beta 3. Second, a monoclonal antibody which exclusively recognizes the RGD sequence at fibrinogen A alpha chain residues 572-574 abolished interaction between integrin alpha v beta 3 and fibrinogen, but had only a minimal effect on fibrinogen binding to GPIIb-IIIa. Finally, we show that the difference in recognition of sites on fibrinogen by these two integrins is probably a consequence of their remarkably different ligand binding properties. Peptides corresponding to fibrinogen gamma chain residues 400-411 effectively blocked RGD sequence and fibrinogen binding by GPIIb-IIIa, but had no effect on the ability of integrin alpha v beta 3 to bind these ligands. We also show that integrin alpha v beta 3 has a higher affinity than GPIIb-IIIa for a synthetic hexapeptide containing the RGD sequence. In fact, this RGD-containing peptide was 150-fold more effective at blocking fibrinogen binding to integrin alpha v beta 3 than to GPIIb-IIIa. Collectively, our results demonstrate that integrins alpha v beta 3 and GPIIb-IIIa display qualitative and quantitative differences in their ligand binding properties, as is evident by their ability to interact with synthetic peptides. The ultimate result of these differences is the recognition of distinct sites on fibrinogen by the two integrins. These observations may have relevance in the processes of hemostasis and wound healing.  相似文献   

14.
CD47-binding sequences from the carboxyl-terminal domain of thrombospondin-1 (TSP1) are known to regulate activity of the alpha(v)beta(3) integrin (Gao, G., Lindberg, F. P., Dimitry, J. M., Brown, E. J., and Frazier, W. A. (1996) J. Cell Biol. 135, 533-544). Here we show that peptides from the type 1 repeats of TSP1 also stimulate alpha(v)beta(3) integrin function in melanoma cells. Addition of soluble peptide 246 (KRFKQDGGWSHWSPWSS) enhances spreading of A2058 melanoma cells on several alpha(v)beta(3) integrin ligands, including vitronectin, recombinant TSP1 fragments containing the Arg-Gly-Asp sequence, and native TSP1. This activity requires the Trp residues and is independent of CD36-binding sequences in the type 1 repeats. Recombinant type 1 repeats expressed as a glutathione S-transferase fusion protein also enhance spreading on vitronectin and TSP1. Activation of alpha(v)beta(3) integrin by the soluble peptide 246 stimulates organization of F-actin and increases tyrosine phosphorylation of focal adhesion kinase. In contrast, direct adhesion of melanoma cells on immobilized peptide 246 inhibits tyrosine phosphorylation of focal adhesion kinase. Stimulation of alpha(v)beta(3) integrin function by the type 1 repeat peptide differs from that induced by CD47-binding TSP1 peptides in that heparan sulfate proteoglycans are required and pertussis toxin does not inhibit the former activity. Thus, the type 1 repeats contain a second sequence of TSP1 that can enhance alpha(v)beta(3) integrin signaling, and these two sequences stimulate recognition of both vitronectin and TSP1 by the alpha(v)beta(3) integrin.  相似文献   

15.
An agonist-bound G protein-coupled receptor (GPCR) induces a GDP/GTP exchange on the G protein alpha-subunit (G alpha) followed by the release of G alpha GTP and G beta gamma which, subsequently, activate their targets. The C-terminal regions of G alpha subunits constitute a major receptor recognition domain. In this study, we tested the hypothesis that the GPCR-induced conformational change is communicated from the G alpha C-terminus, via the alpha 5 helix, to the nucleotide-binding beta 6/alpha 5 loop causing GDP release. Mutants of the visual G protein, transducin, with a modified junction of the C-terminus were generated and analyzed for interaction with photoexcited rhodopsin (R*). A flexible linker composed of five glycine residues or a rigid three-turn alpha-helical segment was inserted between the 11 C-terminal residues and the alpha 5 helix of G alpha(t)-like chimeric G alpha, G alpha(ti). The mutant G alpha subunits with the Gly-loop (G alpha(ti)L) and the extended alpha 5 helix (G alpha(ti)H) retained intact interactions with G beta gamma(t), and displayed modestly reduced binding to R*. G alpha(ti)H was capable of efficient activation by R*. In contrast, R* failed to activate G alpha(ti)L, suggesting that the Gly-loop absorbs a conformational change at the C-terminus and blocks G protein activation. Our results provide evidence for the role of G alpha C-terminus/alpha 5 helix/beta 6/alpha 5 loop route as a dominant channel for transmission of the GPCR-induced conformational change leading to G protein activation.  相似文献   

16.
Fertilin beta (also known as ADAM2), a mammalian sperm protein that mediates gamete cell adhesion during fertilization, is a member of the ADAM protein family whose members have disintegrin domains with homology to integrin ligands found in snake venoms. Fertilin beta utilizes an ECD sequence within its disintegrin domain to interact with the egg plasma membrane; the Asp is especially critical. Based on what is known about different integrin subfamilies and their ligands, we sought to characterize fertilin beta binding sites on mouse eggs, focusing on integrin subfamilies that recognize short peptide sequences that include an Asp residue: the alpha(5)/alpha(8)/alpha(v)/alpha(IIb) or RGD-binding subfamily (alpha(5)beta(1), alpha(8)beta(1), alpha(V)beta(1), alpha(V)beta(3), alpha(V)beta(5), alpha(V)beta(6), alpha(V)beta(8), and alpha(IIb)beta(3)) and the alpha(4)/alpha(9) subfamily (alpha(4)beta(1), alpha(9)beta(1), and alpha(4)beta(7)). We tested peptide sequences known to perturb interactions mediated by these integrins in two different assays for fertilin beta binding. Peptides with the sequence MLDG, which perturb alpha(4)/alpha(9) integrin-mediated interactions, significantly inhibit fertilin beta binding to eggs, which suggests a role for a member of this integrin subfamily as a fertilin beta receptor. RGD peptides, which perturb alpha(5)/alpha(8)/alpha(v)/alpha(IIb) integrin-mediated interactions, have partial inhibitory activity. The anti-alpha(6) antibody GoH3 has little or no inhibitory activity. An antibody to the integrin-associated tetraspanin protein CD9 inhibits the binding of a multivalent presentation of fertilin beta (immobilized on beads) but not soluble fertilin beta, which we speculate has implications for the role of CD9 in the strengthening of fertilin beta-mediated cell adhesion but not in initial ligand binding.  相似文献   

17.
Integrin alpha(v)beta(3) recognizes fibrinogen gamma and alpha(E) chain C-terminal domains (gammaC and alpha(E)C) but does not require the gammaC dodecapeptide sequence HHLGGAKQAGDV(400-411) for binding to gammaC. We have localized the alpha(v)beta(3) binding sites in gammaC using gammaC-derived synthetic peptides. We found that two peptides GWTVFQKRLDGSV(190-202) and GVYYQGGTYSKAS(346-358) block the alpha(v)beta(3) binding to gammaC or alpha(E)C, block the alpha(v)beta(3)-mediated clot retraction, and induce the ligand-induced binding site 2 (LIBS2) epitope in alpha(v)beta(3). Neither peptide affects fibrinogen binding to alpha(IIb)beta(3). Scrambled or inverted peptides were not effective. These results suggest that the two gammaC-derived peptides directly interact with alpha(v)beta(3) and specifically block alpha(v)beta(3)-gammaC or alpha(E)C interaction. The two sequences are located next to each other in the gammaC crystal structure, although they are separate in the primary structure. Asp-199, Ser-201, Gln-350, Thr-353, Lys-356, Ala-357, and Ser-358 residues are exposed to the surface. This suggests that the two sequences are part of alpha(v)beta(3) binding sites in fibrinogen gammaC domain. We also found that tenascin C C-terminal fibrinogen-like domain specifically binds to alpha(v)beta(3). Notably, a peptide WYRNCHRVNLMGRYGDNNHSQGVNWFHWKG from this domain that includes the sequence corresponding to gammaC GVYYQGGTYSKAS(346-358) specifically binds to alpha(v)beta(3), suggesting that fibrinogen and tenascin C C-terminal domains interact with alpha(v)beta(3) in a similar manner.  相似文献   

18.
The neuropeptide vasoactive intestinal peptide (VIP) strongly impacts on human pathophysiology and does so through interaction with class II G protein-coupled receptors named VIP pituitary adenylate cyclase-activating peptide (PACAP) receptors (VPACs). The molecular nature of VIP binding to receptors remains elusive. In this work, we have docked VIP in the human VPAC1 receptor by the following approach. (i) VIP probes containing photolabile residues in positions 6, 22, and 24 of VIP were used to photolabel the receptor. After receptor cleavage and Edman sequencing of labeled receptor fragments, it was shown that Phe6, Tyr22, and Asn24 of VIP are in contact with Asp107, Gly116, and Cys122 in the N-terminal ectodomain (N-ted) of the receptor, respectively. (ii) The structure of VIP was determined by NMR showing a central alpha helix, a disordered N-terminal His1-Phe6 segment and a 3(10) Ser25-Asn28 helix termination. (iii) A three-dimensional model of the N-ted of hVPAC1 was constructed by using the NMR structure of the N-ted of corticotropin-releasing factor receptor 2beta as a template. As expected, the fold is identified as a short consensus repeat with two antiparallel beta sheets and is stabilized by three disulfide bonds. (iv) Taking into account the constraints provided by photoaffinity, VIP was docked into the hVPAC1 receptor N-ted. The 6-28 fragment of VIP nicely lies in the N-ted C-terminal part, but the N terminus region of VIP is free for interacting with the receptor transmembrane region. The data provide a structural rationale to the proposed two-step activation mechanism of VPAC receptor and more generally of class II G protein-coupled receptors.  相似文献   

19.
The heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, Galphabetagamma) mediate the signalling process of a large number of receptors, known as G protein-coupled receptors. The C-terminal domain of the heterotrimeric G protein alpha-subunit plays a key role in the selective activation of G proteins by their cognate receptors. The interaction of this domain can take place at the end of a cascade including several successive conformational modifications. Galpha(s)(350-394) is the 45-mer peptide corresponding to the C-terminal region of the Galpha(s) subunit. In the crystal structure of the Galpha(s) subunit it encompasses the alpha4/beta6 loop, the beta6 beta-sheet segment and the alpha5 helix region. Following a previous study based on the synthesis, biological activity and conformational analysis of shorter peptides belonging to the same Galpha(s) region, Galpha(s)(350-394) was synthesized and investigated. The present study outlines the central role played by the residues involved in the alpha4/beta6 loop and beta6/alpha5 loops in the stabilization of the C-terminal Galpha(s)alpha-helix. H(2)O/(2)H(2)O exchange experiments, and NMR diffusion experiments show interesting evidence concerning the interaction between the SDS micelles and the polypeptide. These data prompt intriguing speculations on the role of the intracellular environment/cellular membrane interface in the stabilization and functionality of the C-terminal Galpha(s) region.  相似文献   

20.
Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa)   总被引:29,自引:0,他引:29  
Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) binds fibrinogen via recognition sequences such as Arg-Gly-Asp (RGD). Fibrinogen binding requires agonist activation of platelets, whereas the binding of short synthetic RGD peptides does not. We now find that RGD peptide binding leads to changes in alpha IIb beta 3 that are associated with acquisition of high affinity fibrinogen-binding function (activation) and subsequent platelet aggregation. The structural specificities for peptide activation and for inhibition of ligand binding are similar, indicating that both are consequences of occupancy of the same site(s) on alpha IIb beta 3. Thus, the RGD sequence is a trigger of high affinity ligand binding to alpha IIb beta 3, and certain RGD-mimetics are partial agonists as well as competitive antagonists of integrin function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号