首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamics of single tryptophan (W) side chain of protease subtilisin Carlsberg (SC) and myelin basic protein (MBP) were used for probing the surface of these proteins. The W side chains are exposed to the solvent, as shown by the extent of quenching of their fluorescence by KI. Time-resolved fluorescence anisotropy measurements showed that the rotational motion of W is completely unhindered in the case of SC and partially hindered in the case of MBP. The rotational correlation time (phi) associated with the fast local motion of W did not scale linearly with the bulk solvent viscosity (eta) in glycerol-water mixtures. In contrast, phi values of either W side chains in the denatured proteins or the free W scaled almost linearly with eta, as expected by the Stokes-Einstein relationship. These results were interpreted as indicating specific partitioning of water at the surface of the proteins in glycerol-water mixtures.  相似文献   

2.
The dynamics in isotopic solvents of selectively 13C labeled synthetic melittin and three analogues have been investigated by using NMR and fluorescence techniques both separately and in combination. In conjunction with the "model-free" approach to interpretation of NMR relaxation data [Lipari, G., & Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4570], the availability of steady-state fluorescence anisotropy and lifetime data augment T1, T2, and NOE data to provide quantitative information about fluorophore dynamics in these peptides. A method is presented for using combined fluorescence and NMR data to obtain technique- and model-independent values for parameters describing local motion of 13C-labeled fluorophores in peptides and proteins. The dynamics of melittin and melittin analogues are found to be consistent with structural characteristics inferred from CD, fluorescence, and NMR spectral information presented in the preceding paper (Weaver et al., 1989). In particular, the mobility of the random coil peptide monomers is shown to be quite similar, while side-chain as well as peptide backbone motion in the aggregated or oligomeric species differs markedly among the analogues. For melittin itself, experimentally determined overall rotational correlation times for the monomer and tetramer agree very well with values predicted on the basis of solvent-accessible protein surface area. The local dynamics of selectively 13C-labeled Trp-19 and Gly-12 residues of melittin are also found to be consistent with peptide structure. In random coil melittin monomer, a specific model for the motion indicates that the Trp side chain moves through an approximate angle of +/- 71 degrees about the beta-gamma bond with a correlation time of 159 +/- 24 ps. In melittin tetramer, the indole moiety is spatially more confined with a flip angle of +/- 37 degrees, yet demonstrates an increased rate of motion with a correlation time of 56 +/- 8 ps. The constrained mobility of the Trp-19 side chain is consistent with motional constraints inferred from the X-ray structure of melittin tetramer. These results show that protein side-chain motion, even of moieties as large as indole, can occur on the picosecond time scale and that these motions are reasonably similar to those inferred from molecular dynamics simulations.  相似文献   

3.
Saturation transfer electron paramagnetic resonance (ST-EPR) spectroscopy has been employed to characterize the very slow microsecond to millisecond rotational dynamics of a wide range of nitroxide spin-labeled proteins and other macromolecules in the past three decades. The vast majority of this previous work has been carried out on spectrometers that operate at X-band ( approximately 9 GHz) microwave frequency with a few investigations reported at Q-band ( approximately 34 GHz). EPR spectrometers that operate in the 94-250-GHz range and that are capable of making conventional linear EPR measurements on small aqueous samples have now been developed. This work addresses potential advantages of utilizing these same high frequencies for ST-EPR studies that seek to quantitatively analyze the very slow rotational dynamics of spin-labeled macromolecules. For example, the uniaxial rotational diffusion (URD) model has been shown to be particularly applicable to the study of the rotational dynamics of integral membrane proteins. Computational algorithms have been employed to define the sensitivity of ST-EPR signals at 94, 140, and 250 GHz to the correlation time for URD, to the amplitude of constrained URD, and to the orientation of the spin label relative to the URD axis. The calculations presented in this work demonstrate that these higher microwave frequencies provide substantial increases in sensitivity to the correlation time for URD, to small constraints in URD, and to the geometry of the spin label relative to the URD axis as compared with measurements made at X-band. Moreover, the calculations at these higher frequencies indicate sensitivity to rotational motions in the 1-100-ms time window, particularly at 250 GHz, thereby extending the slow motion limit for ST-EPR by two orders of magnitude relative to X- and Q-bands.  相似文献   

4.
A set of single Trp mutants of class B Tet repressor (TetR), in which Trp residues are located from positions 159 to 167, has been engineered to investigate the dynamics of the loop joining the alpha-helices 8 and 9. The fluorescence anisotropy decay of most mutants can be described by the sum of three exponential components. The longest rotational correlation time, 30 ns at 10 degrees C, corresponds to the overall rotation of the protein. The shortest two components, on the subnanosecond and nanosecond time scale, are related to internal motions of the protein. The initial anisotropy, in the 0.16-0.22 range, indicates the existence of an additional ultrafast motion on the picosecond time scale. Examination of physical models for underlying motions indicates that librational motions of the Trp side chain within the rotameric chi(1) x chi(2) potential wells contribute to the picosecond depolarization process, whereas the subnanosecond and nanosecond depolarization processes are related to backbone dynamics. In the absence of inducer, the order parameters of these motions, about 0.90 and 0.80 for most positions, indicate limited flexibility of the loop backbone. Anhydrotetracycline binding to TetR induces an increased mobility of the loop on the nanosecond time scale. This suggests that entropic factors might play a role in the mechanism of allosteric transition.  相似文献   

5.
I D Johnson  B S Hudson 《Biochemistry》1989,28(15):6392-6400
The effects of detergent [deoxycholate (DOC) and phospholipid [dimyristoylphosphatidylcholine (DMPC)] environments on the rotational dynamics of the single tryptophan residue 26 of bacteriophage M13 coat protein have been investigated by using time-resolved single photon counting measurements of the fluorescence intensity and anisotropy decay. The total fluorescence decay of tryptophan-26 is complex but rather similar in DOC as compared to DMPC when analyzed in terms of a lifetime distribution (exponential series method). This similarity, in conjunction with the almost identical steady-state fluorescence spectra, indicates only minor differences between the tryptophan environments in DOC and DMPC. The reorientational dynamics of tryptophan-26 are dominated by slow rotation of the entire protein in both detergent and phospholipid environments. The resolved anisotropy decay in DOC can be approximated by a simple hydrodynamic model of protein/detergent micelle rotational diffusion, although the data indicative slightly greater complexity in the rotational motion. The tryptophan fluorescence anisotropy is not sensitive to protein conformational changes in DOC detected by nuclear magnetic resonance on the basis of pH independence in the range 7.5-9.1. In DMPC bilayers, restricted tryptophan motion with a correlation time of approximately 2 ns is observed together with a second very slow reorientational component. Resolution of the time constant for this slow rotation is obscured by the tryptophan fluorescence time window being too short to clearly locate its anisotropic limit. The possible contribution made by axial rotational diffusion of the protein to this slow rotational process is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Poly(L -lysine) of various molecular weights between 2700 and 475,000 was spin-labeled. From the electron spin resonance spectra, the degree of freedom of the nitroxide was determined by calculation of the rotational correlation time as the poly(L -lysine) underwent the pH-induced random coil to α-helix conformational transition. In general, the rotational correlation time of the nitroxide increased as the pH was increased, indicating a more restricted environment for the spin label when poly(L -lysine) is deprotonated. For the high-molecular-weight poly(L -lysine) this corresponds to the formation of the α-helix and indicates that the side chain–side chain interaction and decreased segmental motion of the backbone (slightly) restricts the motion of the spin label. For the 2700-molecular-weight poly(L -lysine), previously shown not to assume a helical conformation at high pH, the increase in the rotational correlation time of the spin label indicates that the side chain–side chain interaction takes place after deprotonation but without helix formation. This may indicate that helix formation per se is not needed to produce the observed effect even with the high-molecular-weight polymers. The rotational correlation time of the spin label at a particular pH did not depend on the molecular weight of the poly(L -lysine) over the 200-fold range of molecular weights. This indicates that the rotational correlation time reflects the rotational mobility of the spin label in a localized environment and not the rotational diffusion of the entire macromolecule.  相似文献   

7.
The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed.  相似文献   

8.
In living cells, biomacromolecules are exposed to a highly crowded environment. The cytoplasm, the nucleus, and other organelles are highly viscous fluids that differ from dilute in vitro conditions. Viscosity, a measure of fluid internal friction, directly affects the forces that act on immersed macromolecules. Although active motion of this viscous fluid – cytoplasmic streaming – occurs in many plant and animal cells, the effect of fluid motion (flow) on biomolecules is rarely discussed. Recently NMR experiments that apply a shearing flow in situ have been used for protein studies. While these NMR experiments have succeeded in spectroscopically tracking protein aggregation in real time, they do not provide a visual picture of protein motion under shear. To fill this gap, here we have used molecular dynamics simulations to study the motion of three proteins of different size and shape in a simple shearing flow. The proteins exhibit a superposition of random diffusion and shear-flow-induced rotational motion. Random rotational diffusion dominates at lower shear stresses, whereas an active “rolling motion” along the axis of the applied flow occurs at higher shear stress. Even larger shear stresses perturb protein secondary structure elements resulting in local and global unfolding. Apart from shear-induced unfolding, our results imply that, in an ideal Couette flow field biomolecules undergo correlated motion, which should enhance the probability of inter-molecular interaction and aggregation. Connecting biomolecular simulation with experiments applying shear flow in situ appears to be a promising strategy to study protein alignment, deformation, and dynamics under shear.  相似文献   

9.
The Stokes-Einstein-Debye equation is currently used to obtain information on protein size or on local viscosity from the measurement of the rotational correlation time. However, the implicit assumptions of a continuous and homogeneous solvent do not hold either in vivo, because of the high density of macromolecules, or in vitro, where viscosity is adjusted by adding viscous cosolvents of various size. To quantify the consequence of nonhomogeneity, we have measured the rotational Brownian motion of three globular proteins with molecular mass from 66 to 4000 kD in presence of 1.5 to 2000 kD dextrans as viscous cosolvents. Our results indicate that the linear viscosity dependence of the Stokes-Einstein relation must be replaced by a power law to describe the rotational Brownian motion of proteins in a macromolecular environment. The exponent of the power law expresses the fact that the protein experiences only a fraction of the hydrodynamic interactions of macromolecular cosolvents. An explicit expression of the exponent in terms of protein size and cosolvent's mass is obtained, permitting definition of a microscopic viscosity. Experimental data suggest that a similar effective microviscosity should be introduced in Kramers' equation describing protein reaction rates.  相似文献   

10.
Liisa Holm  Chris Sander 《Proteins》1994,19(3):256-268
General patterns of protein structural organization have emerged from studies of hundreds of structures elucidated by X-ray crystallography and nuclear magnetic resonance. Structural units are commonly identified by visual inspection of molecular models using qualitative criteria. Here, we propose an algorithm for identification of structural units by objective, quantitative criteria based on atomic interactions. The underlying physical concept is maximal interactions within each unit and minimal interaction between units (domains). In a simple harmonic approximation, interdomain dynamics is determined by the strength of the interface and the distribution of masses. The most likely domain decomposition involves units with the most correlated motion, or largest interdomain fluctuation time. The decomposition of a convoluted 3-D structure is complicated by the possibility that the chain can cross over several times between units. Grouping the residues by solving an eigenvalue problem for the contact matrix reduces the problem to a one-dimensional search for all reasonable trial bisections. Recursive bisection yields a tree of putative folding units. Simple physical criteria are used to identify units that could exist by themselves. The units so defined closely correspond to crystallographers' notion of structural domains. The results are useful for the analysis of folding principles, for modular protein design and for protein engineering. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Time resolved fluorescence was used to study the dynamics on the nanosecond and subnanosecond time scale of the peptide hormone motilin. The peptide is composed of 22 amino acid residues and has one tyrosine residue in position 7, which was used as an intrinsic fluorescence probe. The measurements show that two rotational correlation times, decreasing with increasing temperature, are needed to account for the fluorescence polarization anisotropy decay data. Viscosity measurements combined with the fluorescence measurements show that the rotational correlation times vary approximately as viscosity with temperature. The shorter rotational correlation time (0.08 ns in an aqueous solution with 30% hexafluoropropanol, HFP at 20°C) should be related to internal movement of the tyrosine side chain in the peptide while the longer rotational correlation time (2.2 ns in 30% HFP at 20°C) describes the motion of the whole peptide. In addition, the interaction of motilin or the derivative motilin (Y7F) –23W (with tyrosine substituted by phenylalanine and with a tryptophan fluorophore added to the C-terminal) with negatively charged phospholipid vesicles (DOPG) was studied. The results show the development of a long anisotropy decay time which reflects partial immobilization of the peptide by interaction with the vesicles.Correspondence to: A. Gräslund  相似文献   

12.
The C-terminal phosphorylation domain of the epidermal growth factor receptor is believed to regulate protein kinase activity as well as mediate the assembly of signal transduction complexes. The structure and dynamics of this proposed autoregulatory domain were examined by labeling the extreme C terminus of the EGFR intracellular domain (ICD) with an extrinsic fluorophore. Fluorescence anisotropy decay analysis of the nonphosphorylated EGFR-ICD yielded two rotational correlation times: a longer time, consistent with the global rotational motion of a 60- to 70-kDa protein with an elongated globular conformation, and a shorter time, presumably contributed by segmental motion near the fluorophore. A C-terminally truncated form of EGFR-ICD yielded a slow component consistent with the rotational motion of the 38-kDa kinase core. These findings suggested a structural arrangement of the EGFR-ICD in which the C-terminal phosphorylation domain interacts with the kinase core to move as an extended structure. A marked reduction in the larger correlation time of EGFR-ICD was observed upon its autophosphorylation. This dynamic component was faster than predicted for the globular motion of the 62-kDa EGFR-ICD, suggesting an increase in the mobility of the C-terminal domain and a likely displacement of this domain from the kinase core. The interaction between the SH2 domain of c-Src and the phosphorylated EGFR C-terminal domain was shown to impede its mobility. Circular dichroism spectroscopy indicated that the EGFR C-terminal domain possessed a significant level of secondary structure in the form of alpha-helices and beta-sheets, with a marginal change in beta-sheet content occurring upon phosphorylation.  相似文献   

13.
The evolution of the nanosecond dynamics of the core tryptophan, Trp53, of barstar has been monitored during the induction of collapse and structure formation in the denatured D form at pH 12, by addition of increasing concentrations of the stabilizing salt Na(2)SO(4). Time-resolved fluorescence methods have been used to monitor the dynamics of Trp53 in the intermediates that are populated during the salt-induced transition of the D form to the molten globule B form. The D form approximates a random coil and displays two rotational correlation times. A long rotational correlation time of 2.54 ns originates from segmental mobility, and a short correlation time of 0.26 ns originates from independent motion of the tryptophan side chain. Upon addition of approximately 0.1 M Na(2)SO(4), the long rotational correlation time increases to approximately 6.4 ns, as the chain collapses and the segmental motions merge to reflect the global tumbling motion of a pre-molten globule P form. The P form exists as an expanded form with approximately 30% greater volume than the native (N) state. The persistence of an approximately 50% contribution to anisotropy decay by the short rotational correlation time suggests that the core of the P form is highly molten and permits free rotation of the Trp side chain. With increasing salt concentrations, tight core packing is achieved before secondary and tertiary structure formation is complete, an observation which agrees well with earlier kinetic folding studies. Thus, the equilibrium model developed here for describing the formation of structure during folding faithfully captures snapshots of transient kinetic intermediates observed on the folding pathway of barstar. A comparison of the refolding kinetics at pH 7, when refolding is initiated from the D, P, and B forms, suggests that formation of a collapsed state with a rigid core and approximately 30% secondary and tertiary structure, which presumably defines a coarse native-like topology, constitutes the intrinsic barrier in the folding of barstar.  相似文献   

14.
The rotational dynamics of the single tryptophan of porcine pancreatic phospholipase A2 and its zymogen (prophospholipase A2) have been studied by polarized fluorescence using steady-state and time-resolved single-photon counting techniques. The motion of Trp-3 in phospholipase A2 consists of a rapid subnanosecond wobble of the indole ring with an amplitude of about +/- 20 degrees accompanied by slower isotropic rotation of the entire protein. The rotational correlation times for overall particle rotational diffusion are consistent with conventional hydrodynamic theory. When phospholipase A2 binds to micelles of n-hexadecylphosphocholine, the amplitude of the fast ring rotation decreases. The whole particle rotational correlation time of the enzyme/micelle complex is smaller than the minimum value calculated from hydrodynamic theory. A similar result is obtained for the micelle itself by using the lipophilic probe transparinaric acid. These low values for the particle correlation times can be understood by postulating that an isotropic motion of the fluorophore in the small detergent particles contributes to the angular reorientation of the fluorophore. The internal reorientational motion of the tryptophan in the zymogen, prophospholipase A2, is of larger amplitude than that observed for the enzyme; specifically, the proenzyme exhibits a motion with a significant amplitude on the nanosecond time scale. This additional freedom of motion is attributed to segmental mobility of the N-terminal residues of prophospholipase A2. This demonstrates that this region of the protein is flexible in the zymogen but not in the processed enzyme. The implications of these findings for the mechanism of surface activation of phospholipase A2 are discussed by analogy with a trypsinogen-trypsin activation model.  相似文献   

15.
We report dynamic fluorescence anisotropy measurements on the purified dityrosine derivative of calmodulin which was generated during UV irradiation of Ca2+-containing solutions of bovine brain calmodulin [Malencik, D. A., & Anderson, S. R. (1987) Biochemistry 26, 695]. Measurements were made by using a high repetition rate picosecond laser source combined with a microchannel plate photomultiplier. This permits the collection of very low noise anisotropy curves with essentially no convolution artifact. Measured anisotropies at high calcium concentrations are monoexponential, and at 20 degrees C, we recover a correlation time of 9.9 ns. When the temperature is varied from 4.8 to 31.8 degrees C, the recovered correlation time is proportional to the viscosity and inversely proportional to the absolute temperature, behavior expected for the rotational diffusion of a macromolecule whose conformation is independent of the temperature. The correlation time is compared to the theory describing the rotational diffusion of a dumbell. At high calcium concentrations, the cross-linked calmodulin is elongated and has a length equal or nearly equal to that predicted by X-ray crystallographic results. In the absence of calcium, the molecule becomes highly compact and exhibits significant segmental motion. Intermediate calcium ion concentrations result in an intermediate degree of elongation and segmental motion. A small increase in the measured rotational correlation time of calmodulin upon the binding of melittin and mastoparan indicates that these peptides cause no major changes in the elongation of the molecule. When the cross-linked calmodulin is bound to troponin I, the complex rotates as a unit with a single rotational correlation time of 22 ns.  相似文献   

16.
A Patkowski  W Eimer  T Dorfmüller 《Biopolymers》1990,30(9-10):975-983
The collective internal dynamics of transfer RNA(Phe) from brewer's yeast in solution was studied by depolarized dynamic light scattering (DDLS). Within the melting region of tRNA the depolarized spectra consist of two Lorentzian, where the narrow (slow) component describes the overall rotation of the macromolecule. The broad component is attributed to the collective reorientation of the bases within the biopolymer. At high temperature only this relaxation process is observed in the spectrum. The viscosity dependence of the collective internal relaxation process is described by the Stokes-Einstein-Debye equation for rotational diffusion. Estimates of the internal orientational pair correlation factor from the integral depolarized intensities of tRNA(Phe) solutions indicates that the observed dynamics correspond to the collective reorientation of approximately 5 bases. A comparison of the results presented with DDLS studies on the aggregation of the mononucleotide guanosine-5'-monophosphate confirms this result. For a further characterization of the relaxation process we studied the effect of hydrostatic pressure (1-1000 bar) on the depolarized spectra of tRNA. While other spectroscopic methods like nmr, fluorescence polarization anisotropy decay, or ESR give information about the very local motion of a single base within the DNA or RNA, this study shows that by DDLS one can characterize collective internal motions of macromolecules.  相似文献   

17.
The rotational correlation time of two homologous cytoplasmic aspartate aminotransferase molecules isolated from pig and chicken hearts was obtained by spin-labeling technique. The maleimide and iodoacetamide spin-labels modyfying external SH-groups of a protein were used. In the interpretation of ESR spectra a rotational motion of nitroxide group relative to the protein molecule was taken into account. To determine the macromolecule rotational correlation time two methods of the immobilization of a protein molecule were used: 1) by means of increasing protein solution viscosity and 2) by fixation of the protein molecule on adsorbent. From comparison of experimental and theoretical values of rotational correlation time it was conclude that the both enzymes exhibits an intramolecular flexibility.  相似文献   

18.
We have recently completed systematic molecular dynamics simulations of 807 different proteins representing 95% of the known autonomous protein folds in an effort we refer to as Dynameomics. Here we focus on the analysis of side chain conformations and dynamics to create a dynamic rotamer library. Overall this library is derived from 31,000 occurrences of each of 86,217 different residues, or 2.7 × 10(9) rotamers. This dynamic library has 74% overlap of rotamer distributions with rotamer libraries derived from static high-resolution crystal structures. Seventy-five percent of the residues had an assignable primary conformation, and 68% of the residues had at least one significant alternate conformation. The average correlation time for switching between rotamers ranged from 22 ps for Met to over 8 ns for Cys; this time decreased 20-fold on the surface of the protein and modestly for dihedral angles further from the main chain. Side chain S(2) axis order parameters were calculated and they correlated well with those derived from NMR relaxation experiments (R = 0.9). Relationships relating the S(2) axis order parameters to rotamer occupancy were derived. Overall the Dynameomics rotamer library offers a comprehensive depiction of side chain rotamer preferences and dynamics in solution, and more realistic distributions for dynamic proteins in solution at ambient temperature than libraries derived from crystal structures, in particular charged surface residues are better represented. Details of the rotamer library are presented here and the library itself can be downloaded at http://www.dynameomics.org.  相似文献   

19.
The rotational correlation time of two homologous cytoplasmic aspartate aminotransferase molecules isolated from pig and chicken hearts was obtained by spin-labeling technique. The maleimide and iodoacetamide spin-labels modifying external SH-groups of a protein were used. In the interpretation of ESR spectra a rotational motion of nitroxide group relative to the protein molecule was taken into account. To determine the macromolecule rotational correlation time two methods of the immobilization of a protein molecule were used: 1) by means of increasing protein solution viscosity and 2) by fixation of the protein molecule on adsorbent. From comparison of experimental and theoretical values of rotational correlation time it was conclude that the both enzymes exhibits an intramolecular flexibility.  相似文献   

20.
Structural information on intracellular fusions of the green fluorescent protein (GFP) of the jellyfish Aequorea victoria with endogenous proteins is required as they are increasingly used in cell biology and biochemistry. We have investigated the dynamic properties of GFP alone and fused to a single chain antibody raised against lipopolysaccharide of the outer cell wall of gram-negative bacteria (abbreviated as scFv-GFP). The scFv moiety was functional as was proven in binding assays, which involved the use of both fluorescence correlation spectroscopy observing the binding of scFv-GFP to gram-negative bacteria and a surface plasmon resonance cell containing adsorbed lipopolysaccharide antigen. The rotational motion of scFv-GFP has been investigated with time-resolved fluorescence anisotropy. However, the rotational correlation time of scFv-GFP is too short to account for globular rotation of the whole protein. This result can only be explained by assuming a fast hinge motion between the two fused proteins. A modeled structure of scFv-GFP supports this observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号