首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this process and by interacting with Blinkin, link the SAC with the kinetochore, the macromolecular assembly that connects microtubules with centromeric DNA. Here, we identify the Blinkin motif critical for interaction with BUBR1, define the stoichiometry and affinity of the interaction, and present a 2.2 ? resolution crystal structure of the complex. The structure defines an unanticipated BUBR1 region responsible for the interaction and reveals a novel Blinkin motif that undergoes a disorder-to-order transition upon ligand binding. We also show that substitution of several BUBR1 residues engaged in binding Blinkin leads to defects in the SAC, thus providing the first molecular details of the recognition mechanism underlying kinetochore-SAC signaling.  相似文献   

2.
BUBR1, a key component of the mitotic spindle checkpoint, is a multidomain protein kinase that is activated in response to kinetochore tension. Although BUB1 and BUBR1 play an important role in cell division, very little is known about their structural characteristics. We show that the conserved N-terminal region of BUBR1, comprising residues 1-204, is a globular domain of high alpha-helical content ( approximately 60%), stable in the pH range 4-9 and probably organized as a tetratricopeptide motif repeat (TPR), most closely resembling residues 16-181 of protein phosphatase 5. Because the latter presents a continuous amphipathic groove and is regulated by binding certain fatty acids, we compared the properties of BUBR1(1-204) and TPR-PP5(16-181) at air/water interfaces and found that both proteins exhibited a similar surface activity and formed stable, rigid monolayers. The deletion of a region that probably comprises several alpha-helices of BUBR1 indicates that long-range interactions are essential for the stability of the N-terminal domain. The presence of the putative TPR motif strongly suggests that the N-terminal domain of BUBR1 is involved in direct protein-protein interactions and/or protein-lipid interactions.  相似文献   

3.
The spindle checkpoint controls mitotic progression. Checkpoint proteins are temporally recruited to kinetochores, but their docking site is unknown. We show that a human kinetochore oncoprotein, AF15q14/blinkin, a member of the Spc105/Spc7/KNL-1 family, directly links spindle checkpoint proteins BubR1 and Bub1 to kinetochores and is required for spindle checkpoint and chromosome alignment. Blinkin RNAi causes accelerated mitosis due to a checkpoint failure and chromosome misalignment resulting from the lack of kinetochore and microtubule attachment. Blinkin RNAi phenotypes resemble the double RNAi phenotypes of Bub1 and BubR1 in living cells. While the carboxy domain associates with the c20orf172/hMis13 and DC8/hMis14 subunits of the hMis12 complex in the inner kinetochore, association of the amino and middle domain of blinkin with the TPR domains in the amino termini of BubR1 and Bub1 is essential for BubR1 and Bub1 to execute their distinct mitotic functions. Blinkin may be the center of the network for generating kinetochore-based checkpoint signaling.  相似文献   

4.
The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint (SAC), which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere-specific chromatin components that provide both a structural and a functional foundation for kinetochore formation. Here we show that cells in Drosophila embryos homozygous for null mutations in CENP-A (CID) display an early mitotic delay. This mitotic delay is not suppressed by inactivation of the DNA damage checkpoint and is unlikely to be the result of DNA damage. Surprisingly, mutation of the SAC component BUBR1 partially suppresses this mitotic delay. Furthermore, cid mutants retain an intact SAC response to spindle disruption despite the inability of many kinetochore proteins, including SAC components, to target to kinetochores. We propose that SAC components are able to monitor spindle assembly and inhibit cell cycle progression in the absence of sustained kinetochore localization.  相似文献   

5.
The kinetochore is assembled during mitotic and meiotic divisions within the centromeric region of chromosomes. It is composed of more than eighty different proteins. Spc105 (also designated as Spc7, KNL‐1 or Blinkin in different eukaryotes) is a comparatively large kinetochore protein, which can bind to the Mis12/MIND and Ndc80 complexes and to the spindle assembly checkpoint components Bub1 and BubR1. Our genetic characterization of Drosophila Spc105 shows that a truncated version lacking the rapidly evolving, repetitive central third still provides all essential functions. Moreover, in comparison with Cenp‐C that has previously been observed to extend from the inner to the outer kinetochore region, full‐length Spc105 is positioned further out and is not similarly extended along the spindle axis. Thus, our results indicate that Spc105 forms neither an extended link connecting inner Cenp‐A chromatin with outer kinetochore regions nor a scaffold constraining kinetochore subcomplexes and spindle assembly checkpoint components together into a geometrically rigid supercomplex. Spc105 seems to provide a platform within the outer kinetochore allowing independent assembly of various kinetochore components.  相似文献   

6.
Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1 +/GTTA mice are significantly reduced. Furthermore, BubR1 +/GTTA mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1 +/GTTA mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population.  相似文献   

7.
Eukaryotic cells have evolved a mechanism that delays the progression of mitosis until condensed chromosomes are properly positioned on the mitotic spindle. To understand the molecular basis of such monitoring mechanism in human cells, we have been studying genes that regulate the mitotic checkpoint. Our early studies have led to the cloning of a full-length cDNA encoding MAD3-like protein (also termed BUBR1/MAD3/SSK1). Dot blot analyses show that BUBR1 mRNA is expressed in tissues with a high mitotic index but not in differentiated tissues. Western blot analyses show that in asynchronous cells, BUBR1 protein primarily exhibits a molecular mass of 120 kDa, and its expression is detected in most cell lines examined. In addition, BUBR1 is present during various stages of the cell cycle. As cells enter later S and G2, BUBR1 levels are increased significantly. Nocodazole-arrested mitotic cells obtained by mechanical shake-off contain BUBR1 antigen with a slower mobility on denaturing SDS gels. Phosphatase treatment restores the slowly migrating band to the interphase state, indicating that the slow mobility of the BUBR1 antigen is attributable to phosphorylation. Furthermore, purified recombinant His6-BUBR1 is capable of autophosphorylation. Our studies indicate that BUBR1 phosphorylation status is regulated during spindle disruption. Considering its strong homology to BUB1 protein kinase, BUBR1 may also play an important role in mitotic checkpoint control by phosphorylation of a critical cellular component(s) of the mitotic checkpoint pathway.  相似文献   

8.
Background information. The role of the LIM‐domain‐containing protein Ajuba was initially described in cell adhesion and migration processes and recently in mitosis as an activator of the Aurora A kinase. Results. In the present study, we show that Ajuba localizes to centrosomes and kinetochores during mitosis. This localization is microtubule‐dependent and Ajuba binds microtubules in vitro. A microtubule regrowth assay showed that Ajuba follows nascent microtubules from centrosomes to kinetochores. Owing to its contribution to mitotic commitment and its microtubule‐dependent localization, Ajuba could also play a role during the metaphase—anaphase transition. We show that Ajuba interacts with Aurora B and BUBR1 [BUB (budding uninhibited by benomyl)‐related 1], two major components of the mitotic checkpoint. Inhibition of BUBR1 by siRNA (small interfering RNA) disrupts chromosome alignment at the metaphase plate and modifies Ajuba localization due to premature mitotic exit. Conclusions. Ajuba is a microtubule‐associated protein that collaborates with Aurora B and BUBR1 at the metaphase—anaphase transition and this may be important to ensure proper chromosome segregation.  相似文献   

9.
MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2L13A) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.  相似文献   

10.
Kinetochore targeting of the mitotic kinases Bub1, BubR1, and Mps1 has been implicated in efficient execution of their functions in the spindle checkpoint, the self-monitoring system of the eukaryotic cell cycle that ensures chromosome segregation occurs with high fidelity. In all three kinases, kinetochore docking is mediated by the N-terminal region of the protein. Deletions within this region result in checkpoint failure and chromosome segregation defects. Here, we use an interdisciplinary approach that includes biophysical, biochemical, cell biological, and bioinformatics methods to study the N-terminal region of human Mps1. We report the identification of a tandem repeat of the tetratricopeptide repeat (TPR) motif in the N-terminal kinetochore binding region of Mps1, with close homology to the tandem TPR motif of Bub1 and BubR1. Phylogenetic analysis indicates that TPR Mps1 was acquired after the split between deutorostomes and protostomes, as it is distinguishable in chordates and echinoderms. Overexpression of TPR Mps1 resulted in decreased efficiency of both chromosome alignment and mitotic arrest, likely through displacement of endogenous Mps1 from the kinetochore and decreased Mps1 catalytic activity. Taken together, our multidisciplinary strategy provides new insights into the evolution, structural organization, and function of Mps1 N-terminal region.  相似文献   

11.
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore–microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore–microtubule attachment.  相似文献   

12.
The multidomain protein kinases BUB1 and BUBR1 (Mad3 in yeast, worms and plants) are central components of the mitotic checkpoint for spindle assembly (SAC). This evolutionarily conserved and essential self-monitoring system of the eukaryotic cell cycle ensures the high fidelity of chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bi-oriented on the mitotic spindle. Despite their amino acid sequence conservation and similar domain organization, BUB1 and BUBR1 perform different functions in the SAC. Recent structural information provides crucial molecular insights into the regulation and recognition of BUB1 and BUBR1, and a solid foundation to dissect the roles of these proteins in the control of chromosome segregation in normal and oncogenic cells.  相似文献   

13.
In this work, we identify physical and genetic interactions that implicate E3 identified by differential display (EDD) in promoting spindle assembly checkpoint (SAC) function. During mitosis, the SAC initiates a mitotic checkpoint in response to chromosomes with kinetochores unattached to spindle pole microtubules. Similar to Budding uninhibited by benzimidazoles-related 1 (BUBR1) siRNA, a bona fide SAC component, EDD siRNA abrogated G2/M accumulation in response to the mitotic destabilizing agent nocodazole. Furthermore, EDD siRNA reduced mitotic cell viability and, in nocodazole-treated cells, increased expression of the promitotic progression protein cell division cycle 20 (CDC20). Copurification studies also identified physical interactions with CDC20, BUBR1, and other components of the SAC. Taken together, these observations highlight the potential role of EDD in regulating mitotic progression and the cellular response to perturbed mitosis.  相似文献   

14.
The relationships between the kinetochore and checkpoint control remain unresolved. Here, we report the characterization of the in vivo behavior of Cdc20 and Mad2 and the relevant spindle assembly checkpoint (SAC) functions in the neuroblasts of a Drosophila Mps1 weak allele (aldB4–2). aldB4–2 third instar larvae brain samples contain only around 16% endogenous Mps1 protein, and the SAC function is abolished. However, this does not lead to rapid anaphase onset and mitotic exit, in contrast to the loss of Mad2 alone in a mad2EY mutant. The level of GFP-Cdc20 recruitment to the kinetochore is unaffected in aldB4–2 neuroblasts, while the level of GFP-Mad2 is reduced to just about 20%. Cdc20 and Mad2 display only monophasic exponential kinetics at the kinetochores. The aldB4–2 heterozygotes expressed approximately 65% of normal Mps1 protein levels, and this is enough to restore the SAC function. The kinetochore recruitment of GFP-Mad2 in response to SAC activation increases by around 80% in heterozygotes, compared with just about 20% in aldB4–2 mutant. This suggests a correlation between Mps1 levels and Mad2 kinetochore localization and perhaps the existence of a threshold level at which Mps1 is fully functional. The failure to arrest the mitotic progression in aldB4–2 neuroblasts in response to colchicine treatment suggests that when Mps1 levels are low, approximately 20% of normal GFP-Mad2, alongside normal levels of GFP-Cdc20 kinetochore recruitments, is insufficient for triggering SAC signal propagation.  相似文献   

15.
BubR1 performs several roles during mitosis, affecting the spindle assembly checkpoint (SAC), mitotic timing, and spindle function, but the interdependence of these functions is unclear. We have analyzed in Drosophila melanogaster the mitotic phenotypes of kinase-dead (KD) BubR1 and BubR1 lacking the N-terminal KEN box. bubR1-KD individuals have a robust SAC but abnormal spindles with thin kinetochore fibers, suggesting that the kinase activity modulates microtubule capture and/or dynamics but is relatively dispensable for SAC function. In contrast, bubR1-KEN flies have normal spindles but no SAC. Nevertheless, mitotic timing is normal as long as Mad2 is present. Thus, the SAC, timer, and spindle functions of BubR1 are substantially separable. Timing is shorter in bubR1-KEN mad2 double mutants, yet in these flies, lacking both critical SAC components, chromosomes still segregate accurately, reconfirming that in Drosophila, reliable mitosis does not need the SAC.  相似文献   

16.
The spindle assembly checkpoint (SAC) delays anaphase onset until kinetochores accomplish bioriented microtubule attachments [1]. Although several centromeric and kinetochore kinases, including Aurora B, regulate kinetochore-microtubule attachment and/or SAC activation [2-4], the molecular mechanism that translates bioriented attachment into SAC silencing remains unclear [5]. Employing a method to rapidly induce exact gene replacement in budding yeast [6], we show here that the binding of protein phosphatase 1?(PP1/Glc7) to the evolutionarily conserved RVSF motif of the kinetochore protein Spc105 (KNL1/Blinkin/CASC5) is essential for viability by silencing the SAC, while it plays an auxiliary nonessential role for physical chromosome segregation. Although Aurora B may inhibit this binding, persistent PP1-Spc105 interaction does not affect chromosome segregation and is insufficient to silence the SAC in the absence of microtubules, indicating that dynamic regulation of this?interaction is dispensable. However, the amount of PP1 targeted to kinetochores must be finely tuned, because recruitment of either no or one extra copy of PP1 to Spc105 is detrimental, illustrating the vital impact of targeting an exiguous fraction of PP1 to the kinetochore. We propose that the PP1-Spc105 interaction enables local regulation of dynamic phosphorylation and dephosphorylation at the kinetochore to couple microtubule attachment and SAC silencing.  相似文献   

17.
In all dividing eukaryotic cells, the mitotic spindle (composed primarily of microtubules) must interact with chromosomes through a complex protein assembly called the kinetochore. In Saccharomyces cerevisiae, the Dam1-DASH complex plays an important role in promoting attachment between the kinetochore and the mitotic spindle. It also actively participates in the physical separation of sister chromatids in anaphase. Understanding the biochemical mechanisms used by Dam1-DASH has been facilitated by bacterial co-expression of the ten Dam1-DASH genes, which results in the production of a heterodecameric protein complex that can be studied in vitro. However, individual protein subunits are not soluble when expressed in E. coli, thus precluding analysis of the nature of the interaction between subunits and an examination of the assembly of the functional complex. In this paper, we describe the expression, solubilization, purification and refolding of Dad1p, one of the Dam1-DASH complex subunits. In addition, we show that Dad1p, when isolated in this manner forms dimers and/or tetramers, dependent upon protein concentration. This work provides an important tool for studying the Dam1-DASH complex that was previously unavailable, and provides an avenue of investigation for understanding how the individual heterodecamers associate with each other to facilitate chromosome segregation.  相似文献   

18.
We report here the isolation and molecular characterization of the Drosophila homolog of the mitotic checkpoint control protein Bub3. The Drosophila Bub3 protein is associated with the centromere/kinetochore of chromosomes in larval neuroblasts whose spindle assembly checkpoints have been activated by incubation with the microtubule-depolymerizing agent colchicine. Drosophila Bub3 is also found at the kinetochore regions in mitotic larval neuroblasts and in meiotic primary and secondary spermatocytes, with the strong signal seen during prophase and prometaphase becoming increasingly weaker after the chromosomes have aligned at the metaphase plate. We further show that the localization of Bub3 to the kinetochore is disrupted by mutations in the gene encoding the Drosophila homolog of the spindle assembly checkpoint protein Bub1. Combined with recent findings showing that the kinetochore localization of Bub1 conversely depends upon Bub3, these results support the hypothesis that the spindle assembly checkpoint proteins exist as a multiprotein complex recruited as a unit to the kinetochore. In contrast, we demonstrate that the kinetochore constituents Zw10 and Rod are not needed for the binding of Bub3 to the kinetochore. This suggests that the kinetochore is assembled in at least two relatively independent pathways. Received: 6 August 1998 / Accepted: 28 August 1998  相似文献   

19.
BubR1是存在于哺乳动物中的有丝分裂检查点基因家族Mad3的同源基因,其编码蛋白BubR1是一个多结构域蛋白,在监测细胞有丝分裂前中期向后期转化的过程中扮演重要的角色。BubR1可以通过自身或作为MCC的成分抑制APC的活性,从APC隔离Cdc20或者通过连接到微管驱动蛋白cENP—E,激活有丝分裂检查点信号级联放大。近年来关于BubR1的结构、功能及作用机理等研究工作颇为引人关注。这些研究表明:人BUBR11基因定位于人类染色体15q14-21,其编码蛋白BubR1在整个有丝分裂中聚集在外层动粒板;BubR1缺陷导致对DNA损伤的妥协反应,它的完全切除导致大量细胞凋亡甚至胚胎致死;BubR1单基因剔除可增强剔除基因组不稳定性,并导致肿瘤发生;BubR1表达减少至10%的导致一系列早老相关的表型出现;BubR1 /-Apcmin/ 复合突变提示BubR1和Apc相互作用调节中期一后期转化,这一反常现象可能在结直肠癌的基因组稳定性、发生和进展中发挥作用。本文将对BubR1蛋白就以上内容做一综述。  相似文献   

20.
Objective: Chromosome segregation during mitosis requires a physically large proteinaceous structure called the kinetochore to generate attachments between chromosomal DNA and spindle microtubules. It is essential for kinetochore components to be carefully regulated to guarantee successful cell division. Depletion, mutation or dysregulation of kinetochore proteins results in mitotic arrest and/or cell death. HEC1 (high expression in cancer) has been reported to be a kinetochore protein, depletion of which, by RNA interference, results in catastrophic mitotic exit. Materials and methods and results: To investigate how HEC1 protein is controlled post‐translation, we analysed the role of anaphase‐promoting complex/cyclosome (APC/C)‐Cdh1 in degradation of HEC1 protein. In this study, we show that HEC1 is an unstable protein and can be targeted by endogenous ubiquitin‐proteasome system in HEK293T cells. Results of RNA interference and in vivo ubiquitination assay indicated that HEC1 could be ubiquitinated and degraded by APC/C‐hCdh1 E3 ligase. The evolutionally conserved D‐box at the C‐terminus functioned as the degron of HEC1, destruction of which resulted in resistance to degradation mediated by APC/C‐Cdh1. Overexpression of non‐degradable HEC1 (D‐box destroyed) induced accumulation of cyclin B protein in vivo and triggered mitotic arrest. Conclusion: APC/C‐Cdh1 controls stability of HEC1, ensuring normal cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号