首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Boesenbergia rotunda (L.) cyclohexenyl chalcone derivatives, 4-hydroxypanduratin A and panduratin A, showed good competitive inhibitory activities towards dengue 2 virus NS3 protease with the Ki values of 21 and 25 microM, respectively, whilst those of pinostrobin and cardamonin were observed to be non-competitive. NMR and GCMS spectroscopic data formed the basis of assignment of structures of the six compounds isolated.  相似文献   

3.
4.
The gene encoding the C-terminal protease domain of the nuclear inclusion protein a (NIa) of tobacco vein mottling virus (TVMV) was cloned from an isolated virus particle and expressed as a fusion protein with glutathione S-transferase in Escherichia coli XL1-blue. The 27-kDa protease was purified from the fusion protein by glutathione affinity chromatography and Mono S chromatography. The purified protease exhibited the specific proteolytic activity towards the nonapeptide substrates, Ac-Glu-Asn-Asn-Val-Arg-Phe-Gln-Ser-Leu-amide and Ac-Arg-Glu-Thr-Val-Arg-Phe-Gln-Ser-Asp-amide, containing the junction sequences between P3 protein and cylindrical inclusion protein and between nuclear inclusion protein b and capsid protein, respectively. The Km and kcat values were about 0.2 mM and 0.071 s–1, respectively, which were approximately five-fold lower than those obtained for the NIa protease of turnip mosaic potyvirus (TuMV), suggesting that the TVMV NIa protease is different in the binding affinity as well as in the catalytic power from the TuMV NIa protease. In contrast to the NIa proteases from TuMV and tobacco etch virus, the TVMV NIa protease was not autocatalytically cleaved into smaller proteins, indicating that the C-terminal truncation is not a common phenomenon occurring in all potyviral NIa proteases. These results suggest that the TVMV NIa protease has a unique biochemical property distinct from those of other potyviral proteases.  相似文献   

5.
The genetic locus and primary structure of the human immunodeficiency virus (HIV) protease was determined by comparing the data of protein analyses with the published data of the gene analysis. The complete sequence of HIV-1 and HIV-2 protease was synthesized by solid-phase peptide synthesis. The synthetic protease was capable of accurately cleaving synthetic peptide substrates corresponding to known cleavage sites in gag polyproteins of HIV-1, HIV-2, and murine leukemia virus. The chemical synthesis of protease confirms the DNA sequence and provides a means of rapidly producing active protease in substantial quantities for biochemical and physical studies.  相似文献   

6.
Non-structural protein 5A (NS5A) plays an important role in the life cycle of hepatitis C virus. This proline-rich phosphoprotein is organized into three domains. Besides its role in virus replication and virus assembly, NS5A is involved in a variety of cellular regulation processes. Recent studies on domain 2 and 3 revealed that both belong to the class of intrinsically disordered proteins as they adopt a natively unfolded state. In particular, domain 2 together with its vicinal regions is responsible for NS5A’s multiple interactions with other proteins necessary for virus persistence. The low chemical shift dispersion observed for instrinsically disordered proteins presents a challenge for NMR spectroscopy. Here we report sequential resonance assignment of a 179-residue fragment of NS5A, comprising the entire domain 2, using a set of sensitivity and resolution optimized 3D correlation experiments, as well as amino-acid-type editing in 1H-15N correlation spectra. Our assignment reveals the presence of several segments with high propensity to form α-helical structure that may be of importance to the function of this protein fragment as a versatile interaction platform.  相似文献   

7.
Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. Enzyme characterization shows that the protease domain alone has different properties compared with the full length nsP2 protease. We also show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity. Moreover, the chikungunya nsP2 also appears to differ from other alphavirus nsP2 in its distinctive ability to recognize small peptide substrates.  相似文献   

8.
Tryptase Clara is an arginine-specific serine protease localized exclusively in and secreted from Clara cells of the bronchial epithelium of rats (H. Kido, Y. Yokogoshi, K. Sakai, M. Tashiro, Y. Kishino, A. Fukutomi, and N. Katunuma, J. Biol. Chem. 267:13573-13579, 1992). The purified protease was shown in vitro to behave similarly to trypsin, cleaving the precursor glycoprotein F of Sendai virus at residue Arg-116 and activating viral infectivity in a dose-dependent manner. Anti-tryptase Clara antibody inhibited viral activation by the protease in vitro in lung block cultures and in vivo in infected rats. When the enzyme-specific antibody was administered intranasally to rats that were also infected intranasally with Sendai virus, activation of progeny virus in the lungs was significantly inhibited. Thus, multiple cycles of viral replication were suppressed, resulting in a reduction in lung lesions and in the mortality rate. These findings indicate that tryptase Clara is an activating protease for Sendai virus in rat lungs and is therefore involved in pulmonary pathogenicity of the virus in rats.  相似文献   

9.
Carrion R  Ro YT  Patterson JL 《Journal of virology》2003,77(19):10448-10455
Leishmania RNA virus (LRV) is a double-stranded RNA virus that infects some strains of the protozoan parasite leishmania As with other totiviruses, LRV presumably expresses its polymerase by a ribosomal frameshift, resulting in a capsid-polymerase fusion protein. We have demonstrated previously that an LRV capsid-polymerase polyprotein is specifically cleaved by a Leishmania-encoded cysteine protease. This study reports the purification of this protease through a strategy involving anion-exchange chromatography and affinity chromatography. By using a Sepharose-immobilized lectin, concanavalin A, we isolated a fraction enriched with LRV polyprotein-specific protease activity. Analysis of the active fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoreses and silver staining revealed a 50-kDa protein that, upon characterization by high-pressure liquid chromatography electrospray tandem mass spectrometry (electrospray ionization/MS/MS), was identified as a cysteine protease of trypanosomes. A partial amino acid sequence derived from the MS/MS data was compared with a protein database using BLAST software, revealing homology with several cysteine proteases of Leishmania and other trypanosomes. The protease exhibited remarkable temperature stability, while inhibitor studies characterized the protease as a trypsin-like cysteine protease-a novel finding for leishmania. To elucidate substrate preferences, a panel of deletion mutations and single-amino-acid mutations were engineered into a Gag-Pol fusion construct that was subsequently transcribed and translated in vitro and then used in cleavage assays. The data suggest that there are a number of cleavage sites located within a 153-amino-acid region spanning both the carboxy-terminal capsid region and the amino-terminal polymerase domain, with LRV capsid exhibiting the greatest susceptibility to proteolysis.  相似文献   

10.
Human T-cell leukemia virus type I (HTLV-I) protease has been purified to homogeneity from a strain of recombinant Escherichia coli. The protease was expressed as a larger precursor, which was autoprocessed to form a mature protease. Protein chemical analyses revealed the coding sequence of mature protease, which agreed with the putative sequence predicted from the sequence of bovine leukemia virus protease. The purified protease processed the natural substrate gag precursor (p53) to form gag p19 and gag p24. The protease activity was inhibited by pepstatin A. These results provide direct evidence that this protease belongs to the aspartic protease family and has an activity consistent with the protease in HTLV-I virion.  相似文献   

11.
Retrovirus protease characterized as a dimeric aspartic proteinase   总被引:9,自引:9,他引:0       下载免费PDF全文
Retroviruses and retroviruslike elements have a protease for specific cleavage of their polyprotein precursors. On the basis of amino acid sequences conserved among species and the sensitivity to protease inhibitors, it was proposed that the retrovirus protease could be classified as an aspartic proteinase. Since the virus protease molecule is comparable to a single domain of aspartic proteinases having two symmetrical domains, we hypothesized and examined the dimer formation of the protease. The results of biochemical molecular mass determination and cross-linking experiments demonstrated that the virus protease molecules self-assemble into dimers. An inhibitory effect of fragmented protease molecules suggests the possibility that the intermolecular association is required for their activity. Other experiments of chemical inactivation suggest a close resemblance of the catalytic features of retrovirus and aspartic proteinases. Characterizations of these bovine and avian virus proteases would provide basic knowledge for the design of retrovirus protease-specific inhibitors, which is one of the possible strategies against human immunodeficiency virus infection.  相似文献   

12.
Two different responses to the therapy were observed in a group of patients receiving the protease inhibitor indinavir. In one, suppression of virus replication occurred and has persisted for 90 weeks (bDNA, < 500 human immunodeficiency virus type 1 [HIV-1] RNA copies/ml). In the second group, a rebound in virus levels in plasma followed the initial sharp decline observed at the start of therapy. This was associated with the emergence of drug-resistant variants. Sequence analysis of the protease gene during the course of therapy revealed that in this second group there was a sequential acquisition of protease mutations at amino acids 46, 82, 54, 71, 89, and 90. In the six patients in this group, there was also an identical mutation in the gag p7/p1 gag protease cleavage site. In three of the patients, this change was seen as early as 6 to 10 weeks after the start of therapy. In one patient, a second mutation occurred at the gag p1/p6 cleavage site, but it appeared 18 weeks after the time of appearance of the p7/p1 mutation. Recombinant HIV-1 variants containing two or three mutations in the protease gene were constructed either with mutations at the p7/p1 cleavage site or with wild-type (WT) gag sequences. When recombinant HIV-1-containing protease mutations at 46 and 82 was grown in MT2 cells, there was a 68% reduction in its rate of replication compared to the WT virus. Introduction of an additional mutation at the gag p7/p1 protease cleavage site compensated for the partially defective protease gene. Similarly, rates of replication of viruses with mutations M46L/I, I54V, and V82A in protease were enhanced both in the presence and in the absence of Indinavir when combined with mutations in the gag p7/p1 and the gag p1/p6 cleavage sites. Optimal rates of virus replication require protease cleavage of precursor polyproteins. A mutation in the cleavage site that enhanced the availability of a protein that was rate limiting for virus maturation would confer on that virus a significant growth advantage and may explain the uniform emergence of viruses with alterations at the p7/p1 cleavage site. This is the first report of the emergence of mutations in the gag p7/p1 protease cleavage sites in patients receiving protease therapy and identifies this change as an important determinant of HIV-1 resistance to protease inhibitors in patient populations.  相似文献   

13.
B N Dominy  C L Brooks 《Proteins》1999,36(3):318-331
A protocol for the rapid energetic analysis of protein-ligand complexes has been developed. This protocol involves the generation of protein-ligand complex ensembles followed by an analysis of the binding free energy components. We apply this methodology toward understanding the origin of binding specificity within the human immunodeficiency virus/feline immunodeficiency virus (HIV/FIV) protease system, a model system for drug resistance studies. A distinct difference in the internal strain of an inhibitor within each protein environment clearly favors the HIV protease complex, as observed experimentally. Our analysis also predicts that residues within the S2-S3 pockets of the FIV protease active site are responsible for this strain. Close examination of the active site residue contributions to interaction energy and desolvation energy identifies specific amino acids that may also play a role in determining the binding preferences of these two enzymes. Proteins 1999;36:318-331.  相似文献   

14.
The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.  相似文献   

15.
16.
Sequence variability associated with human immunodeficiency virus type 1 (HIV-1) is useful for inferring structural and/or functional constraints at specific residues within the viral protease. Positions that are invariant even in the presence of drug selection define critically important residues for protease function. While the importance of conserved active-site residues is easily understood, the role of other invariant residues is not. This work focuses on invariant Thr80 at the apex of the P1 loop of HIV-1, HIV-2, and simian immunodeficiency virus protease. In a previous study, we postulated, on the basis of a molecular dynamics simulation of the unliganded protease, that Thr80 may play a role in the mobility of the flaps of protease. In the present study, both experimental and computational methods were used to study the role of Thr80 in HIV protease. Three protease variants (T80V, T80N, and T80S) were examined for changes in structure, dynamics, enzymatic activity, affinity for protease inhibitors, and viral infectivity. While all three variants were structurally similar to the wild type, only T80S was functionally similar. Both T80V and T80N had decreased the affinity for saquinavir. T80V significantly decreased the ability of the enzyme to cleave a peptide substrate but maintained infectivity, while T80N abolished both activity and viral infectivity. Additionally, T80N decreased the conformational flexibility of the flap region, as observed by simulations of molecular dynamics. Taken together, these data indicate that HIV-1 protease functions best when residue 80 is a small polar residue and that mutations to other amino acids significantly impair enzyme function, possibly by affecting the flexibility of the flap domain.  相似文献   

17.
The herpes simplex virus type 1 (HSV-1) protease and its substrate, the assembly protein ICP35, are involved in virion maturation. Both proteins are encoded by a single open reading frame but are translated independently from 3'-coterminal mRNAs of different sizes and are in frame. The herpesvirus shell assembles around an internal scaffold which is subsequently lost during packaging of the viral genome. The scaffold is composed of ICP35, which is the major component, and autoproteolytically processed forms of the viral protease containing sequences common to ICP35 (Nb). In the baculovirus system, HSV-1 intact capsids can be formed in the presence of the protease or ICP35, indicating that the protease may substitute for ICP35 (Thomsen et al., J. Virol. 68:2442-2457, 1994). This is further supported by the fact that ICP35, in contrast to the protease, is not absolutely essential for viral growth. The processed intermediate of the protease analogous to ICP35 is the 388-amino-acid (aa) protein, Na, which is an N-terminal 59-aa extension of the 329-aa ICP35. To directly examine whether Na can functionally substitute for ICP35 during viral replication, we first constructed a mutant virus, Na delta35, in which 35 aa from the N terminus of Na were deleted. Phenotypic analysis of the mutant showed that this deletion had no effect on protease function. The function of Na was further examined by construction of a plasmid expressing Na alone and testing its ability to complement the growth of the mutant Prb virus in the absence of ICP35. Our results demonstrate that Na can functionally substitute for ICP35 during viral replication.  相似文献   

18.
X L Wang  M Itoh  H Hotta    M Homma 《Journal of virology》1994,68(5):3369-3373
Sendai virus fresh isolates were shown to be antigenically different from the prototype Fushimi strain that had long been passaged in embryonated chicken eggs. Phylogenetic analysis of the hemagglutinin-neuraminidase genes also revealed the difference between these two virus groups. Both trypsin-resistant and elastase-sensitive mutations were additionally introduced to an LLC-MK2-cell-adapted and attenuated mutant derived from one of the fresh isolates. This protease activation mutant (MVCES1) showed the same antigenicity as the fresh isolates, and as a result of a single cycle of growth in lungs, it could confer better protection on mice against challenge infection with the currently prevailing Sendai virus than TR-5, which is a trypsin-resistant mutant derived from the Fushimi strain. The eligibility of MVCES1 as an attenuated live vaccine of Sendai virus is discussed.  相似文献   

19.
20.
Trichoplusia ni granulosis virus granulin consists of one major polypeptide component with an estimated molecular weight of 28,000. The protein is phenol soluble, phosphorylated, and acidic. A protease activated by alkaline conditions is also associated with solubilized granulin preparations. If not properly inactivated, the protease will introduce extensive artifact into the protein giving rise to ambiguous and incorrect results as analyzed by SDS-polyacrylamide gel electrophoresis and peptide mapping. Procedures are documented for enzyme inactivation and the preparation of granulin in highly purified form for characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号