首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of O·-2 reaction with semi-oxidized tryptophan radicals in lysozyme, Trp·(Lyz) have been investigated at various pHs and conformational states by pulse radiolysis. The Trp·(Lyz) radicals were formed by Br·-2 oxidation of the 3–4 exposed Trp residues in the protein. At pH lower than 6.2, the apparent bimolecular rate is about 2 × 108M-1s-1; but drops to 8 × 107M-1s-1 or less above pH 6.3 and in CTAC micelles. Similarly, the apparent bimolecular rate constant for the intermolecular Trp·(Lyz) + Trp·(Lyz) recombination reaction is about (4-7 × 106M-1s-1) at/or below pH 6.2 then drops to 1.3-1.6 × 106M-1s-1 at higher pH or in micelles. This behavior suggests important conformational and/or microenvironmental rearrangement with pH, leading to less accessible semioxidized Trp· residues upon Br·-2 reaction. The kinetics of Trp·(Lyz) with ascorbate, a reducing species rather larger than O·-2 have been measured for comparison. The well-established long range intramolecular electron transfer from Tyr residues to Trp radicals-leading to the repair of the semi-oxidized Trp·(Lyz) and formation of the tyrosyl phenoxyl radical is inhibited by the Trp·(Lyz)+O·-2 reaction, as is most of the Trp·(Lyz)+Trp·(Lyz) reaction. However, the kinetic behavior of Trp·(Lyz) suggests that not all oxidized Trp residues are involved in the intermolecular recombination or reaction with O·-2. As the kinetics are found to be quite pH sensitive, this study demonstrates the effect of the protein conformation on O·-2 reactivity. To our knowledge, this is the first report on the kinetics of a protein-O·-2 reaction not involving the detection of change in the redox state of a prosthetic group to probe the reactivity of the superoxide anion.  相似文献   

2.
3.
Mice expressing a Cre recombinase from the lysozyme M-encoding locus (Lyz2) have been widely used to dissect gene function in macrophages and neutrophils. Here, we show that while naïve resident tissue macrophages from IL-4Rαflox/deltaLysMCre mice almost completely lose IL-4Rα function, a large fraction of macrophages elicited by sterile inflammatory stimuli, Schistosoma mansoni eggs, or S. mansoni infection, fail to excise Il4rα. These F4/80hiCD11bhi macrophages, in contrast to resident tissue macrophages, express lower levels of Lyz2 explaining why this population resists LysMCre-mediated deletion. We show that in response to IL-4 and IL-13, Lyz2loIL-4Rα+ macrophages differentiate into an arginase 1-expressing alternatively-activated macrophage (AAM) population, which slows the development of lethal fibrosis in schistosomiasis. In contrast, we identified Lyz2hiIL-4Rα+ macrophages as the key subset of AAMs mediating the downmodulation of granulomatous inflammation in chronic schistosomiasis. Our observations reveal a limitation on using a LysMCre mouse model to study gene function in inflammatory settings, but we utilize this limitation as a means to demonstrate that distinct populations of alternatively activated macrophages control inflammation and fibrosis in chronic schistosomiasis.  相似文献   

4.
Macrophages depend on colony stimulating factor 1 (also known as M-CSF) for their growth and differentiation, but the requirements for intracellular signals that lead to macrophage differentiation and function remain unclear. M-CSF is known to activate ERK1 and ERK2, but the importance of this signaling pathway in macrophage development is unknown. In these studies, we characterized a novel model of Erk1 -/- Erk2 flox/flox Lyz2 Cre/Cre mice in which the ERK2 isoform is deleted from macrophages in the background of global ERK1 deficiency. Cultures of M-CSF-stimulated bone marrow precursors from these mice yielded reduced numbers of macrophages. Whereas macrophages developing from M-CSF-stimulated bone marrow of Erk2 flox/flox Lyz2 Cre/Cre mice showed essentially complete loss of ERK2 expression, the reduced number of macrophages that develop from Erk1 -/- Erk2 flox/flox Lyz2 Cre/Cre bone marrow show retention of ERK2 expression, indicating selective outgrowth of a small proportion of precursors in which Cre-mediated deletion failed to occur. The bone marrow of Erk1 -/- Erk2 flox/flox Lyz2 Cre/Cre mice was enriched for CD11b+ myeloid cells, CD11bhi Gr-1hi neutrophils, Lin- c-Kit+ Sca–1+ hematopoietic stem cells, and Lin- c-Kit+ CD34+ CD16/32+ granulocyte-macrophage progenitors. Culture of bone marrow Lin- cells under myeloid-stimulating conditions yielded reduced numbers of monocytes. Collectively, these data indicate that the defect in production of macrophages is not due to a reduced number of progenitors, but rather due to reduced ability of progenitors to proliferate and produce macrophages in response to M-CSF-triggered ERK signaling. Macrophages from Erk1 -/- Erk2 flox/flox Lyz2 Cre/Cre bone marrow showed reduced induction of M-CSF-regulated genes that depend on the ERK pathway for their expression. These data demonstrate that ERK1/ERK2 play a critical role in driving M-CSF-dependent proliferation of bone marrow progenitors for production of macrophages.  相似文献   

5.
Pin1 isomerizes the phosphorylated Ser/Thr-Pro peptide bonds and regulates the functions of its binding proteins by inducing conformational changes. Involvement of Pin1 in the aging process has been suggested based on the phenotype of Pin1-knockout mice and its interaction with lifespan regulator protein, p66Shc. In this study, we utilize a proteomic approach and identify peroxiredoxin 1 (PRDX1), another regulator of aging, as a novel Pin1 binding protein. Pin1 binds to PRDX1 through interacting with the phospho-Thr90-Pro91 motif of PRDX1, and this interaction is abolished when the Thr90 of PRDX1 is mutated. The Pin1 binding motif, Thr-Pro, is conserved in the 2-Cys PRDXs, PRDX1–4 and the interactions between Pin1 and PRDX2–4 are also demonstrated. An increase in hydrogen peroxide buildup and a decrease in the peroxidase activity of 2-Cys PRDXs were observed in Pin1?/? mouse embryonic fibroblasts (MEFs), with the activity of PRDXs restored when Pin1 was re-introduced into the cells. Phosphorylation of PRDX1 at Thr90 has been shown to inhibit its peroxidase activity; however, how exactly the activity of PRDX1 is regulated by phosphorylation still remains unknown. Here, we demonstrate that Pin1 facilitates the protein phosphatase 2A-mediated dephosphorylation of PRDX1, which helps to explain the accumulation of the inactive phosphorylated form of PRDX1 in Pin1?/? MEFs. Collectively, we identify Pin1 as a novel PRDX1 binding protein and propose a mechanism for Pin1 in regulating the metabolism of reactive oxygen species in cells.  相似文献   

6.
Protein–drug binding study addresses a broad domain of biological problems associating molecular functions to physiological processes composing and modifying safe and coherent drug therapeutics. Comparison of the binding and thermodynamic aspect of sulfa drugs, sulfamethazine (SMZ) and sulfadiazine (SDZ) with the protein, lysozyme (Lyz) was carried out using spectroscopic, molecular docking, and dynamic simulation studies. The fluorescence quenching and apparent binding constant for the binding reaction were calculated to be in the order of 104 M−1, slightly higher for SMZ as compared to that of SDZ and the binding stoichiometry values show 1:1 drug binding with each protein molecule. The binding was an enthalpy-driven spontaneous exothermic reaction favored by a negative enthalpy and a positive entropy contribution for both the complexes. The binding from the fluorescence quenching data suggests a static quenching mechanism dominated by non-polyelectrolytic components. Synchronous fluorescence denoted a conformational change in the tryptophan moiety of the protein. Molecular docking and dynamic simulation study provided a clearer view of the interaction pattern, where the drug resides on the binding pocket of the protein structure. Overall the protein, Lyz binding of SMZ was slightly more favored over SDZ.  相似文献   

7.
Histone lysine demethylase 6a (Kdm6a) mediates the removal of repressive trimethylation from histone H3 lysine 27 (H3K27me3) to activate target gene expression. Obesity is associated with metabolic inflammation, and adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation. However, it is still unclear whether the Kdm6a pathway in ATMs regulates energy homeostasis. Here, we identified Kdm6a as a critical epigenetic switch that modulates macrophage polarisation and further disrupts energy balance. Myeloid-specific Kdm6a knockout in Kdm6aF/Y;Lyz2-Cre mice significantly reversed the high-fat diet (HFD)-induced M1–M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity. The brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly increased in Kdm6aF/Y;Lyz2-Cre mice. Furthermore, Kdm6a regulated the Ire1α expression in a demethylase activity-dependent manner and augmented the M2 polarisation of macrophages. Macrophage with higher Kdm6a significantly promotes adipogenesis in white adipocyte and inhibits thermogenesis in beige adipocytes. These results suggest that the Kdm6a in macrophages drives obesity and metabolic syndrome by impairing BAT activity and WAT differentiation.Subject terms: Interleukins, Epigenetics  相似文献   

8.
9.

Background

In the yeast Saccharomyces cerevisiae, the essential small ubiquitin-like modifier (SUMO) protease Ulp1 is responsible for both removing SUMO/Smt3 from specific target proteins and for processing precursor SUMO into its conjugation-competent form. Ulp1 localizes predominantly to nuclear pore complexes but has also been shown to deconjugate sumoylated septins at the bud-neck of dividing cells. How Ulp1 is directed to bud-neck localized septins and other cytoplasmic deconjugation targets is not well understood.

Results

Using a structure/function approach, we set out to elucidate features of Ulp1 that are required for substrate targeting. To aid our studies, we took advantage of a catalytically inactive mutant of Ulp1 that is greatly enriched at the septin ring of dividing yeast cells. We found that the localization of Ulp1 to the septins requires both SUMO and specific structural features of Ulp1's catalytic domain. Our analysis identified a 218-amino acid, substrate-trapping mutant of the catalytic domain of Ulp1, Ulp1(3)(C580S), that is necessary and sufficient for septin localization. We also used the targeting and SUMO-binding properties of Ulp1(3)(C580S) to purify Smt3-modified proteins from cell extracts.

Conclusions

Our study provides novel insights into how the Ulp1 SUMO protease is actively targeted to its substrates in vivo and in vitro. Furthermore, we found that a substrate-trapping Ulp1(3)(C580S) interacts robustly with human SUMO1, SUMO2 and SUMO2 chains, making it a potentially useful tool for the analysis and purification of SUMO-modified proteins.  相似文献   

10.
The enzyme, phenoloxidase, was isolated and partially purified as an inactive enzyme, a proenzyme, from plant cell cultures of Daucus carota, Nicotiana tabacum, and Haplopappus gracilis. The prophenoloxidase was found to be specifically activated by Ca2+ or Mn2+ ions in concentrations above 1 millimolar. Calmodulin was not involved in this activation. Concentrations of Ca2+ or Mn2+ below 1 millimolar could not induce activation of the prophenoloxidase, but if trypsin was added simultaneously with Ca2+ or Mn2+ at a concentration of 1 millimolar or below, the proenzyme was converted to its active form. The inactive form of phenoloxidase was found to be a soluble enzyme, whereas after activation the enzyme aggregated, and a significant amount of the enzyme activity could become pelleted.  相似文献   

11.
Tyrosine phosphorylation of the cell cycle regulator p27Kip1 plays a crucial role in its binding to cyclin dependent kinases and its subcellular localization. While Src and Bcr-Abl were shown to be responsible for tyrosine phosphorylation, no data are available on the dephosphorylation of p27Kip1 and the phosphatase involved. Considering the associated dephosphorylation as a pivotal event in the regulation of cell cycle proteins, we focused on the tyrosine phosphatase SHP-2, which is regulated in promyelocytic leukemia cells on G-CSF stimulation. SHP-2 was thus found in association with p27Kip1 and the G-CSF receptor, and we observed a nuclear translocation of SHP-2 on G-CSF stimulation. Using a catalytically inactive form of SHP-2 and siRNA directed against SHP-2, we could demonstrate the involvement of SHP-2 in tyrosine dephosphorylation of p27Kip1. Moreover, SHP-2 was strongly activated on G-CSF stimulation and specifically dephosphorylated p27Kip1 in vitro. Most importantly, we could illustrate that SHP-2 modulates p27Kip1 stability and contributes to p27Kip1-mediated cell cycle progression. Taken together, our results demonstrate that SHP-2 is a key regulator of p27Kip1 tyrosine phosphorylation.  相似文献   

12.
Store-operated Ca2+ entry (SOCE) represents a ubiquitous Ca2+ influx pathway activated by the filling state of intracellular Ca2+ stores. SOCE is mediated by coupling of STIM1, the endoplasmic reticulum Ca2+ sensor, to the Orai1 channel. SOCE inactivates during meiosis, partly because of the inability of STIM1 to cluster in response to store depletion. STIM1 has several functional domains, including the Orai1 interaction domain (STIM1 Orai Activating Region (SOAR) or CRAC Activation Domain (CAD)) and STIM1 homomerization domain. When Ca2+ stores are full, these domains are inactive to prevent constitutive Ca2+ entry. Here we show, using the Xenopus oocyte as an expression system, that the C-terminal 200 residues of STIM1 are important to maintain STIM1 in an inactive state when Ca2+ stores are full, through predicted intramolecular shielding of the active STIM1 domains (SOAR/CAD and STIM1 homomerization domain). Interestingly, our data argue that the C-terminal 200 residues accomplish this through a steric hindrance mechanism because they can be substituted by GFP or mCherry while maintaining all aspects of STIM1 function. We further show that STIM1 clustering inhibition during meiosis is independent of the C-terminal 200 residues.  相似文献   

13.
E. D?afi?  P. Goswami  W. Mäntele 《BBA》2009,1787(6):730-737
In this study, structural, functional, and mechanistic properties of the Na+/H+ antiporter MjNhaP1 from Methanococcus jannaschii were analyzed by infrared spectroscopic techniques. Na+/H+ antiporters are generally responsible for the regulation of cytoplasmic pH and Na+ concentration. MjNhaP1 is active in the pH range between pH 6 and pH 6.5; below and above it is inactive.The secondary structure analysis on the basis of ATR-IR spectra provides the first insights into the structural changes between inactive (pH 8) and active (pH 6) state of MjNhaP1. It results in decreased ordered structural elements with increasing the pH-value i.e. with inactivation of the protein. Analysis of temperature-dependent FTIR spectra indicates that MjNhaP1 in the active state exhibits a much higher unfolding temperature in the spectral region assigned to α-helical segments. In contrast, the temperature-induced structural changes for β-sheet structure are similar for inactive and active state. Consequently, this structure element is not the part of the activation region of the protein. The surface accessibility of the protein was analyzed by following the extent of H/D exchange. Due to higher content of unordered structural elements a higher accessibility for amide protons is observed for the inactive as compared to the active state of MjNhaP1. Altogether, the results present the active state of MjNhaP1 as the state with ordered structural elements which exhibit high thermal stability and increased hydrophobicity.  相似文献   

14.
Direct membrane lytic activity of cobra (Naja Naja atra) cardiotoxin was studied by measuring the release of trapped spin label (2,2,6,6-tetramethyl-piperidinyloxyl)-choline chloride from liposomes. Results suggest that (a) presence of membrane negative charge and Ca2+ are required for optimal direct lytic activity of cardiotoxin, (b) direct Ca2+ binding to cardiotoxin may affect the equilibrium between its membrane active and inactive form.  相似文献   

15.
N-Tyr-MIF-1 (Tyr-Pro-Leu-Gly·NH2), an immunoreactive neuropeptide exhibiting saturable high affinity binding in rat brain was found to be converted into MIF-1 (Pro-Leu-Gly·NH2) by a specific brain aminopeptidase present in rat brain homogenates or cytosol, but with low activity associated with synaptosomal plasma membranes and microsomes. Conversion occurred at a rate of 16 μmol per g w/wt per h and was unaffected by puromycin but inhibited by bestatin (I50, 5 × 10?5 M). Aminopeptidases purified from cytosolic fractions of rat brain (arylamidase), mouse brain (Mn2+-activated aminopeptidase) or porcine kidney (leucine aminopeptidase) were inactive towards N-Tyr-MIF-1 but degraded MIF-1 with release of Leu-Gly·NH2 as detected by RP-HPLC procedures. Morphiceptin (Tyr-Pro-Phe-Pro·NH2), a μ opioid agonist, also acted as a substrate for the N-Tyr-MIF-1 converting enzyme with cleavage of the Tyr-Pro bond. These tetrapeptides, but not MIF-1 or its N-blocked analogs, were degraded in vitro by a metalloendopeptidase purified from kidney membranes. Since dipeptide products were not detected for crude extracts, a significant role for brain metalloendopeptidase on turnover can be excluded. Thus the results point to the presence of a specific (X-Pro-degrading) aminopeptidase in brain cytosol as an enzyme responsible for converting N-Tyr-MIF-1 and inactivating morphiceptin.  相似文献   

16.
17.
OSR1 (oxidative stress-responsive-1) and SPAK (Ste20/Sps1-related proline/alanine-rich kinase) belong to the GCK-VI subfamily of Ste20 group kinases. OSR1 and SPAK are key regulators of NKCCs (Na+/K+/2Cl cotransporters) and activated by WNK family members (with-no-lysine kinase), mutations of which are known to cause Gordon syndrome, an autosomal dominant form of inherited hypertension. The crystal structure of OSR1 kinase domain has been solved at 2.25 Å. OSR1 forms a domain-swapped dimer in an inactive conformation, in which P+1 loop and αEF helix are swapped between dimer-related monomers. Structural alignment with nonswapped Ste20 TAO2 kinase indicates that the integrity of chemical interactions in the kinase domain is well preserved in the domain-swapped interfaces. The OSR1 kinase domain has now been added to a growing list of domain-swapped protein kinases recently reported, suggesting that the domain-swapping event provides an additional layer of complexity in regulating protein kinase activity.  相似文献   

18.
TheE. coli rnc gene encodes the double-stranded, RNA-specific ribonuclease III (RNaseIII). A novel bacteriophage, gy1, was isolated, and its propagation inE. coli was shown to depend on the expression of RNaseIII in the cell. (a) gyl has a low efficiency of plating on rnc+ strains and a high efficiency of plating on a rnc E. coli strain harboring the rnc 105 point mutation that renders its RNaseIII product inactive. (b) gy1 has a high efficiency of plating on rnc strains in which thernc gene is disrupted by a Tn10 insertion. (c) Plasmids harboring a rnc+ gene that were introduced into the rnc strains described above reduced the efficiency of plating of gy1.  相似文献   

19.
Insulin Degrading Enzyme (IDE) is a protease conserved through evolution with a role in diabetes and Alzheimer''s disease. The reason underlying its ubiquitous expression including cells lacking identified IDE substrates remains unknown. Here we show that the fission yeast IDE homologue (Iph1) modulates cellular sensitivity to endoplasmic reticulum (ER) stress in a manner dependent on TORC1 (Target of Rapamycin Complex 1). Reduced sensitivity to tunicamycin was associated with a smaller number of cells undergoing apoptosis. Wild type levels of tunicamycin sensitivity were restored in iph1 null cells when the TORC1 complex was inhibited by rapamycin or by heat inactivation of the Tor2 kinase. Although Iph1 cleaved hallmark IDE substrates including insulin efficiently, its role in the ER stress response was independent of its catalytic activity since expression of inactive Iph1 restored normal sensitivity. Importantly, wild type as well as inactive human IDE complemented gene-invalidated yeast cells when expressed at the genomic locus under the control of iph1+ promoter. These results suggest that IDE has a previously unknown function unrelated to substrate cleavage, which links sensitivity to ER stress to a pro-survival role of the TORC1 pathway.  相似文献   

20.
Human neutrophil α-defensins (HNPs) are cationic antimicrobial peptides that are synthesized in vivo as inactive precursors (proHNPs). Activation requires proteolytic excision of their anionic N-terminal inhibitory pro peptide. The pro peptide of proHNP1 also interacts specifically with and inhibits the antimicrobial activity of HNP1 inter-molecularly. In the light of the opposite net charges segregated in proHNP1, functional inhibition of the C-terminal defensin domain by its propeptide is generally thought to be of electrostatic nature. Using a battery of analogs of the propeptide and of proHNP1, we identified residues in the propeptide region important for HNP1 binding and inhibition. Only three anionic residues in the propeptide, Glu15, Asp20 and Glu23, were modestly important for interactions with HNP1. By contrast, the hydrophobic residues in the central part of the propeptide, and the conserved hydrophobic motif Val24Val25Val26Leu28 in particular, were critical for HNP1 binding and inhibition. Neutralization of all negative charges in the propeptide only partially activated the bactericidal activity of proHNP1. Our data indicate that hydrophobic forces have a dominant role in mediating the interactions between HNP1 and its propeptide — a finding largely contrasting the commonly held view that the interactions are of an electrostatic nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号