首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Over a decade ago, the analysis of the complete sequence of the genome of the human pathogen Mycobacterium tuberculosis revealed an unexpectedly high number of open reading frames encoding proteins with homology to polyketide synthases (PKSs). PKSs form a large family of fascinating multifunctional enzymes best known for their involvement in the biosynthesis of hundreds of polyketide natural products with diverse biological activities. The surprising polyketide biosynthesis capacity of M. tuberculosis has been investigated since its initial inference from genome analysis. This investigation has been based on the genes found in M. tuberculosis or their orthologs found in other Mycobacterium species. Today, the majority of the PKS-encoding genes of M. tuberculosis have been linked to specific biosynthetic pathways required for the production of unique lipids or glycolipid conjugates that are critical for virulence and/or components of the extraordinarily complex mycobacterial cell envelope. This review provides a synopsis of the most relevant studies in the field and an overview of our current understanding of the involvement of PKSs and several other polyketide production pathway-associated proteins in critical biosynthetic pathways of M. tuberculosis and other mycobacteria. In addition, the most relevant studies on PKS-containing biosynthetic pathways leading to production of metabolites from mycobacteria other than M. tuberculosis are reviewed.  相似文献   

2.
The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC‐MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 ( http://proteomecentral.proteomexchange.org/dataset/PXD001160 ).  相似文献   

3.
The Mycobacterium tuberculosis bacillus has a number of unique features that make it a particularly effective human pathogen. Although genomic analysis has added to our current understanding of the molecular basis by which M. tuberculosis damages its host, proteomics may be better suited to describe the dynamic interactions between mycobacterial and host systems that underpin this disease. The M. tuberculosis proteome has been investigated using proteomics for over a decade, with increasingly sophisticated mass spectrometry technology and sensitive methods for comparative proteomic profiling. Deeper coverage of the M. tuberculosis proteome has led to the identification of hundreds of putative virulence determinants, as well as an unsurpassed coverage of post-translational modifications. Proteomics is therefore uniquely poised to contribute to our understanding of this pathogen, which may ultimately lead to better management of the disease.  相似文献   

4.

Background  

The TlyA protein has a controversial function as a virulence factor in Mycobacterium tuberculosis (M. tuberculosis). At present, its dual activity as hemolysin and RNA methyltransferase in M. tuberculosis has been indirectly proposed based on in vitro results. There is no evidence however for TlyA relevance in the survival of tubercle bacilli inside host cells or whether both activities are functionally linked. A thorough analysis of structure prediction for this mycobacterial protein in this study shows the need for reevaluating TlyA's function in virulence.  相似文献   

5.

Background  

The two-component systems of Mycobacterium tuberculosis are apparently required for its growth and resistance in hostile host environments. In such environments, MtrAB has been reported to regulate the expression of the M. tuberculosis replication initiator gene, dnaA. However, the dnaA promoter binding sites and many potential target genes for MtrA have yet to be precisely characterized.  相似文献   

6.
Tuberculosis is one of the leading infectious diseases in humans. Discovering new treatments for this disease is urgently required, especially in view of the emergence of multiple drug resistant organisms and to reduce the total duration of current treatments. The synthesis of isoprenoids in Mycobacterium tuberculosis has been reported as an interesting pathway to target, and particular attention has been focused on the methylerythritol phosphate (MEP) pathway comprising the early steps of isoprenoid biosynthesis. In this context we have studied the enzyme 2C-methyl-d-erythritol-4-phosphate cytidylyltransferase (CMS), the third enzyme in the MEP pathway, since the lack of a resolved structure of this protein in M. tuberculosis has seriously limited its use as a drug target. We performed homology modeling of M. tuberculosis CMS in order to provide a reliable model for use in structure-based drug design. After evaluating the quality of the model, we performed a thorough study of the catalytic site and the dimerization interface of the model, which suggested the most important sites (conserved and non-conserved) that could be useful for drug discovery and mutagenesis studies. We found that the metal coordination of CDP-methylerythritol in M. tuberculosis CMS differs substantially with respect to the Escherichia coli variant, consistent with the fact that the former is able to utilize several metal ions for catalysis. Moreover, we propose that electrostatic interactions could explain the higher affinity of the MEP substrate compared with the cytosine 5′-triphosphate substrate in the M. tuberculosis enzyme as reported previously.  相似文献   

7.

Background  

Mutations in rpoB, the gene encoding the β subunit of DNA-dependent RNA polymerase, are associated with rifampin resistance in Mycobacterium tuberculosis. Several studies have been conducted where minimum inhibitory concentration (MIC, which is defined as the minimum concentration of the antibiotic in a given culture medium below which bacterial growth is not inhibited) of rifampin has been measured and partial DNA sequences have been determined for rpoB in different isolates of M. tuberculosis. However, no model has been constructed to predict rifampin resistance based on sequence information alone. Such a model might provide the basis for quantifying rifampin resistance status based exclusively on DNA sequence data and thus eliminate the requirements for time consuming culturing and antibiotic testing of clinical isolates.  相似文献   

8.
The appearance multi-drug resistant Mycobacterium tuberculosis (MTB) throughout the world has prompted a search for new, safer and more active agents against tuberculosis. Based on studies of the biosynthesis of mycobacterial cell wall polysaccharides, octyl 5-O-(α- -arabinofuranosyl)-α- -arabinofuranoside analogues were synthesized and evaluated as inhibitors for M. tuberculosis and Mycobacterium avium. A cell free assay system has been used for the evaluation of these disaccharides as substrates for mycobacterial arabinosyltransferase activity.  相似文献   

9.

Background  

An impediment to the rational development of novel drugs against tuberculosis (TB) is a general paucity of knowledge concerning the metabolism of Mycobacterium tuberculosis, particularly during infection. Constraint-based modeling provides a novel approach to investigating microbial metabolism but has not yet been applied to genome-scale modeling of M. tuberculosis.  相似文献   

10.

Background  

Susceptibility testing of pyrazinamide (PZA) against Mycobacterium tuberculosis is difficult to perform because the acidity of culture medium that is required for drug activity also inhibits the growth of bacteria. In Thailand, very limited information has been generated on PZA resistance, particularly among multidrug-resistant tuberculosis (MDR-TB) isolated from Thailand. Only two studies on PZA susceptibility among Thai M. tuberculosis strains have been reported; one used a pyrazinamidase assay, and the other used the BACTEC 460 TB for PZA susceptibility testing. In this study, we determined the percentage of strains possessing pyrazinamide resistance among pan-susceptible M. tuberculosis and MDR-TB isolates by using the pyrazinamidase assay, BACTEC MGIT 960 PZA method and pncA sequencing, and assessed the correlation in the data generated using these methods. The type and frequency of mutations in pncA were also determined.  相似文献   

11.
Summary Tuberculosis is a leading killer disease of the world with increasing mortality due to HIV-infected individuals becoming highly prone to this infection. An attempt has been made in the present work to identify novel plant-derived compounds active against Mycobacterium tuberculosis (MTB) through construction of a target based bio-screen to facilitate rapid screening of anti-TB plant compounds. To achieve this, construction of a genetically modified model system was attempted in fast growing, non-pathogenic, Escherichia coli in which experimental testing is relatively easier and rapid as compared to M. tuberculosis, which is pathogenic and slow growing in nature. The exquisitely high sensitivity of M. tuberculosis to isoniazid (INH) has been attributed to lesions in oxyR, a gene that positively regulates the expression of a set of hydrogen peroxide-inducible genes in E. coli and S. typhimurium. Moreover in the mechanism of emergence of INH resistance in M. tuberculosis, oxidative stress response has been implicated. In this study, mutants of E. coli defective in oxidative stress response function were derived and used to screen plant compounds, which might interfere with the oxidative stress response in MTB. Since MTB is inherently known to be oxyR defective and thus being highly sensitive to INH, mutants defective in oxidative stress response were isolated to construct a model system in E. coli, which is otherwise INH resistant, having functional oxyR. These mutants showed simultaneous sensitivity to oxidative stress-causing agents like hydrogen peroxide and cumene hydroperoxide. To further define the mutational lesions, complementation studies were carried out through mobilization of cloned wild type genes involved in the oxidative stress response and in this way a biological screen was constructed to identify plant compounds/essential oils/extracts/oil components which induce oxidative stress. The positives were finally tested for activity against M. tuberculosis strain H37Rv using the radiometric BACTEC 460 TB system. Interestingly, the bioactives were found to be active against the pathogen with marked potency, as the reduction in δGI values for the identified bioactives against M. tuberculosis were significant. The study demonstrates application of a specific target-based genetic model system in E. coli as a rapid high throughput screen in identifying anti-mycobacterials from plants.  相似文献   

12.
CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.  相似文献   

13.
Abstract

Cytochrome bcc complex is important for ATP synthesis and cellular activity, as a crucial step in the terminal reduction of oxygen in aerobic electron transport chains. The b subunit of cytochrome bcc complex (QcrB) has been reported as a promising anti-tuberculosis target, with many novel anti-tuberculosis scaffolds reported. However, the 3D structure of mycobacterium tuberculosis (M. tuberculosis) QcrB has not been released, making it hard to understand the interactions between QcrB and its inhibitors as well as to develop novel anti-tuberculosis scaffolds. Herein we built the optimal homology model of M. tuberculosis QcrB using the M. smegmatis QcrB structure as template, which was refined through all-atom molecular dynamics simulation. Then, the binding modes of known inhibitors were predicted through molecular docking method, along with molecular dynamics simulation and binding free energy calculation to verify the accuracy of docking results and stability of the protein-inhibitor complexes. The informative key residues within QcrB site enabled us to perform structure-based virtual library screening to obtain potential M. tuberculosis QcrB inhibitors, which were validated through molecular dynamics simulation and MM-GBSA calculation and analyzed through pharmacokinetic properties prediction. Our research would provide a deeper insight into the interactions between M. tuberculosis QcrB and its inhibitors, which boosts to develop novel therapy against tuberculosis.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
Recent studies have demonstrated that the O‐antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N‐formylated sugars (3‐formamido‐3,6‐dideoxy‐d ‐glucose or 4‐formamido‐4,6‐dideoxy‐d ‐glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6‐dehydratase, a pyridoxal 5'‐phosphate or PLP‐dependent aminotransferase, and an N‐formyltransferase. To date, there have been no published reports of N‐formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N‐formyltransferase. Given that M. tuberculosis produces l ‐rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6‐dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N‐formylated sugar in M. tuberculosis, namely a PLP‐dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP‐4‐formamido‐4,6‐dideoxy‐d ‐glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.  相似文献   

15.
Strain differentiation by DNA restriction fragment length polymorphism (RFLP) has been used mainly for the epidemiological purpose of Mycobacterium tuberculosis infection. In this study, we tried to connect the molecular and phenotypic characteristics of M. tuberculosis patient isolates by comparing the DNA fingerprints obtained by RFLP using IS6110 and lipid patterns using two-dimensional thin-layer chromatography (2-D TLC) with silica gel, since M. tuberculosis has a lipid-rich cell envelope which contributes to the virulence and immunomodulatory properties. We found that 66 isolates of M. tuberculosis from tuberculosis patients showed that the occurrence of IS6110 varied from 1 to 24 copies. The IS6110 patterns were highly variable among isolates. Fifty different RFLP patterns were observed, and 12 RFLP patterns were shared by two or more strains. By computerized analysis of the RFLP patterns of M. tuberculosis patient isolates, we found that 95% of the isolates fell into seven clusters, from A to G, with at least two isolates in each (> 30% similarity). Among the cellular lipids, the phospholipid composition did not differ by strain, whereas the glycolipid pattern differed markedly. Especially, the relative concentration of cord factor and sulfolipid, both of which were known as virulent factors, varied by strain. The fingerprints of some strains showed an association between the DNA and glycolipid patterns, even though some of the same DNA fingerprint strains showed differences in lipid patterns. Among the patient isolates, M. tuberculosis strain 249 possessed a specific glycolipid with 2-O-methyl-L -rhamnose and L-rhamnose, which is rarely found in other strains. This glycolipid showed serological activity against the sera of tuberculosis patients, even if the reactivity was not as strong as trehalose dimycolate. It also showed the inhibition of phagosome-lysosome fusion in macrophages, suggesting involvement with virulence. These results suggest that RFLP analysis using IS6110 is useful for clustering the human isolates of M. tuberculosis, however, for further strain differentiation on virulence, a lipid analysis provides more information.  相似文献   

16.
In contrast to the great majority of mycobacterial species that are harmless saprophytes, Mycobacterium tuberculosis and other closely related tubercle bacilli have evolved to be among the most important human and animal pathogens. The need to develop new strategies in the fight against tuberculosis (TB) and related diseases has fuelled research into the evolutionary success of the M. tuberculosis complex members. Amongst the various disciplines, genomics and functional genomics have been instrumental in improving our understanding of these organisms. In this review we will present some of the recent key findings on molecular determinants of mycobacterial pathogenicity and attenuation, the evolution of M. tuberculosis, genome dynamics, antigen mining for improved diagnostic and subunit antigens, and finally the identification of novel drug targets. The genomics revolution has changed the landscape of TB research, and now underpins our renewed efforts to defeat this deadly pathogen.  相似文献   

17.
There is an urgent need to develop new anti-tuberculosis drugs due to the rising tendency in tuberculosis (TB) around the world. It is known that Mycobacterium tuberculosis (M. tuberculosis) generally infects mammalian host via aerosol route. The pathogenic process has been fully studied that it can initially invade alveolar macrophage, then established stable residence within those phagocytic cells, suggesting that one of the possible ways to prevent this pathogen is to inhibit its invasion and growth in the macrophage. Aptamers from SELEX (Systematic Evolution of Ligands by Exponential Enrichment) have been used to rival virulent M. tuberculosis (H37Rv) in our previous work, and the materials to which aptamers bound were proved to be some outer membrane proteins of H37Rv. In the present study, the interaction between M. tuberculosis and macrophage in the presence of aptamers was investigated in more details. The results suggested that the selective aptamers significantly inhibited H37Rv invasion of macrophage in vitro, and the effect correspond to the binding affinity of these aptamers to H37Rv. The values of equilibrium dissociation constant (Kd) was calculated by flow cytometry, all in the nanomolar range, showed much higher affinity to H37Rv than M. bovis Bacillus Guerin (BCG). Moreover, the aptamer-treated H37Rv can stimulate IFN-γ, IL-15 and IL-17 secretion of macrophages compared with H37Rv (no treated). In summary, our data indicated that the NK2 aptamer not only acted as anti-tuberculosis agent by inhibiting virulent M. tuberculosis (H37Rv) invasion of macrophage, but also might be used as molecular probe for exploring the interaction between the outer membrane of M. tuberculosis and macrophage.  相似文献   

18.
Mycobacterium tuberculosis and Mycobacterium bovis are pathogenic bacterial species in the genus Mycobacterium and the causative agents of most cases of tuberculosis (TB). Detection of M. tuberculosis and M. bovis using conventional culture- and biochemical-based assays is time-consuming and laborious. Therefore, a simple and sensitive method for rapid detection has been anxiously awaited. In the present study, a visual loop-mediated isothermal amplification (LAMP) assay was designed from the rimM (encoding 16S rRNA-processing protein) gene sequence and used to rapidly detect M. tuberculosis and M. bovis from clinical samples in South China. The visual LAMP reaction was performed by adding calcein and manganous ion, allowing the results to be read by simple visual observation of color change in a closed-tube system, and which takes less than 1 h at 65 °C. The assay correctly identified 84 M. tuberculosis isolates, 3 M. bovis strains and 1 M. bovis BCG samples, but did not detect 51 non-tuberculous mycobacteria (NTM) isolates and 8 other bacterial species. Sensitivity of this assay for detection of genomic DNA was 1 pg. Specific amplification was confirmed by the ladder-like pattern of gel electrophoresis and restriction enzyme HhaI digestion. The assay successfully detected M. tuberculosis and M. bovis not only in pure bacterial culture but also in clinical samples of sputum, pleural fluid and blood. The speed, specificity, sensitivity of the rimM LAMP, the lack of a need for expensive equipment, and the visual readout show great potential for clinical detection of M. tuberculosis and M. bovis.  相似文献   

19.
Multi-drug-resistant tuberculosis and extensively drug-resistant tuberculosis has emerged as global health threat, causing millions of deaths worldwide. Identification of new drug candidates for tuberculosis (TB) by targeting novel and less explored protein targets will be invaluable for antituberculosis drug discovery. We performed structure-based virtual screening of eMolecules database against a homology model of relatively unexplored protein target: the α-subunit of tryptophan synthase (α-TRPS) from Mycobacterium tuberculosis essential for bacterial survival. Based on physiochemical properties analysis and molecular docking, the seven candidate compounds were selected and evaluated through whole cell-based activity against the H37Rv strain of M. tuberculosis. A new Benzamide inhibitor against α-subunit of tryptophan synthase (α-TRPS) from M. tuberculosis has been identified causing 100% growth inhibition at 25 μg/ml and visible bactericidal activity at 6 μg/ml. This benzamide inhibitor displayed a good predicted binding score (?48.24 kcal/mol) with the α-TRPS binding pocket and has logP value (2.95) comparable to Rifampicin. Further refinement of docking results and evaluation of inhibitor-protein complex stability were investigated through Molecular dynamic (MD) simulations studies. Following MD simulations, Root mean square deviation, Root mean square fluctuation and secondary structure analysis confirmed that protein did not unfold and ligand stayed inside the active pocket of protein during the explored time scale. This identified benzamide inhibitor against the α-subunit of TRPS from M. tuberculosis could be considered as candidate for drug discovery against TB and will be further evaluated for enzyme-based inhibition in future studies.  相似文献   

20.
Interactions between Mycobacterium tuberculosis bacilli and alveolar macrophages have been extensively characterized, while similar analyses in epithelial cells have not been performed. In this study, we microscopically examined endosomal trafficking of M. tuberculosis strain Erdman in A549 cells, a human type II pneumocyte cell line. Immuno‐electron microscopic (IEM) analyses indicate that M. tuberculosis bacilli are internalized to a compartment labelled first with Rab5 and then with Rab7 small GTPase proteins. This suggests that, unlike macrophages, M. tuberculosis bacilli traffic to late endosomes in epithelial cells. However, fusion of lysosomes with the bacteria‐containing compartment appears to be inhibited, as illustrated by IEM studies employing LAMP‐2 and cathepsin‐L antibodies. Examination by transmission electron microscopy and IEM revealed M. tuberculosis‐containing compartments surrounded by double membranes and labelled with antibodies against the autophagy marker Lc3, providing evidence for involvement and intersection of the autophagy and endosomal pathways. Interestingly, inhibition of the autophagy pathway using 3‐methyladenine improved host cell viability and decreased numbers of viable intracellular bacteria recovered after 72 h post infection. Collectively, these datasuggest that trafficking patterns for M. tuberculosis bacilli in alveolar epithelial cells differ from macrophages, and that autophagy is involved this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号