首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
A Photosystem-II reaction-center particle derived from spinach chloroplasts by Triton treatment contains only one kind of cytochrome, namely, cytochrome b559, in the amount of slightly more than 2 per 100 total chlorophyll molecules. Cytochrome b559 is present in the oxidized form, has a standard redox potential of 58 mV, and undergoes photoreduction.  相似文献   

6.
Characterization of the multiple forms of cytochrome b559 in photosystem II   总被引:2,自引:0,他引:2  
Cytochrome b559 is an essential component of the photosystem II (PSII) protein complex. Its function, which has long been an unsolved puzzle, is likely to be related to the unique ability of PSII to oxidize water. We have used EPR spectroscopy and spectrophotometric redox titrations to probe the structure of cytochrome b559 in PSII samples that have been treated to remove specific components of the complex. The results of these experiments indicate that the low-temperature photooxidation of cytochrome b559 does not require the presence of the 17-, 23-, or 33-kDa extrinsic polypeptides or the Mn complex (the active site in water oxidation). We observe a shift in the g value of the EPR signal of cytochrome b559 upon warming a low-temperature photooxidized sample, which presumably reflects a change in conformation to accommodate the oxidized state. At least three redox forms of cytochrome b559 are observed. Untreated PSII membranes contain one high-potential (375 mV) and one intermediate-potential (230 mV) cytochrome b559 per PSII. Thylakoid membranes also appear to contain one high-potential and one intermediate-potential cytochrome b559 per PSII, although this measurement is more difficult due to interference from other cytochromes. Removal of the 17- and 23-kDa extrinsic polypeptides from PSII membranes shifts the composition to one intermediate-potential (170 mV) and one low-potential (5 mV) cytochrome b559. This large decrease in potential is accompanied by a very small g-value change (0.04 at gz), indicating that it is the environment and not the ligand field of the heme which changes significantly upon the removal of the 17- and 23-kDa polypeptides.  相似文献   

7.
The redox and acid/base states and midpoint potentials of cytochrome b-559 have been determined in oxygen-evolving photosystem II (PS II) particles at room temperature in the pH range from 6.5 to 8.5. At pH 7.5 the fresh PS II particles present about 2/3 of their cytochrome b-559 in its reduced and protonated (non-auto-oxidizable) high-potential form and about 1/3 in its oxidized and non-protonated low-potential form. Potentiometric reductive titration shows that the protonated high-potential couple is pH-independent (E'0, + 380 mV), whereas the low-potential couple is non-protonated and pH-independent above pH 7.6 (E'0, pH greater than 7.6, + 140 mV), but becomes pH-dependent below this pH, with a slope of -72 mV/pH unit. Moreover, evidence is presented that in PS II particles cytochrome b-559 can cycle, according to its established redox and acid/base properties, as an energy transducer at two alternate midpoint potentials and at two alternate pKa values. Red light absorbed by PS II induces reduction of cytochrome b-559 in these particles at room temperature, the reaction being completely blocked by dichlorophenyldimethylurea.  相似文献   

8.
9.
10.
The effects of plastocyanin on photophosphorylation   总被引:4,自引:0,他引:4  
  相似文献   

11.
Cytochrome b559 (Cyt b559) is a well-known intrinsic component of Photosystem II (PS II) reaction center in all photosynthetic oxygen-evolving organisms, but its physiological role remains unclear. This work reports the response of the two redox forms of Cyt b559 (i.e. the high- (HP) and low-potential (LP) forms) to inhibition of the donor or acceptor side of PS II. The photooxidation of HP Cyt b559 induced by red light at room temperature was pH-dependent under conditions in which electron flow from water was diminished. This photooxidation was observed only at pH values higher than 7.5. However, in the presence of 1 M CCCP, a limited oxidation of HP Cyt b559 was observed at acidic pH, At pH 8.5 and in the presence of the protonophore, this photooxidation of the HP form was accompanied by its partial transformation into the LP form. On the other hand, a partial photoreduction of LP Cyt b559 was induced by red light under aerobic conditions when electron transfer through the primary quinone acceptor QA was impaired by strong irradiation in the presence of DCMU. This photoreduction was enhanced at acidic pH values. To the best of our knowledge, this is the first time that both photoreduction and photooxidation of Cyt b559 is described under inhibitory conditions using the same kind of membrane preparations. A model accommodating these findings is proposed.Abbreviations CCCP carbonylcyanide 3-chlorophenylhydrazone - Cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - DCMU dichlorophenyldimethylurea - E m midpoint redox potential - HP and LP high- and low-potential forms of Cyt b559 - P680 primary donor - IA acceptor side inhibition - ID donor side inhibition - Pheo pheophytin - PS II photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

12.
The nature of interaction of cytochrome b-559 high potential (HP) with electron transport on the reducing side of photosystem II was investigated by measuring the susceptibility of cytochrome b-559HP to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under different conditions. Submicromolar DCMU concentrations decreased the rate of absorbance change corresponding to cytochrome b-559HP photoreduction while the amplitude was lowered at higher concentrations (up to 10 M). Appreciable extents of cytochrome b-559HP photoreduction were observed at DCMU concentrations which completely abolished the electron transport from water to methyl viologen under the same experimental conditions. However, the susceptibility of cytochrome b-559HP to DCMU increased with the degree of cytochrome b-559HP oxidation, induced either by ferricyanide or by illumination of low intensity (2 W/m2) of red light in the presence of 2 M carbonyl cyanide-m-chlorophenylhydrazone. Also, the DCMU inhibition was more severe when the pH increased from 6.5 to 8.5, indicating that the unprotonated form of cytochrome b-559HP is more susceptible to DCMU. These results demonstrate that cytochrome b-559HP can accept electrons prior to the QB site, probably via QA although both QA and QB can be involved to various extents in this reaction. We suggest that the redox state and the degree of protonation of cytochrome b-559HP alter its interaction with the reducing side of photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - CCCP carbonylcyanide m-chlorophenylhydrazone - FeCN ferricyanide - HP high potential - MV methylviologen CIW-DPB Publication No.1096.  相似文献   

13.
The kinetics of reduction of C-550 and of oxidation of cytochrome b559 are studied with spinach chloroplasts, at ?170°, under light-limited conditions, at different light intensities. The rate of reduction of C-550 is proportional to the light intensity I; the rate of oxidation of b559 is 2–3 times slower and not proportional to I. We propose that two light reactions occur at the reaction center of Photosystem-II (RC-II) at low temperature.  相似文献   

14.
15.
1. Light-induced absorbance changes of cytochrome b-559 and cytochrome f in the -band region were examined in leaves and in isolated chloroplasts.

2. Absorbance changes of cytochrome b-559 were not detected in untreated leaves or in most preparations of isolated chloroplasts. After treatment of leaves or chloroplasts with carbonyl cyanide m-chlorophenylhydrazone, high rates of photooxidation of cytochrome b-559 were obtained, both in far-red (>700 nm) and red actinic light. Cytochrome f was photooxidized in far-red light, but in red light it remained mainly in the reduced state. The initial rates of photooxidation of cytochrome b-559 in leaves or chloroplasts treated with carbonyl cyanide m-chlorophenylhydrazone were considerably decreased by 3-(3′,4′-dichlorophenyl)-1,1-dimethyl urea.

3. A slow photoreduction of cytochrome b-559 was observed in aged mutant pea chloroplasts in red light.

4. The results do not support the view that cytochrome b-559 is a component of the electron transport chain between the light reactions. It is suggested that cytochrome b-559 is located on a side path from Photosystem II, but with a possible additional link to Photosystem I.  相似文献   


16.
The enigmatic cytochrome b-559 of oxygenic photosynthesis   总被引:1,自引:0,他引:1  
The ubiquitous and obligatory association of cytochrome b -559 with the photosystem II reaction center of oxygenic photosynthesis is a conundrum since it seems not to have a function in the primary electron transport pathway of oxygen evolution. A model for the cytochrome structure that satisfies the cis -positive rule for membrane protein assembly consists of two short, non-identical hydrophobic membrane-spanning polypeptides (α and β), each containing a single histidine residue, as ligands for the bridging heme prosthetic group that is on the side of the membrane opposite to the water splitting apparatus. The ability of the heterodimer, but not the single α-subunit, to satisfy the cis -positive rule implies that the cytochrome inserts into the membrane as a heterodimer, with some evidence implicating it as the first membrane inserted unit of the assembling reaction center. The very positive redox potential of the cytochrome can be explained by a position for the heme in a hydrophobic niche near the stromal aqueous interface where it is also influenced by the large positive dipole potential of the parallel α-helices of the cytochrome. The requirement for the cytochrome in oxygenic photosynthesis may be a consequence of the presence of the strongly oxidizing reaction center needed for H2O-splitting. This may lead to the need, under conditions of stress or plastid development, for an alternate source of electrons when the H2O-splitting system is not operative as a source of reductant for the reaction center.  相似文献   

17.
18.
《BBA》1985,808(2):348-351
As previously shown for inside-out vesicles by Larsson et al. (Larsson, C., Jansson, C., Ljungberg, U.L., Åkerlund, H.E. and Anderson, B. (1984) in Advances in Photosynthesis Research, Vol. I, pp. 363–366 (Sybesma C., ed.), Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, The Netherlands), we observed that NaCl 1 M washing of Photosystem II particles prepared by Triton X-100 treatment of spinach thylakoids induces both an inactivation of oxygen evolution and transformation of cytochrome b-559 from its high-potential to its low-potential form. A partial reactivation of water oxidation by 24 kDa polypeptide refixation is accompanied by a partial restoration of the cytochrome b-559 high-potential (HP) form. In contrast, reconstitution of water splitting by Ca2+ addition is not associated to a reestablishment of the cytochrome (HP) form. We conclude that cytochrome b-559 HP plays no role in water oxidation.  相似文献   

19.
The light-induced absorbance change at 515 nm, light-inducedhydrogen ion uptake and ATP formation were compared in chloroplastsand different types of sonicated subchloroplast particles. Noparallel relationship among the activities for ATP formation,hydrogen ion uptake and the 515-nm change was observed in differenttypes of preparations. NH4Cl inhibited ATP formation in chloroplastsbut had little effect on subchloroplast particles. In contrast,the light-induced hydrogen ion uptake was inhibited by NH4Clin a similar manner. Tetraphenylboron (TPB), at 1 µM, inhibited ATP formationby about 30% in both chloroplasts and subchloroplast particles.In the presence of TPB, ATP formation in chloroplasts was stronglyinhibited by NHC4Cl, but in subchloroplast particles the additionalinhibitory effect of NH4Cl was small. A synergistic inhibitionof photophosphorylation by valinomycin plus NH4Cl was much clearer.Although acceleration of the recovery of the 515-nm change byNH4Cl or valinomycin was moderate, the 515-nm change virtuallydisappeared when NH4Cl and valinomycin were added simultaneously. Although the membrane potential has a major role as the principaldriving force for ATP formation in subchloroplast particles,the simultaneous abolishment of the pH gradient and membranepotential may be required to uncouple ATP formation. 1Present address: Fukuoka Women's University, Kasumigaoka, Fukuoka813, Japan. 2Present address: Ryukyu University, Naha, Okinawa 903, Japan. (Received February 5, 1974; )  相似文献   

20.
S. Okayama  W. L. Butler 《BBA》1972,267(3):523-529
The maximum light-induced fluorescence yield, FM, of spinach chloroplasts at − 196 °C was less when the chloroplasts were oxidized with ferricyanide prior to freezing; the minimum fluorescence yield, F0, of the dark-adapted chloroplasts at − 196 °C was unaffected. The ratio of the fluorescence yields, FM/F0, measured at 695 nm at low temperature was 4.5–5.0 for normal chloroplasts and 2.0–2.5 in the presence of ferricyanide. The oxidative titration curve of FM followed a 1 electron Nernst equation with a midpoint potential of 365 mV and followed closely to the oxidation of cytochrome b559. The photoreduction of C−550 at low temperature was the same at all redox potentials over the range of 200–500 mV. It is suggested that a relatively strong oxidant associated with the water-splitting side of Photosystem II, possibly the primary electron donor, can chlorophyll fluorescence of Photosystem II as well as the primary electron acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号