首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At least two loci that determine susceptibility to type 1 diabetes in the NOD mouse have been mapped to chromosome 1, Idd5.1 (insulin-dependent diabetes 5.1) and Idd5.2. In this study, using a series of novel NOD.B10 congenic strains, Idd5.1 has been defined to a 2.1-Mb region containing only four genes, Ctla4, Icos, Als2cr19, and Nrp2 (neuropilin-2), thereby excluding a major candidate gene, Cd28. Genomic sequence comparison of the two functional candidate genes, Ctla4 and Icos, from the B6 (resistant at Idd5.1) and the NOD (susceptible at Idd5.1) strains revealed 62 single nucleotide polymorphisms (SNPs), only two of which were in coding regions. One of these coding SNPs, base 77 of Ctla4 exon 2, is a synonymous SNP and has been correlated previously with type 1 diabetes susceptibility and differential expression of a CTLA-4 isoform. Additional expression studies in this work support the hypothesis that this SNP in exon 2 is the genetic variation causing the biological effects of Idd5.1. Analysis of additional congenic strains has also localized Idd5.2 to a small region (1.52 Mb) of chromosome 1, but in contrast to the Idd5.1 interval, Idd5.2 contains at least 45 genes. Notably, the Idd5.2 region still includes the functionally polymorphic Nramp1 gene. Future experiments to test the identity of Idd5.1 and Idd5.2 as Ctla4 and Nramp1, respectively, can now be justified using approaches to specifically alter or mimic the candidate causative SNPs.  相似文献   

2.
Linkage analysis and congenic mapping in NOD mice have identified a susceptibility locus for type 1 diabetes, Idd5.1 on mouse chromosome 1, which includes the Ctla4 and Icos genes. Besides type 1 diabetes, numerous autoimmune diseases have been mapped to a syntenic region on human chromosome 2q33. In this study we determined how the costimulatory molecules encoded by these genes contribute to the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). When we compared levels of expression of costimulatory molecules on T cells, we found higher ICOS and lower full-length CTLA-4 expression on activated NOD T cells compared with C57BL/6 (B6) and C57BL/10 (B10) T cells. Using NOD.B10 Idd5 congenic strains, we determined that a 2.1-Mb region controls the observed expression differences of ICOS. Although Idd5.1 congenic mice are resistant to diabetes, we found them more susceptible to myelin oligodendrocyte glycoprotein 35-55-induced EAE compared with NOD mice. Our data demonstrate that higher ICOS expression correlates with more IL-10 production by NOD-derived T cells, and this may be responsible for the less severe EAE in NOD mice compared with Idd5.1 congenic mice. Paradoxically, alleles at the Idd5.1 locus have opposite effects on two autoimmune diseases, diabetes and EAE. This may reflect differential roles for costimulatory pathways in inducing autoimmune responses depending upon the origin (tissue) of the target Ag.  相似文献   

3.
Autoreactive T cells clearly mediate the pancreatic beta cell destruction causing type 1 diabetes (T1D). However, studies in NOD mice indicate that B cells also contribute to pathogenesis because their ablation by introduction of an Igmunull mutation elicits T1D resistance. T1D susceptibility is restored in NOD.Igmunull mice that are irradiated and reconstituted with syngeneic bone marrow plus NOD B cells, but not syngeneic bone marrow alone. Thus, we hypothesized some non-MHC T1D susceptibility (Idd) genes contribute to disease by allowing development of pathogenic B cells. Supporting this hypothesis was the finding that unlike those from NOD donors, engraftment with B cells from H2g7 MHC-matched, but T1D-resistant, nonobese-resistant (NOR) mice failed to restore full disease susceptibility in NOD.Igmunull recipients. T1D resistance in NOR mice is mainly encoded within the Idd13, Idd5.2, and Idd9/11 loci. B cells from NOD congenic stocks containing Idd9/11 or Idd5.1/5.2-resistance loci, respectively, derived from the NOR or C57BL/10 strains were characterized by suppressed diabetogenic activity. Immature autoreactive B cells in NOD mice have an impaired ability to be rendered anergic upon Ag engagement. Interestingly, both Idd5.1/5.2 and Idd9/11-resistance loci were found to normalize this B cell tolerogenic process, which may represent a mechanism contributing to the inhibition of T1D.  相似文献   

4.
Identification of candidate genes and their immunological mechanisms that control autoaggressive T cells in inflamed environments, may lead to novel therapies for autoimmune diseases, like type 1 diabetes (T1D). In this study, we used transgenic NOD mice that constitutively express TNF-alpha in their islets from neonatal life (TNF-alpha-NOD) to identify protective alleles that control T1D in the presence of a proinflammatory environment. We show that TNF-alpha-mediated breakdown in T cell tolerance requires recessive NOD alleles. To identify some of these recessive alleles, we crossed TNF-alpha-NOD mice to diabetes-resistant congenic NOD mice having protective alleles at insulin-dependent diabetes (Idd) loci that control spontaneous T1D at either the preinsulitis (Idd3.Idd5) or postinsulitis (Idd9) phases. No protection from TNF-alpha-accelerated T1D was afforded by resistance alleles at Idd3.Idd5. Lack of protection was not at the level of T cell priming, the efficacy of islet-infiltrating APCs to present islet peptides, nor the ability of high levels of CD4+ Foxp3+ T cells to accumulate in the islets. In contrast, protective alleles at Idd9 significantly increased the age at which TNF-alpha-NOD mice developed T1D. Disease delay was associated with a decreased ability of CD8+ T cells to respond to islet Ags presented by islet-infiltrating APCs. Finally, we demonstrate that the protective region on chromosome 4 that controls T1D in TNF-alpha-Idd9 mice is restricted to the Idd9.1 region. These data provide new evidence of the mechanisms by which selective genetic loci control autoimmune diseases in the presence of a strong inflammatory assault.  相似文献   

5.
High-resolution mapping and identification of the genes responsible for type 1 diabetes (T1D) has proved difficult because of the multigenic etiology and low penetrance of the disease phenotype in linkage studies. Mouse congenic strains have been useful in refining Idd susceptibility loci in the NOD mouse model and providing a framework for identification of genes underlying complex autoimmune syndromes. Previously, we used NOD and a nonobese diabetes-resistant strain to map the susceptibility to T1D to the Idd4 locus on chromosome 11. Here, we report high-resolution mapping of this locus to 1.4 megabases. The NOD Idd4 locus was fully sequenced, permitting a detailed comparison with C57BL/6 and DBA/2J strains, the progenitors of T1D resistance alleles found in the nonobese diabetes-resistant strain. Gene expression arrays and quantitative real-time PCR were used to prioritize Idd4 candidate genes by comparing macrophages/dendritic cells from congenic strains where allelic variation was confined to the Idd4 interval. The differentially expressed genes either were mapped to Idd4 or were components of the IFN response pathway regulated in trans by Idd4. Reflecting central roles of Idd4 genes in Ag presentation, arachidonic acid metabolism and inflammation, phagocytosis, and lymphocyte trafficking, our combined analyses identified Alox15, Alox12e, Psmb6, Pld2, and Cxcl16 as excellent candidate genes for the effects of the Idd4 locus.  相似文献   

6.
The development of insulin-dependent diabetes mellitus in both human and mouse is dependent on the interaction between genetic and environmental factors. The analysis of newly created NOD.C3H congenic strains for spontaneous and cyclophosphamide-induced diabetes has allowed the definition of three controlling genetic loci on mouse chromosome 6. A NOD-derived susceptibility allele at the Idd6 locus strongly influences the onset of diabetes in spontaneous diabetes. A NOD-derived resistance allele at the Idd19 locus affects the final diabetes incidence observed in both models, while a novel locus, provisionally termed Idd20, appears to control Idd19 in an epistatic manner. Decreased diabetes incidence is observed in CY-induced diabetes when Idd20 is homozygous for the C3H allele, while heterozygosity is associated with an increase in diabetes incidence. The Idd20, Idd19, and Idd6 candidate regions fall respectively within genetically defined intervals of 4, 7, and 4.5 cM on mouse chromosome 6. From our YAC contig, Idd6 would appear to localize within a ca. 1.5-Mb region on distal chromosome 6.  相似文献   

7.
Many human autoimmune diseases are more frequent in females than males, and their clinical severity is affected by sex hormone levels. A strong female bias is also observed in the NOD mouse model of type I diabetes (T1D). In both NOD mice and humans, T1D displays complex polygenic inheritance and T cell-mediated autoimmune pathogenesis. The identities of many of the insulin-dependent diabetes (Idd) loci, their influence on specific stages of autoimmune pathogenesis, and sex-specific effects of Idd loci in the NOD model are not well understood. To address these questions, we analyzed cyclophosphamide-accelerated T1D (CY-T1D) that causes disease with high and similar frequencies in male and female NOD mice, but not in diabetes-resistant animals, including the nonobese diabetes-resistant (NOR) strain. In this study we show by genetic linkage analysis of (NOD x NOR) x NOD backcross mice that progression to severe islet inflammation after CY treatment was controlled by the Idd4 and Idd9 loci. Congenic strains on both the NOD and NOR backgrounds confirmed the roles of Idd4 and Idd9 in CY-T1D susceptibility and revealed the contribution of a third locus, Idd5. Importantly, we show that the three loci acted at distinct stages of islet inflammation and disease progression. Among these three loci, Idd4 alleles alone displayed striking sex-specific behavior in CY-accelerated disease. Additional studies will be required to address the question of whether a sex-specific effect of Idd4, observed in this study, is also present in the spontaneous model of the disease with striking female bias.  相似文献   

8.
Autoimmune type 1 diabetes (T1D) in humans and NOD mice results from interactions between multiple susceptibility genes (termed Idd) located within and outside the MHC. Despite sharing ~88% of their genome with NOD mice, including the H2(g7) MHC haplotype and other important Idd genes, the closely related nonobese resistant (NOR) strain fails to develop T1D because of resistance alleles in residual genomic regions derived from C57BLKS mice mapping to chromosomes (Chr.) 1, 2, and 4. We previously produced a NOD background strain with a greatly decreased incidence of T1D as the result of a NOR-derived 44.31-Mb congenic region on distal Chr. 4 containing disease-resistance alleles that decrease the pathogenic activity of autoreactive B and CD4 T cells. In this study, a series of subcongenic strains for the NOR-derived Chr. 4 region was used to significantly refine genetic loci regulating diabetogenic B and CD4 T cell activity. Analyses of these subcongenic strains revealed the presence of at least two NOR-origin T1D resistance genes within this region. A 6.22-Mb region between rs13477999 and D4Mit32, not previously known to contain a locus affecting T1D susceptibility and now designated Idd25, was found to contain the main NOR gene(s) dampening diabetogenic B cell activity, with Ephb2 and/or Padi2 being strong candidates as the causal variants. Penetrance of this Idd25 effect was influenced by genes in surrounding regions controlling B cell responsiveness and anergy induction. Conversely, the gene(s) controlling pathogenic CD4 T cell activity was mapped to a more proximal 24.26-Mb region between the rs3674285 and D4Mit203 markers.  相似文献   

9.
Type I diabetes (T1D) susceptibility is inherited through multiple insulin-dependent diabetes (Idd) genes. NOD.B6 Idd3 congenic mice, introgressed with an Idd3 allele from T1D-resistant C57BL/6 mice (Idd3(B6)), show a marked resistance to T1D compared with control NOD mice. The protective function of the Idd3 locus is confined to the Il2 gene, whose expression is critical for naturally occurring CD4(+)Foxp3(+) regulatory T (nT(reg)) cell development and function. In this study, we asked whether Idd3(B6) protective alleles in the NOD mouse model confer T1D resistance by promoting the cellular frequency, function, or homeostasis of nT(reg) cells in vivo. We show that resistance to T1D in NOD.B6 Idd3 congenic mice correlates with increased levels of IL-2 mRNA and protein production in Ag-activated diabetogenic CD4(+) T cells. We also observe that protective IL2 allelic variants (Idd3(B6) resistance allele) also favor the expansion and suppressive functions of CD4(+)Foxp3(+) nT(reg) cells in vitro, as well as restrain the proliferation, IL-17 production, and pathogenicity of diabetogenic CD4(+) T cells in vivo more efficiently than control do nT(reg) cells. Lastly, the resistance to T1D in Idd3 congenic mice does not correlate with an augmented systemic frequency of CD4(+)Foxp3(+) nT(reg) cells but more so with the ability of protective IL2 allelic variants to promote the expansion of CD4(+)Foxp3(+) nT(reg) cells directly in the target organ undergoing autoimmune attack. Thus, protective, IL2 allelic variants impinge the development of organ-specific autoimmunity by bolstering the IL-2 producing capacity of self-reactive CD4(+) T cells and, in turn, favor the function and homeostasis of CD4(+)Foxp3(+) nT(reg) cells in vivo.  相似文献   

10.
Although candidate genes controlling autoimmune disease can now be identified, a major challenge that remains is defining the resulting cellular events mediated by each locus. In the current study we have used NOD-InsHA transgenic mice that express the influenza hemagglutinin (HA) as an islet Ag to compare the fate of HA-specific CD8+ T cells in diabetes susceptible NOD-InsHA mice with that observed in diabetes-resistant congenic mice having protective alleles at insulin-dependent diabetes (Idd) 3, Idd5.1, and Idd5.2 (Idd3/5 strain) or at Idd9.1, Idd9.2, and Idd9.3 (Idd9 strain). We demonstrate that protection from diabetes in each case is correlated with functional tolerance of endogenous islet-specific CD8+ T cells. However, by following the fate of naive, CFSE-labeled, islet Ag-specific CD8+ (HA-specific clone-4) or CD4+ (BDC2.5) T cells, we observed that tolerance is achieved differently in each protected strain. In Idd3/5 mice, tolerance occurs during the initial activation of islet Ag-specific CD8+ and CD4+ T cells in the pancreatic lymph nodes where CD25+ regulatory T cells (Tregs) effectively prevent their accumulation. In contrast, resistance alleles in Idd9 mice do not prevent the accumulation of islet Ag-specific CD8+ and CD4+ T cells in the pancreatic lymph nodes, indicating that tolerance occurs at a later checkpoint. These results underscore the variety of ways that autoimmunity can be prevented and identify the elimination of islet-specific CD8+ T cells as a common indicator of high-level protection.  相似文献   

11.
NOD.Idd3/5 congenic mice have insulin-dependent diabetes (Idd) regions on chromosomes 1 (Idd5) and 3 (Idd3) derived from the nondiabetic strains B10 and B6, respectively. NOD.Idd3/5 mice are almost completely protected from type 1 diabetes (T1D) but the genes within Idd3 and Idd5 responsible for the disease-altering phenotype have been only partially characterized. To test the hypothesis that candidate Idd genes can be identified by differential gene expression between activated CD4+ T cells from the diabetes-susceptible NOD strain and the diabetes-resistant NOD.Idd3/5 congenic strain, genome-wide microarray expression analysis was performed using an empirical Bayes method. Remarkably, 16 of the 20 most differentially expressed genes were located in the introgressed regions on chromosomes 1 and 3, validating our initial hypothesis. The two genes with the greatest differential RNA expression on chromosome 1 were those encoding decay-accelerating factor (DAF, also known as CD55) and acyl-coenzyme A dehydrogenase, long chain, which are located in the Idd5.4 and Idd5.3 regions, respectively. Neither gene has been implicated previously in the pathogenesis of T1D. In the case of DAF, differential expression of mRNA was extended to the protein level; NOD CD4+ T cells expressed higher levels of cell surface DAF compared with NOD.Idd3/5 CD4+ T cells following activation with anti-CD3 and -CD28. DAF up-regulation was IL-4 dependent and blocked under Th1 conditions. These results validate the approach of using congenic mice together with genome-wide analysis of tissue-specific gene expression to identify novel candidate genes in T1D.  相似文献   

12.
Insulin-dependent diabetes mellitus (IDDM) is a polygenic disease caused by progressive autoimmune infiltration (insulitis) of the pancreatic islets of Langerhan, culminating in the destruction of insulin-producing beta cells. Genome scans of families with diabetes suggest that multiple loci make incremental contributions to disease susceptibility. However, only the IDDM1 locus is well characterized, at a molecular and functional level, as alleleic variants of the major histocompatibility complex (MHC) class II HLA-DQB1, DRB1, and DPB1 genes that mediate antigen presentation to T cells. In the nonobese diabetic (NOD) mouse model, the Idd1 locus was shown to be the orthologous MHC gene I-Ab. Inheritance of susceptibility alleles at IDDM1/Idd1 is insufficient for disease development in humans and NOD mice. However, the identities and functions of the remaining diabetes loci (Idd2-Idd19 in NOD mice) are largely undefined. A crucial limitation in previous genetic linkage studies of this disease has been reliance on a single complex phenotype-diabetes that displays low penetrance and is of limited utility for high-resolution genetic mapping. Using the NOD model, we have identified an early step in diabetes pathogenesis that behaves as a highly penetrant trait. We report that NOD-derived alleles at both the Idd5 and Idd13 loci regulate a T lymphocyte-dependent progression from a benign to a destructive stage of insulitis. Human chromosomal regions orthologous to the Idd5 and -13 intervals are also linked to diabetes risk, suggesting that conserved genes encoded at these loci are central regulators of disease pathogenesis. These data are the first to reveal a role for individual non-MHC Idd loci in a specific, critical step in diabetes pathogenesis-T cell recruitment to islet lesions driving destructive inflammation. Importantly, identification of intermediate phenotypes in complex disease pathogenesis provides the tools required to progress toward gene identification at these loci.  相似文献   

13.
In the nonobese diabetes mouse, the murine type 1 diabetes susceptibility locus Idd20 interacts genetically with the diabetes resistance locus Idd19. Both Idds are located on distal mouse Chromosome 6, and previous studies on NOD.C3H congenic strains have shown that C3H alleles at Idd20 can suppress the disease-promoting effects of C3H alleles at Idd19 in both spontaneous and cyclophosphamide-induced diabetes. In this article we present the construction of novel congenic strains which, while maintaining the C3H alleles at Idd19, have allowed the candidate interval of Idd20 to be reduced from 4 to 1.8 cM. The analysis of these strains shows that Idd20 controls the progression of insulitis. Idd20 also increases the suppressive but not the pathogenic activity of splenocytes in diabetes transfer experiments. Our results suggest that the two Chromosome 6 susceptibility loci, Idd6 and Idd20, interact with the resistance locus Idd19 by regulating the activity of suppressor cells in the peripheral immune system.  相似文献   

14.
Several studies suggested that part of the genetic susceptibility for Type 1 diabetes (TIDM) is encoded by some polymorphisms of CTLA-4 gene (2q33) and of Vitamin D Receptor gene (VDR; 12q12-14). Our aim was to assess their contribution to TIDM genetic susceptibility in the Romanian population. We typed CTLA-4 49 A/G and VDR Fok I (F/f), Apa I (A/a) and Taq I (T/t) polymorphisms by Sequence Specific Primer PCR (SSP-PCR) in 204 Romanian diabetic families (756 individuals: 212 TIDM probands and 544 unaffected parents and siblings). We studied alleles transmission using the Transmission Disequilibrium Test (TDT). We found an increased transmission of CTLA-4 49G allele to diabetics (54.8%, p=0.11). The transmission of F (56.1%, p=0.063), a (55.7%, p=0.061) and T (51.8%, p=0.37) alleles of VDR gene to diabetics was increased but did not reach statistical significance. In conclusion we found the same increased transmission of CTLA-4 49 G allele to diabetics as previously reported. VDR Foq I F allele seems to be predisposing while Taq I T allele seems to be protective.  相似文献   

15.
We have previously proposed that sequence variation of the CD101 gene between NOD and C57BL/6 mice accounts for the protection from type 1 diabetes (T1D) provided by the insulin-dependent diabetes susceptibility region 10 (Idd10), a <1 Mb region on mouse chromosome 3. In this study, we provide further support for the hypothesis that Cd101 is Idd10 using haplotype and expression analyses of novel Idd10 congenic strains coupled to the development of a CD101 knockout mouse. Susceptibility to T1D was correlated with genotype-dependent CD101 expression on multiple cell subsets, including Foxp3(+) regulatory CD4(+) T cells, CD11c(+) dendritic cells, and Gr1(+) myeloid cells. The correlation of CD101 expression on immune cells from four independent Idd10 haplotypes with the development of T1D supports the identity of Cd101 as Idd10. Because CD101 has been associated with regulatory T and Ag presentation cell functions, our results provide a further link between immune regulation and susceptibility to T1D.  相似文献   

16.
The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease.  相似文献   

17.
Background: The cytotoxic T lymphocyteassociated antigen 4 gene (CTLA-4) encode the T cell receptor involved in the control of T cell proliferation and mediates T cell apoptosis. The receptor protein is a specific T lymphocyte surface antigen that is detected on cells only after antigen presentation. Thus, CTLA-4 is directly involved in both immune and autoimmune responses and may be involved in the pathogenesis of multiple T cell-mediated autoimmune disorders. There is polymorphism at position 49 in exon 1 of the CTLA-4 gene, providing an A-G exchange. Moreover, we assessed the CTLA-4 49 (Thr/Ala) polymorphism in diabetic patients and first-degree relatives as compared to control subjects. Research design and methods: Three loci (HLA-DQB1, DQA1 and CTLA-4) were analysed in 62 type 1 diabetic patients, 72 firstdegree relatives and 84 nondiabetic control subjects by means of PCR-RFLP. Results: A significant enrichment in DQB1 alleles encoding for an amino acid different from Asp in position 57 (NA) and DQA1 alleles encoding for Arg in position 52 was observed in diabetic subjects and first-degree relatives as compared to controls. The genotype and allele frequencies of these polymorphisms in type 1 diabetic patients and firstdegree relatives differed significantly from those of controls (p< 0.001 and 0.05 respectively). CTLA-49 Ala alleles frequencies were 75.8% in type 1 diabetic patients and 68.1% in first-degree relatives in comparison to 35.7% in control subjects. The Ala/Ala genotype conferred a relative risk of 18.8 (p < 0.001). Conclusion: The CTLA-4 49 Ala allele confers an increased risk of type 1 diabetes, independent of age and HLA-DQ genetic markers.  相似文献   

18.
In general, common diseases do not follow a Mendelian inheritance pattern. To identify disease mechanisms and etiology, their genetic dissection may be assisted by evaluation of linkage in mouse models of human disease. Statistical modeling of multiple-locus linkage data from the nonobese diabetic (NOD) mouse model of type 1 diabetes has previously provided evidence for epistasis between alleles of several Idd (insulin-dependent diabetes) loci. The construction of NOD congenic strains containing selected segments of the diabetes-resistant strain genome allows analysis of the joint effects of alleles of different loci in isolation, without the complication of other segregating Idd loci. In this article, we analyze data from congenic strains carrying two chromosome intervals (a double congenic strain) for two pairs of loci: Idd3 and Idd10 and Idd3 and Idd5. The joint action of both pairs is consistent with models of additivity on either the log odds of the penetrance, or the liability scale, rather than with the previously proposed multiplicative model of epistasis. For Idd3 and Idd5 we would also not reject a model of additivity on the penetrance scale, which might indicate a disease model mediated by more than one pathway leading to beta-cell destruction and development of diabetes. However, there has been confusion between different definitions of interaction or epistasis as used in the biological, statistical, epidemiological, and quantitative and human genetics fields. The degree to which statistical analyses can elucidate underlying biologic mechanisms may be limited and may require prior knowledge of the underlying etiology.  相似文献   

19.
Reduced numbers and function of invariant NKT (iNKT) cells partially contribute to type 1 diabetes (T1D) development in NOD mice. Previous linkage analysis identified a genetic locus on chromosome 2 controlling numbers of thymic iNKT cells. Interestingly, this locus resides within the Idd13 region that distinguishes NOD mice from the closely genetically related, but strongly T1D-resistant NOR strain. Thus, we tested if a genetic variant that confers T1D resistance in NOR mice may do so by enhancing iNKT cell numbers. iNKT cells were enumerated by an α-GalCer analog loaded CD1d tetramer in NOD and NOR mice as well as in NOD stocks carrying NOR-derived congenic regions on chromosome 1, 2, or 4. Significantly, more thymic and splenic iNKT cells were present in NOR than NOD mice. The NOR-derived Idd13 region on chromosome 2 contributed the most significant effect on increasing iNKT cell numbers. Subcongenic analyses indicated that at least two genes within the Idd13 region regulate iNKT cell numbers. These results further define the genetic basis for numerical iNKT cell defects contributing to T1D development in NOD mice.  相似文献   

20.
Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces “hitchhiking” (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large “hitchhiking” genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of “hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号