首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was found that o-benzoquinones (oBQ) inhibit the CCl4-dependent lipid peroxidation (LPO) in rat liver microsomes in vitro. The experimental data suggest that the antioxidant effect of oBQ is not due to the ability of these substances to shunt the NADPH-dependent electron transport pathways. More likely, oBQ inhibit LPO due to the ability of their reduced forms to scavenge the free radicals which induce LPO. Based on the experimental data, it was concluded that the increasing absorption of liver lipids at 230-236 nm after administration of CCl4 is due to the accumulation of reduced hydroperoxides. This process was shown to be inhibited by oBQ.  相似文献   

2.
The role of iron in the initiation of lipid peroxidation   总被引:5,自引:0,他引:5  
Iron is required for the initiation of lipid peroxidation. Evidence is presented that lipid peroxidation requires both Fe3+ and Fe2+, perhaps with oxygen to form a Fe3+-dioxygen-Fe2+ complex. Other mechanisms of initiation, mostly involving the iron-catalyzed formation of hydroxyl radical, are described and discussed from both theoretical and experimental view points.  相似文献   

3.
The aim of this study was to compare the protective effect of a flavonoid, the 3′5,7-trihydroxy-4′-methoxyflavone 7-rutinoside or diosmin, on liver microsomal lipid peroxidation induced in rats by either carbon tetrachloride or carrageenan. Thirty rats were divided into five groups. Group 1 received no chemical product and was considered as control. Groups 2 and 3 received either an intraperitoneal injection of carrageenan or carbon tetrachloride 48 or 24 hours before killing, respectively. Groups 4 and 5 were treated first with an intraperitoneal injection of diosmin and then by carrageenan (group 4) or carbon tetrachloride (group 5) 48 or 24 hours before killing, respectively. The lipoperoxidant effect of carrageenan and carbon tetrachloride was demonstrated by both significant decreases in polyunsaturated fatty acids, principally 20:4 (n− 6) (p < 0.05) and of vitamin A (p < 0.05) in groups 2 and 3. With diosmin treatment, only thiobarbituric acid reactive substances significantly decreased in group 4, whereas vitamin A level increased. These results could suggest that the effect of diosmin differs with the choice of chemical product used; it seems a better antioxidant against products inducing inflammation. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The question as to whether CCl4 decreases the activities of glucose-6-phosphatase and cytochrome P-450 in liver endoplasmic reticulum mainly through its action in stimulating lipid peroxidation has been investigated using Promethazine to block lipid peroxidation. The investigation, moreover, has compared the effects of CCl4, with and without Promethazine, on isolated rat hepatocytes with corresponding effects on rat liver microsomal suspensions. Our data give no support for the view that products of lipid peroxidation are the main cause of the decrease in cytochrome P-450 observed in CCl4-intoxication. However, our present results are consistent with lipid peroxidation being a major contributory factor to the decrease in glucose-6-phosphatase activity observed in CCl4-induced liver injury.  相似文献   

5.
The role of iron in the peroxidation of polyunsaturated fatty acids is reviewed, especially with respect to the involvement of oxygen radicals. The hydroxyl radical can be generated by a superoxide-driven Haber-Weiss reaction or by Fenton's reaction; and the hydroxyl radical can initiate lipid peroxidation. However, lipid peroxidation is frequently insensitive to hydroxyl radical scavengers or superoxide dismutase. We propose that the hydroxyl radical may not be involved in the peroxidation of membrane lipids, but instead lipid peroxidation requires both Fe2+ and Fe3+. The inability of superoxide dismutase to affect lipid peroxidation can be explained by the fact that the direct reduction of iron can occur, exemplified by rat liver microsomal NADPH-dependent lipid peroxidation. Catalase can be stimulatory, inhibitory or without affect because H2O2 may oxidize some Fe2+ to form the required Fe3+, or, alternatively, excess H2O2 may inhibit by excessive oxidation of the Fe2+. In an analogous manner reductants can form the initiating complex by reduction of Fe3+, but complete reduction would inhibit lipid peroxidation. All of these redox reactions would be influenced by iron chelation.  相似文献   

6.
Ferritin and haemosiderin were shown, by the measurement of malondialdehyde production and loss of polyunsaturated fatty acids, to stimulate lipid peroxidation in liposomes. At pH 7.4 ascorbate was additionally required to achieve peroxidation; however, peroxidation occurred at pH 4.5 in the presence of iron-proteins alone. The damage was completely inhibited by the incorporation of chain-breaking antioxidants (alpha-tocopherol and butylated hydroxytoluene) into the liposomes. Metal chelators (desferrioxamine and EDTA) also completely inhibited lipid peroxidation. These and further results indicate that, at pH 4.5, even in the absence of a reducing agent, iron is released from haemosiderin and can mediate oxidative damage to a lipid membrane.  相似文献   

7.
The role of iron and iron chelators in the initiation of microsomal lipid peroxidation has been investigated. It is shown that an Fe3+ chelate in order to be able to initiate enzymically induced lipid peroxidation in rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with O2; and (c) formation of a relatively stable perferryl radical. NADH can support lipid peroxidation in the presence of ADP-Fe3+ or oxalate-Fe3+ at rates comparable to those obtained with NADPH but requires 10 to 15 times higher concentrations of the Fe3+ chelates for maximal activity. The results are discussed in relation to earlier proposed mechanisms of microsomal lipid peroxidation.  相似文献   

8.
I Golly  P Hlavica    J Wolf 《The Biochemical journal》1984,224(2):415-421
Irradiation with u.v. light of aerobic aqueous media containing both rabbit liver microsomal fraction and 4-chloroaniline results in N-oxidation of the arylamine. The reaction is severely blocked by exhaustive extraction with organic solvents of the microsomal membranes to remove lipids. Further, scavengers of OH. and O2.-impair the photochemical process. These findings suggest that the observed phenomenon may be closely associated with light-induced lipid peroxidation. Indeed, N-oxidation of 4-chloroaniline is fully preserved when either phospholipid liposomes or dispersed linoleic acid substitute for intact microsomal fraction. Co-oxidation of the amine substrate occurs during iron/ascorbate-promoted lipid peroxidation also, but H2O2 or free OH. radicals do not appear to be involved. Cumene hydroperoxide-sustained rabbit liver microsomal turnover of the amine generates N-oxy product via O2-dependent and -independent pathways; propagation of lipid peroxidation is presumed to govern the former route. Lipid hydroperoxides, either exogenously added to rabbit liver microsomal suspensions or enzymically formed from arachidonic acid in ram seminal-vesicle microsomal preparations, support N-oxidation of 4-chloroaniline. The significance, in arylamine activation, of lipid peroxidation in certain extrahepatic tissues exhibiting but low mono-oxygenase activity is discussed.  相似文献   

9.
Iron and iron complexes stimulate lipid peroxidation and formation of malondialdehyde (MDA). We have studied the effects of Fe2+ and ascorbate on mitochondrial permeability transition induced by phosphate and Ca2+. Iron is necessary for detectable MDA formation, but only Ca2+ and phosphate are necessary for the induction of membrane potential loss (Deltapsi) and Ca2+ release. Keeping the iron at a constant concentration and varying the Ca2+ level changed the mitochondrial Ca2+ retention times, but not the amount of MDA formation. The antioxidant butylated hydroxytoluene at low concentrations prevented MDA formation, but not mitochondrial Ca2+ release. Preincubation of mitochondria with Fe2+ decreased Ca2+ retention time in a concentration-dependent manner and facilitated Ca2+-stimulated MDA accumulation. Thus, Ca2+ phosphate-induced mitochondrial permeability transition (MPT) can be separated mechanistically from MDA accumulation. Lipid peroxidation products do not appear to participate in the initial phase of the permeability transition, but sensitize mitochondria toward MPT.  相似文献   

10.
Rats were injected intraperitoneally with CCl4 (2.5 ml/kg body wt.) and the hepatotoxicity was compared with that of rats receiving the same dose of CCl4 and an intraperitoneal injection of fructose 1,6-bisphosphate (2 g/kg body wt.). A 50-70% decrease in plasma aspartate aminotransferase and alanine aminotransferase activities was observed in the latter treatment, indicating a protective role of the sugar bisphosphate in CCl4 hepatotoxicity. The protection was accompanied by elevated hepatic activities of ornithine decarboxylase at 2, 6 and 24 h, S-adenosylmethionine decarboxylase at 6 h, and spermidine N1-acetyltransferase at 2 h. The increase in the enzymes involved in polyamine metabolism was shown in our previous work [Rao, Young & Mehendale (1989) J. Biochem. Toxicol. 4, 55-63] to correlate with increased polyamine synthesis or interconversion, which was related to the extent of hepatocellular regeneration. The hepatic contents of fructose 1,6-bisphosphate and ATP significantly decreased after CCl4 treatment, and administration of the sugar bisphosphate increased hepatic ATP. Fructose 1,6-bisphosphate, an intermediary metabolite of the glycolytic pathway, may decrease CCl4 toxicity by increasing the ATP in the hepatocytes. The ATP generated is useful for hepatocellular regeneration and tissue repair, events which enable the liver to overcome CCl4 injury.  相似文献   

11.
12.
The role of lipid peroxidation in liver damage   总被引:5,自引:0,他引:5  
The consequences of the peroxidative breakdown of membrane lipids have been considered in relation to both the subcellular and tissue aspects of liver injury. Mitochondrial functions can be impaired by lipid peroxidation probably through the oxidation of pyridine nucleotides and the consequent alteration in the uptake of calcium. Several enzymatic functions of the endoplasmic reticulum are also affected as a consequence of peroxidative events and among these are the activities of glucose 6-phosphatase, cytochrome P-450 and the calcium sequestration capacity. Moreover, a release of hydrolytic enzymes from lysosomes and a decrease in the fluidity of plasma membranes can contribute to the liver damage consequent to the stimulation of lipid peroxidation. Extensive studies carried out in vivo and integrated with the use of isolated hepatocytes have shown that lipid peroxidation impairs lipoprotein secretion mainly at the level of the dismission from the Golgi apparatus, rather than during their assembly. However, such an alteration appears to give a late and not essential contribution to the fat accumulation. A more critical role is played by peroxidative reactions in the pathogenesis of acute liver necrosis induced by several pro-oxidant compounds as indicated by the protective effects against hepatocyte damage exerted by antioxidants. In addition, even in the cases where lipid peroxidation has been shown not to be essential in causing cell death there is evidence that it can still act synergistically with other damaging mechanisms in the amplification of liver injury.  相似文献   

13.
A concept on the mechanism of stress response is substantiated proceeding from the data available in literature and obtained from the author's research made on the radiation stress model. The conception envisages that products of lipid peroxidation (LPO) appear as primary (under direct effect of a stress factor on tissues) and secondary (as a consequence of high- and long-term catecholamine++) mediators. Mobilization of stress-realizing systems in that process is regarded as an adequate response of the auto-oxidative++ system to the primary activation of LPO. Transformation of catecholamines into the factor of LPO stimulation (secondary) is a result of an increase in the relative role of the quinoid way to transform catecholamines in the case of their high concentration. Radical intermediates of the quinoid metabolism appear as LPO initiators. An important pathogenetic role of LPO activation in the stress mechanism substantiates expedience to use antioxidants as agents for prophylaxis and early treatment of stress-factor injuries.  相似文献   

14.
Halothane-induced lipid peroxidation in NADPH-reduced liver microsomes from phenobarbital-pretreated male rats was studied under defined steady state oxygen partial pressures (Po2). Under anaerobic conditions, as well as at a Po2 above 10 mm Hg no halothane-induced formation of malondialdehyde was detected. At a Po2 below 10 mm Hg, however, with a maximum near 1 mm Hg oxygen, significant halothane-induced malondialdehyde formation was found. This evidence supports the hypothesis that halothane can induce lipid peroxidation. The Po2 (i) must be low enough to permit the reductive formation of . CF3 CHCl-radicals but (ii), it must be high enough to promote formation of lipid peroxides.  相似文献   

15.
The role of plasmalogens in iron-induced lipid peroxidation was investigated in two liposomal systems. The first consisted of total brain phospholipids with and without plasmalogens, and the second of phosphatidylethanolamine/phosphatidylcholine liposomes with either diacyl- or alkenylacyl-phosphatidylethanolamine. By measuring thiobarbituric acid reactive substances, oxygen consumption, fatty acids and aldehydes, we show that plasmalogens effectively protect polyunsaturated fatty acids from oxidative damage, and that the vinyl ether function of plasmalogens is consumed simultaneously. Furthermore, the lack of lag phase, the increased antioxidant efficiency with time, and the experiments with lipid- and water-soluble azo compounds, indicate that plasmalogens probably interfere with the propagation rather than the initiation of lipid peroxidation, and that the antioxidative effect cannot be related to iron chelation.  相似文献   

16.
Lipoperoxidative capacity of various brain areas of aging rats was examined in vitro using the thiobarbituric acid test. Significant regional differences in the generation of lipid peroxides were found in freshly prepared homogenates from different areas of brain incubated under air. Incubation under oxygen resulted in marked stimulation of lipid peroxidation, with highest increases in hypothalamus (144%). Addition of exogenous Fe2+ and ascorbic acid resulted in stimulation of lipid peroxidation ranging from 10-fold in cortex to 20-fold in hypothalamus homogenates during incubation in air. A linear relationship was found between endogenous iron content in brain regions and their ability to produce lipid peroxides in vitro under oxygen for all areas except striatum. Several iron chelating agents effectively inhibited lipid peroxidation under hyperbaric oxygen whereas oxygenfree radical scavengers, as well as catalase and superoxide dismutase were not effective. It is concluded that regional differences in lipoperoxidative capacity of brain areas in vitro are in part governed by local endogenous iron content and may indicate regional susceptibility to oxidative damage.  相似文献   

17.
The role of the alpha-tocopherol molecule isoprenoid chain in synaptosomal membrane protection from lipid peroxidation activation and phospholipase A2 damage was investigated. A comparative study of alpha-tocopherol analogs differing in the length of the isoprenoid chain revealed that the increase in the chain length results in a decrease of the efficiency of inhibition in the course of synaptosomal lipid peroxidation activation. This effect is due to the diminution of mobility of chromanols in the lipid bilayer which is associated with an increase in the length of the isoprenoid fragment. The decreased efficiency of lipid peroxidation inhibition resulting from the lengthening of the chromanol nucleus phytol chain is concomitant with the appearance of new stabilizing properties, e. g., the ability to protect synaptosomal membranes from the damaging action of phospholipase A2. This effect is lost with a decrease in the length of the chromanol isoprenoid chain.  相似文献   

18.
The incorporation of [35S]-SO4 into glycosaminoglycans of liverin vivo and in in liver slices and into the glycosaminoglycans associated with the hepatic plasma membrane of rats at different periods after a heavy dose of CC14 have been studied. The incorporation of [35S]-SO4 into total glycosaminoglycans decreased to as low as 40% of the control at 24 h after the administration of CC14 and later on increased reaching a maximum on the 4th day. The amount of [35S]-SO4 incorporation into heparan sulphate was also reduced to about 40% of control at 12–24 h after the onset of injury and increased thereafter reaching a maximum on the 4th day. There was only a partial reduction in the synthesis of chondroitin sulphate in the early stage of injury and then it steadily increased reaching about 3 times the control level on 4–6 days. The [35S]-SO4-incorporation into dermatan sulphate, after a slight initial decrease remained at the control levels. On the 8th day after the CCl4-induced liver injury, the rate of [35S]-SO4-incorporation was almost equal to that in normal controls. The incorporation of [35S]-SO4 into hepatic plasma membrane glycosaminoglycans showed a similar change decreasing to about 35% of control at 24h followed by an increase, reaching normal levels on the 4th day after the administration of CC14. About 90% of the plasma membrane glycosaminoglycans was found to be heparan sulphate. The yield of plasma membrane from normal and CCl4-induced regenerating liver was found to be similar and therefore the results obtained were not due to difference in the yield of the membrane preparation. The data also indicate that there was no difference in the degree of sulphation. The significance of these changes in the metabolism of sulphated glycosaminoglycans particularly plasma membrane heparan sulphate in tissue regeneration has been discussed.  相似文献   

19.
The purpose of this study was to investigate the possible mechanism by which endotoxin enhances peroxidative damage to membrane lipids. Male B6C3 mice were treated with endotoxin intraperitoneally 0 or 20 mg/kg body weight for 24 h. Freshly prepared liver homogenate was incubated with either 1-5 mM of reduced glutathione (GSH), glucose, H(2)O(2), ascorbic acid (AA), FeSO(4), FeCl(3), EDTA, FeCl(3) plus AA, AA plus EDTA or EDTA plus FeCl(3) in phosphate-buffered saline (PBS), pH 7.0, or PBS, at 37 degrees C for 60 min. The levels of lipid peroxidation products, thiobarbituric acid reactants (TBAR), were significantly higher in the liver of endotoxin-treated mice, and the values were markedly increased following incubation. Compared to PBS, incubation with H(2)O(2), FeCl(3), FeSO(4), and AA, but not glucose, significantly enhanced TBAR formation. The greatest increase of TBAR was found when AA and FeCl(3) were added together. On the other hand, EDTA and GSH inhibited the formation of TBAR during incubation. When added before AA, EDTA completely inhibited the peroxidative effect of AA or FeSO4, and when added subsequent to AA, EDTA partially prevented the adverse effect of AA. The results obtained suggest that ionic iron plays an important role in initiating endotoxin-induced peroxidative damage to membrane lipids, and that AA may be involved in releasing iron from its protein complex and/or maintaining ionic iron in a reduced or catalytic state.  相似文献   

20.
In a previous study tert-butyl hydroperoxide (t-BOOH) was found to promote reductive release of nonheme, nonferritin iron from rat liver microsomes. The reaction was catalyzed by cytochrome P450 and was strictly contingent on the availability of ADP. In this study, t-BOOH was also found to promote microsomal lipid peroxidation, as evidenced by formation of malondialdehyde. t-BOOH-dependent lipid peroxidation was stimulated by ADP, and four lines of evidence suggested that such stimulation was mediated by reductive release and subsequent redox cycling of nonheme, nonferritin iron. First, lipid peroxidation was stimulated by the same concentration of ADP that promoted iron release. Second, depletion of nonheme, nonferritin iron by pretreatment of rats with phenobarbital decreased the stimulation of lipid peroxidation by ADP. Third, the effect of ADP was maximal when the concentration of t-BOOH was adjusted to values that yielded maximum iron release. Fourth, the effect of ADP was abolished by bathophenanthroline, which is known to chelate ferrous iron in a redox inactive form. These results suggest that the reductive release of nonheme, nonferritin iron exacerbates the deleterious effects of t-BOOH on microsomal lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号