首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of chronic hindlimb suspension or exposure to 2-G from postnatal day 4 to month 3 followed by ambulation recovery on the floor on the morphology of hindlimb bones were investigated in rats. The dorsi-flexion of the ankle was inhibited in the suspended group and such phenomena were not recovered at all. The mean weight and length of femur, tibia, and fibula were less than the cage controls at the end of suspension, but gradually increased during recovery. However, they were still less than those of the age-matched controls even after 3-month recovery. External bending of shaft and rotation of distal end of tibia were observed in the suspended group and these phenomena were not recovered at all. These morphological changes caused the inhibition of dorsi-flexion of ankle joints. The electromyogram activities of ankle plantar-flexors, soleus, plantaris, lateral gastrocnemius, were inhibited and those of dorsi-flexor, tibialis anterior, were increased during suspension. Typical changes in bone morphology were not induced by exposure to 2-G. It was suggested that gravitational unloading during developing period causes irreversible inhibition of normal bone growth. It was also indicated that the suspension-related changes in bone morphology may be caused by abnormal mechanical stress due to the altered mobilization of hindlimb muscles.  相似文献   

2.
Effects of hindlimb suspension or exposure to 2-G between postnatal day 4 and month 3 and of 3-month recovery at 1-G environment on the characteristics of rat hindlimb muscles were studied. Pronounced growth inhibition was induced by unloading, but not by 2-G loading. It is suggested that the development and/or differentiation of soleus muscle fibers are closely associated with gravitational loading. The data indicated that gravitational unloading during postnatal development inhibits the myonuclear accretion in accordance with subnormal numbers of both mitotic active and quiescent satellite cells. Even though the fiber formation and longitudinal fiber growth were not influenced, cross-sectional growth of muscle fibers was also inhibited in association with lesser myonuclear domain and DNA content per unit volume of myonucleus. Unloading-related inhibition was generally normalized following the recovery.  相似文献   

3.
Effects of hindlimb unloading during the first 3 months after birth on the development of soleus muscle fibers were studied in rats. The mean absolute weigh and cross-sectional area of whole soleus muscle in the unloaded rats were -1/3 and 1/4 of those in the controls, respectively. But the unloading did not affect the lengths of muscle, at 90 degrees of ankle joint angle, and of muscle fibers sampled from tendon to tendon, and the total sarcomere number. Since the total number of fibers in soleus was not affected either, the inhibited increase of muscle mass following unloading was mainly due to the smaller CSA of individual fibers. Numbers of both myonuclei and satellite cells were significantly less in unloaded than control rats. The % distribution of fibers expressing pure type I myosin heavy chain was significantly less in unloaded than controls (-23 %). Further, muscle fibers with multiple innervation were noted in the unloaded rats. It is suggested that the development and/or differentiation of soleus muscle fibers are closely associated with gravitational loading and that the growth-associated increase in fiber number may be genetically programmed.  相似文献   

4.
This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.  相似文献   

5.
Essential role of satellite cells in the growth of rat soleus muscle fibers   总被引:1,自引:0,他引:1  
Effects of gravitational loading or unloading on the growth-associated increase in the cross-sectional area and length of fibers, as well as the total fiber number, in soleus muscle were studied in rats. Furthermore, the roles of satellite cells and myonuclei in growth of these properties were also investigated. The hindlimb unloading by tail suspension was performed in newborn rats from postnatal day 4 to month 3 with or without 3-mo reloading. The morphological properties were measured in whole muscle and/or single fibers sampled from tendon to tendon. Growth-associated increases of soleus weight and fiber cross-sectional area in the unloaded group were approximately 68% and 69% less than the age-matched controls. However, the increases of number and length of fibers were not influenced by unloading. Growth-related increases of the number of quiescent satellite cells and myonuclei were inhibited by unloading. And the growth-related decrease of mitotically active satellite cells, seen even in controls (20%, P > 0.05), was also stimulated (80%). The increase of myonuclei during 3-mo unloading was only 40 times vs. 92 times in controls. Inhibited increase of myonuclear number was not related to apoptosis. The size of myonuclear domain in the unloaded group was less and that of single nuclei, which was decreased by growth, was larger than controls. However, all of these parameters, inhibited by unloading, were increased toward the control levels generally by reloading. It is suggested that the satellite cell-related stimulation in response to gravitational loading plays an essential role in the cross-sectional growth of soleus muscle fibers.  相似文献   

6.
Skeletal unloading causes bone loss in both men and women; however, only a few studies have been performed on the effects of gender differences on bone quality during skeletal unloading. Moreover, although the fibula also plays an important role in load bearing and ankle stability, the effects of unloading on the fibula have been rarely investigated. The present study aimed to investigate the effects of skeletal unloading on bone quality of the tibia and fibula in growing animals and to determine whether differences existed between genders. Six-week-old female and male mice were randomly allocated into two groups. The right hindlimb of each mouse in the skeletal unloading group was subjected to sciatic neurectomy. After two weeks of skeletal unloading, the structural characteristics of the tibia and fibula in both genders were worsened. In addition, the bone mineralization density distribution (MDD) of the tibia and fibula in both genders were altered. However, the magnitude of deterioration and alteration of the MDD in the bones of females were larger than in those of males. These results demonstrate that skeletal unloading diminishes bone quality in the tibia and fibula, leading to an increase in bone fracture risks, particularly in females.  相似文献   

7.
This study was designed to track the recovery of bone and muscle properties after 28 days of hindlimb unloading (HU) in skeletally mature male rats in order to quantify the degree and timing of the expected mismatch between bone and muscle properties. Outcome variables were in vivo plantarflexor peak isometric torque and proximal tibial volumetric bone mineral density (vBMD). Proximal tibia vBMD was significantly lower than age-matched controls (-7.8%) after 28 days of HU, continued to decrease through day 28 of recovery (-10%) and did not recover until day 84 of recovery. Plantarflexor peak isometric torque was significantly reduced after 28 days of HU (-13.9%). Further reductions of isometric torque occurred after 7 days of recovery (-15%), but returned to age-matched control levels by day 14. The functional relationship between bone and muscle (vBMD/isometric torque) tended to increase after 28 days of HU (+7.8%), remained elevated after 7 days of reloading (+9.1%) and was significantly lower than age-matched controls on day 28 (-13.6%). This relatively rapid return of muscle strength, coupled with continued depression of bone density at the proximal tibia metaphysis, may increase the risk for skeletal injury during recovery from prolonged periods of reduced mechanical loading.  相似文献   

8.
It is well known that environmental stimulation is important for the proper development of sensory function. The vestibular system senses gravitational acceleration and then alters cardiovascular and motor functions through reflex pathways. The development of vestibular-mediated cardiovascular and motor functions may depend on the gravitational environment present at birth and during subsequent growth. To examine this hypothesis, arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were monitored during horizontal linear acceleration and performance in a motor coordination task in rats born and reared in 1-G or 2-G environments. Linear acceleration of +/-1 G increased AP and RSNA. These responses were attenuated in rats with a vestibular lesion, suggesting that the vestibular system mediated AP and RSNA responses. These responses were also attenuated in rats born in a 2-G environment. AP and RSNA responses were partially restored in these rats when the hypergravity load was removed, and the rats were maintained in a 1-G environment for 1 wk. The AP response to compressed air, which is mediated independently of the vestibular system, did not change in the 2-G environment. Motor coordination was also impaired in the 2-G environment and remained impaired even after 1 wk of unloading. These results indicate that hypergravity impaired both the vestibulo-cardiovascular reflex and motor coordination. The vestibulo-cardiovascular reflex was only impaired temporarily and partially recovered following 1 wk of unloading. In contrast, motor coordination did not return to normal in response to unloading.  相似文献   

9.
Roles of gravitational loading, sarcomere length, and/or tension development on the electromyogram (EMG) of soleus and afferent neurogram recorded at the L5 segmental level of spinal cord were investigated during parabolic flight of a jet airplane or hindlimb suspension in conscious rats. Both EMG and neurogram levels were increased when the gravity levels were elevated from 1-G to 2-G during the parabolic flight. They were decreased when the hindlimbs were unloaded by exposure to actual microgravity or by suspension. These phenomena were related to passive shortening of muscle fibers and/or sarcomeres. Unloading-related decrease in sarcomere length was greater at the central rather than the proximal and distal regions of fibers. These activities and tension development were not detected when the mean sarcomere length was less than 2.03 micrometers. It is suggested that load-dependent regulation of neuromuscular system is related to the tension development which is influenced by sarcomere length.  相似文献   

10.
Mechanical loading modulates the osteocyte-derived protein sclerostin, a potent inhibitor of bone formation. We hypothesized that simulated resistance training (SRT), combined with alendronate (ALEN) treatment, during hindlimb unloading (HU) would most effectively mitigate disuse-induced decrements in cortical bone geometry and formation rate (BFR). Sixty male, Sprague-Dawley rats (6-mo-old) were randomly assigned to either cage control (CC), HU, HU plus either ALEN (HU+ALEN), or SRT (HU+SRT), or combined ALEN and SRT (HU+SRT/ALEN) for 28 days. Computed tomography scans on days -1 and 28 were taken at the middiaphyseal tibia. HU+SRT and HU+SRT/ALEN rats were subjected to muscle contractions once every 3 days during HU (4 sets of 5 repetitions; 1,000 ms isometric + 1,000 ms eccentric). The HU+ALEN and HU+SRT/ALEN rats received 10 μg/kg ALEN 3 times/wk. Compared with the CC animals, HU suppressed the normal slow growth-induced increases of cortical bone mineral content, cortical bone area, and polar cross-sectional moment of inertia; however, SRT during HU restored cortical bone growth. HU suppressed middiaphyseal tibia periosteal BFR by 56% vs. CC (P < 0.05). However, SRT during HU restored BFR at both periosteal (to 2.6-fold higher than CC) and endocortical (14-fold higher than CC) surfaces (P < 0.01). ALEN attenuated the SRT-induced BFR gains during HU. The proportion of sclerostin-positive osteocytes in cortical bone was significantly higher (+121% vs. CC) in the HU group; SRT during HU effectively suppressed the higher proportion of sclerostin-positive osteocytes. In conclusion, a minimum number of high-intensity muscle contractions, performed during disuse, restores cortical BFR and suppress unloading-induced increases in sclerostin-positive osteocytes.  相似文献   

11.
Based on a global exploration of the hindlimb in some lacertilian species, an equally global functional approach has been undertaken, which led to the concept of the crural mechanism, an integral mechanism comprising the knee joint and the joints between respectively tibia and fibula on the one hand and the astragalocalcaneum on the other. Simple models explain the position of muscles and ligaments in relation to the homonymous rotation of tibia and fibula as well as the relative anterior displacement of fibula in front of the tibia. The linkage of knee and ankle joints appears to be based on those morphological features in both proximal and distal joints, that preclude pure axial rotations of tibia and fibula without deviation of these bones, again in both knee and ankle. The final result appears to be an integral mechanism endowed with one degree of freedom. An attempt has been made to identify the significance of the crural mechanism for function of the hindlimb in sprawling gait.  相似文献   

12.
We investigated the hypothesis that hindlimb unloading inhibits healing in fibrous connective tissue such as ligament. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing, and hindlimb-suspended healing. Ambulatory and suspended animals underwent surgical rupture of their medial collateral ligaments, whereas sham surgeries were performed on control animals. After 3 or 7 wk, mechanical and/or morphological properties were measured in ligament, muscle, and bone. During mechanical testing, most suspended ligaments failed in the scar region, indicating the greatest impairment was to ligament and not to bone-ligament insertion. Ligament testing revealed significant reductions in maximum force, ultimate stress, elastic modulus, and low-load properties in suspended animals. In addition, femoral mineral density, femoral strength, gastrocnemius mass, and tibialis anterior mass were significantly reduced. Microscopy revealed abnormal scar formation and cell distribution in suspended ligaments with extracellular matrix discontinuities and voids between misaligned, but well-formed, collagen fiber bundles. Hence, stress levels from ambulation appear unnecessary for formation of fiber bundles yet required for collagen to form structurally competent continuous fibers. Results support our hypothesis that hindlimb unloading impairs healing of fibrous connective tissue. In addition, this study provides compelling morphological evidence explaining the altered structure-function relationship in load-deprived healing connective tissue.  相似文献   

13.
The study was designed to determine whether beta1-integrin plays a role in mediating the acute skeletal response to mechanical unloading. Transgenic (TG) mice were generated to express a dominant negative form of beta1-integrin under the control of the osteocalcin promoter, which targets expression of the transgene to mature osteoblasts. At 63 days of age, wild-type (WT) and TG mice were subjected to hindlimb unloading by tail suspension for 1 wk. Pair-fed, normally loaded WT and TG mice served as age-matched controls. Bone samples from each mouse were processed for quantitative bone histomorphometry and biomechanical testing. The skeletal phenotype of TG mice was characterized by lower cancellous bone mass in the distal femoral metaphysis (-52%) and lumbar vertebral body (-20%), reduced curvature of the proximal tibia (-20%), and decreased bone strength (-20%) and stiffness (-23%) of the femoral diaphysis with relatively normal indexes of cancellous bone turnover. Hindlimb unloading for only 1 wk induced a 10% decline in tibial curvature and a 30% loss of cancellous bone in the distal femur due to a combination of increased bone resorption and decreased bone formation in both WT and TG mice. However, the strength and stiffness of the femoral diaphysis were unaffected by short-term hindlimb unloading in both genotypes. The observed increase in osteoclast surface was greater in unloaded TG mice (92%) than in unloaded WT mice (52%). Cancellous bone formation rate was decreased in unloaded WT (-29%) and TG (-15%) mice, but, in contrast to osteoclast surface, the genotype by loading interaction was not statistically significant. The results indicate that altered integrin function in mature osteoblasts may enhance the osteoclastic response to mechanical unloading but that it does not have a major effect on the development of cancellous osteopenia in mice during the early stages of hindlimb unloading.  相似文献   

14.
IGF-I stimulates osteoblast proliferation, bone formation, and increases bone volume in normal weight-bearing animals. During skeletal unloading or loss of weight bearing, bone becomes unresponsive to the anabolic effects of insulin-like growth factor I (IGF-I). To determine whether skeletal reloading after a period of unloading increases bone responsiveness to IGF-I, we examined bone structure and formation in response to IGF-I under different loading conditions. Twelve-week-old rats were divided into six groups: loaded (4 wk), unloaded (4 wk), and unloaded/reloaded (2/2 wk), and treated with IGF-I (2.5 mg x kg(-1) x day(-1)) or vehicle during the final 2 wk. Cortical bone formation rate (BFR), cancellous bone volume and architecture in the secondary spongiosa (tibia and vertebrae), and total volume and calcified volume in the primary spongiosa (tibia) were assessed. Periosteal BFR decreased during unloading, remained low during reloading in the vehicle-treated group, but was dramatically increased in IGF-I-treated animals. Cancellous bone volume decreased with unloading and increased with reloading, but the effect was exaggerated in the tibia of IGF-I-treated animals. Total and calcified volumes in the primary spongiosa decreased during unloading in the vehicle-treated animals. IGF-I treatment prevented the loss in volume. These data show that reloading after a period of skeletal unloading increases bone responsiveness to IGF-I, and they suggest that IGF-I may be of therapeutic use in patients who have lost bone as a consequence of prolonged skeletal disuse.  相似文献   

15.
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.  相似文献   

16.
Loss of mechanical loading induces rapid bone loss resulting from reduced osteoblastogenesis and decreased bone formation. The signaling mechanisms involved in this deleterious effect on skeletal metabolism remain poorly understood. We have previously shown that hindlimb suspension in rats increases osteoblast apoptosis associated with decreased phosphatidylinositol 3-kinase (PI3K) signaling. In this study, we investigated whether transforming growth factor (TGF)-beta2 may prevent the altered signaling and osteoblast apoptosis induced by skeletal unloading in vivo. Hindlimb suspension-induced decreased bone volume was associated with reduced alpha(5)beta(1)-integrin protein levels and PI3K/Akt signaling in unloaded bone. Continuous administration of TGF-beta2 using osmotic minipumps prevented the decreased alpha(5)beta(1)-integrin expression and the reduced PI3K/Akt signaling in unloaded bone, resulting in the prevention of osteoblast apoptosis. We also show that TGF-beta2 prevented the decreased Bcl-2 levels induced by unloading, which suggests that TGF-beta2 targets Bcl-2 via PI3K/Akt to prevent osteoblast apoptosis in unloaded bone. Furthermore, we show that TGF-beta2 prevented the decrease in phosphorylated Bad, the inactive form of the proapoptotic protein Bad, induced by unloading. These results identify a protective role for TGF-beta2 in osteoblast apoptosis induced by mechanical unloading via the alpha(5)beta(1)/PI3K/Akt signaling cascade and downstream Bcl-2 and phospho-Bad survival proteins. We thus propose a novel role for TGF-beta2 in protection from unloading-induced apoptosis in vivo.  相似文献   

17.
Prologned spaceflight results in bone loss in astronauts, but there is considerable individual variation. The goal of this rat study was to determine whether gender influences bone loss during simulated weightlessness. Six-month-old Fisher 344 rats were hindlimb unweighted for 2 wk, after which the proximal tibiae were evaluated by histomorphometry. There were gender differences in tibia length, bone area, cancellous bone architecture, and bone formation. Compared with female rats, male rats had an 11.6% longer tibiae, a 27.8% greater cortical bone area, and a 37.6% greater trabecular separation. Conversely, female rats had greater cortical (316%) and cancellous (145%) bone formation rates, 28.6% more cancellous bone, and 30% greater trabecular number. Hindlimb unweighting resulted in large reductions in periosteal bone formation and mineral apposition rate in both genders. Unweighting also caused cancellous bone loss in both genders; trabecular number was decreased, and trabecular separation was increased. There was, however, no change in trabecular thickness in either gender. These architectural changes in cancellous bone were associated with decreases in bone formation and steady-state mRNA levels for bone matrix proteins and cancellous bone resorption. In conclusion, there are major gender-related differences in bone mass and turnover; however, the bone loss in hindlimb unweighted adult male and female rats appears to be due to similar mechanisms.  相似文献   

18.
Weight-bearing bone is constantly adapting its structure and function to mechanical environments. Loading through routine exercises stimulates bone formation and prevents bone loss, but unloading through bed rest and cast immobilization as well as exposure to weightlessness during spaceflight reduces its mass and strength. In order to elucidate the mechanism underlying unloading-driven bone adaptation, ground-based in vitro and in vivo analyses have been conducted using rotating cell culturing and hindlimb suspension. Focusing on gene expression studies in osteoblasts and hindlimb suspension studies, this minireview introduces our recent understanding on bone homeostasis under weightlessness in space. Most of the existing data indicate that unloading has the opposite effects to loading through common signaling pathways. However, a question remains as to whether any pathway unique to unloading (and not to loading) may exist.  相似文献   

19.
Effects of 16 days of hindlimb suspension and 16 days of ambulation recovery at 1-G or 2-G environment on the characteristics of soleus muscle fibers were studied in male Wistar Hannover rats. The mean cross-sectional area and myonuclear number in isolated single fibers at the termination of suspension were approximately 30% and 25% of the controls, respectively. Satellite cells were distributed evenly throughout the fiber length in the control. However, the number of satellite cells distributed at the middle of the fiber was less in the unloaded rats immediately after the termination of suspension. Both the numbers of quiescent and mitotic active satellite cell per fiber were approximately 57% less immediately after the termination of suspension than controls. The number of satellite cells at the end of fibers was increased first during the early phase of reloading. Subsequently, the number at the middle was gradually increased. The myonuclear number per fiber was also less (approximately 25%) in the unloaded than the age-matched control at the termination of suspension, but was increased following the recovery. Although the mean in vivo sarcomere length of the soleus muscle was shortened in response to plantarflexion of ankle joint, the length at the certain ankle joint angle was increased after 16 days of suspension due to sarcomere remodeling. The length at the proximal and distal, rather than the middle, portion of the fiber was stretched in both reloaded and control rats in response to dorsiflexion of the ankle joint. But it was noted that the magnitude of stretch was greater in the unloaded rats. It is suggested that the fiber end is more stimulated rapidly than the middle portion by the load applied to the muscle during the ambulation recovery.  相似文献   

20.
Our purpose was to determine the effects of a mechanical loading intervention on mass, geometry, and strength of rat cortical bone during a period of disuse concurrent with calcium deficiency (CD). Adult female rats were assigned to unilateral hindlimb immobilization, immobilized-loaded, or control (standard chow, 1.85% calcium) treatments. Both immobilized groups were fed a CD rat chow (0.01% calcium) to induce high bone turnover. Three times weekly, immobilized-loaded rats were subjected to 36 cycles of 4-point bending of the immobilized lower leg. After 6 wk, the immobilized rats exhibited decreased tibial shaft bone mineral density (-12%), ultimate load (-19%), and stiffness (-20%; tested in 3-point bending to failure) vs. control rats. Loading prevented this decline in bone density and attenuated decreases in ultimate load and stiffness. Elastic modulus was unaffected by disuse or loading. Bone cross-sectional area in the immobilized-loaded rats was equivalent to that of control animals, even though endocortical resorption continued unabated. On the medial periosteum, percent mineralizing surface doubled vs. that in immobilized rats. This loading regimen stimulated periosteal mineralization and maintained bone mineral density, thereby attenuating the loss in bone strength incurred with disuse and concurrent calcium deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号