首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Evolutionary theory is firmly grounded on the existence of trade-offs between life-history traits, and recent interest has centred on the physiological mechanisms underlying such trade-offs. Several branches of evolutionary biology, particularly those focusing on ageing, immunological and sexual selection theory, have implicated reactive oxygen species (ROS) as profound evolutionary players. ROS are a highly reactive group of oxygen-containing molecules, generated as common by-products of vital oxidative enzyme complexes. Both animals and plants appear to intentionally harness ROS for use as molecular messengers to fulfil a wide range of essential biological processes. However, at high levels, ROS are known to exert very damaging effects through oxidative stress. For these reasons, ROS have been suggested to be important mediators of the cost of reproduction, and of trade-offs between metabolic rate and lifespan, and between immunity, sexual ornamentation and sperm quality. In this review, we integrate the above suggestions into one life-history framework, and review the evidence in support of the contention that ROS production will constitute a primary and universal constraint in life-history evolution.  相似文献   

2.
动物生活史进化理论研究进展   总被引:1,自引:0,他引:1  
综述了生活史性状、生活史对策、权衡、适合度及进化种群统计学等动物生活史进化领域的进展。权衡是生活史性状之间相互联系的纽带,分为生理权衡与进化权衡。适合度是相对的,与个体所处的特定环境条件有关,性状进化与适合度之间关系紧密。适合度是生活史进化理论研究的焦点。探讨动物生活史对策的理论很多,影响最大的是MacArthur和Wilson提出的r对策及K对策理论。随年龄的增长,动物存活率及繁殖率逐步下降的过程,称为衰老;解释衰老的进化理论主要有突变-选择平衡假设和多效对抗假设。进化种群统计学将种群统计学应用于生活史进化研究,为探讨表型适合度的进化提供了有效的手段。将进化种群统计学、数量遗传学及特定种系效应理论进行整合,建立完整的动物生活史进化综合理论体系,是当代此领域的最大挑战。  相似文献   

3.
Evolutionary physiology is the emerging physiological discipline. Unlike environmental physiology or ecophysiology, whose definitions have long been made quite clear, evolutionary physiology has a broader scope of objectives, and its definition lacks a concise treatise. This paper presents the argument that the lack of a common definition of evolutionary physiology is retarding the unification of the mechanistic and amechanistic physiological sciences, a multidisciplinary obligation crucial for a holistic understanding of a physiological basis of fitness. The divide between mechanistic "how" questions, devoted primarily to homeostasis, and evolutionary "why" questions, concerned with understanding phenotypic and genotypic physiological variation, remains broad and is currently not conducive to synergy in the physiological disciplines. Unification may be facilitated, however, by embracing a common currency of measurement and analysis. A likely candidate is the cascade of energy from the environment to offspring and the evolution of physiological form and function, including homeostasis, associated with power management. This currency approach seeks to identify an energetic basis of fitness, namely, whether or how the evolution of life-history traits is influenced by energetic constraints and/or trade-offs.  相似文献   

4.
The negative co-variation of life-history traits such as fecundity and lifespan across species suggests the existence of ubiquitous trade-offs. Mechanistically, trade-offs result from the need to differentially allocate limited resources to traits like reproduction versus self-maintenance, with selection favoring the evolution of optimal allocation mechanism. Here I discuss the physiological (endocrine) mechanisms that underlie optimal allocation rules and how such rules evolve. The hormone testosterone may mediate life-history trade-offs due to its pleiotropic actions in male vertebrates. Conservation in the actions of testosterone in vertebrates has prompted the 'evolutionary constraint hypothesis,' which assumes that testosterone signaling mechanisms and male traits evolve as a unit. This hypothesis implies that the actions of testosterone are similar across sexes and species, and only the levels of circulating testosterone concentrations change during evolution. In contrast, the 'evolutionary potential hypothesis' proposes that testosterone signaling mechanisms and male traits evolve independently. In the latter scenario, the linkage between hormone and traits itself can be shaped by selection, leading to variation in trade-off functions. I will review recent case studies supporting the evolutionary potential hypothesis and suggest micro-evolutionary experiments to unravel the mechanistic basis of life-history evolution.  相似文献   

5.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   

6.
The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.  相似文献   

7.
Evolutionary ecologists and population biologists have recently considered that ecological and evolutionary changes are intimately linked and can occur on the same time-scale. Recent theoretical developments have shown how the feedback between ecological and evolutionary dynamics can be linked, and there are now empirical demonstrations showing that ecological change can lead to rapid evolutionary change. We also have evidence that microevolutionary change can leave an ecological signature. We are at a stage where the integration of ecology and evolution is a necessary step towards major advances in our understanding of the processes that shape and maintain biodiversity. This special feature about ‘eco-evolutionary dynamics’ brings together biologists from empirical and theoretical backgrounds to bridge the gap between ecology and evolution and provide a series of contributions aimed at quantifying the interactions between these fundamental processes.  相似文献   

8.
The reason why some bird species live in family groups is an important question of evolutionary biology that remains unanswered. Families arise when young delay the onset of independent reproduction and remain with their parents beyond independence. Explanations for why individuals forgo independent reproduction have hitherto focused on dispersal constraints, such as the absence of high-quality breeding openings. However, while constraints successfully explain within-population dispersal decisions, they fail as an ultimate explanation for variation in family formation across species. Most family-living species are long-lived and recent life-history studies demonstrated that a delayed onset of reproduction can be adaptive in long-lived species. Hence, delayed dispersal and reproduction might be an adaptive life-history decision rather than 'the best of a bad job'. Here, we attempt to provide a predictive framework for the evolution of families by integrating life-history theory into family formation theory. We suggest that longevity favours a delayed onset of reproduction and gives parents the opportunity of a prolonged investment in offspring, an option which is not available for short-lived species. Yet, parents should only prolong their investment in offspring if this increases offspring survival and outweighs the fitness cost that parents incur, which is only possible under ecological conditions, such as a predictable access to resources. We therefore propose that both life-history and ecological factors play a role in determining the evolution of family living across species, yet we suggest different mechanisms than those proposed by previous models.  相似文献   

9.
Longevity is a life-history trait that is shaped by natural selection. Evolution will shape mortality trajectories and lifespans, but until now the evolutionary analysis of longevity is based principally on a density-independent (Euler-Lotka) framework. The effects of density dependence on the evolution of lifespan and mortality remain largely unexplored. We investigate the influence of different population demographies on the evolution of longevity, and show how these can be linked to adaptive radiations. We present a range of models to explore the intraspecific and interspecific density effects on longevity and, consequently, diversification. We show how the magnitude, type, and timing of mutation can also affect fitness, invasion and diversification. We argue that fitness of alternative strategies under a range of different demographic structures leads to flat, as opposed to rugged, landscapes and that these flat fitness surfaces are important in the evolution of lifespan and senescence.  相似文献   

10.
Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing—the disposable soma and the antagonistic pleiotropy theories—and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns.  相似文献   

11.
The study of fossilized ontogenies in mammals is mostly restricted to postnatal and late stages of growth, but nevertheless can deliver great insights into life history and evolutionary mechanisms affecting all aspects of development. Fossils provide evidence of developmental plasticity determined by ecological factors, as when allometric relations are modified in species which invaded a new space with a very different selection regime. This is the case of dwarfing and gigantism evolution in islands. Skeletochronological studies are restricted to the examination of growth marks mostly in the cement and dentine of teeth and can provide absolute age estimates. These, together with dental replacement data considered in a phylogenetic context, provide life-history information such as maturation time and longevity. Palaeohistology and dental replacement data document the more or less gradual but also convergent evolution of mammalian growth features during early synapsid evolution. Adult phenotypes of extinct mammals can inform developmental processes by showing a combination of features or levels of integration unrecorded in living species. Some adult features such as vertebral number, easily recorded in fossils, provide indirect information about somitogenesis and hox-gene expression boundaries. Developmental palaeontology is relevant for the discourse of ecological developmental biology, an area of research where features of growth and variation are fundamental and accessible among fossil mammals.  相似文献   

12.
Optimal annual routines: behaviour in the context of physiology and ecology   总被引:1,自引:0,他引:1  
Organisms in a seasonal environment often schedule activities in a regular way over the year. If we assume that such annual routines have been shaped by natural selection then life-history theory should provide a basis for explaining them. We argue that many life-history trade-offs are mediated by underlying physiological variables that act on various time scales. The dynamics of these variables often preclude considering one period of the year in isolation. In order to capture the essence of annual routines, and many life-history traits, a detailed model of changes in physiological state over the annual cycle is required. We outline a modelling approach based on suitable physiological and ecological state variables that can capture this underlying biology, and describe how models based on this approach can be used to generate a range of insights and predictions.  相似文献   

13.
Longevity is a life-history trait that is shaped by natural selection. An unexplored consequence is how selection on this trait affects diversity and diversification in species assemblages. Motivated by the diverse rockfish (Sebastes) assemblage in the North Pacific, the effects of trade-offs in longevity against competitive ability are explored. A competition model is developed and used to explore the potential for species diversification and coexistence. Invasion analyses highlight that life-history trait trade-offs in longevity can mitigate the effects of competitive ability and favour the coexistence of a finite number of species. Our results have implications for niche differentiation, limiting similarity and assembly dynamics in multispecies interactions.  相似文献   

14.
We present quantitative models that unify several adaptive hypotheses for the evolution of cooperative breeding in a single framework: the ecological constraints hypothesis, the life-history hypothesis and the benefits-of-philopatry hypothesis. Our goal is to explain interspecific variation in the occurrence of cooperative breeding in terms of interspecific variation in life-history traits and ecological conditions. We analyse two models, according to whether or not helpers can inherit their parents' territory. Major results are (i) territory inheritance always promotes cooperative breeding; (ii) if territories are not inherited, neither ecological constraints nor variation in life-history traits predict interspecific variation in cooperative breeding; and (iii) if territories are inherited, the mechanism of density regulation is crucial in determining which factors promote cooperative breeding. If density dependence acts on the probability to obtain a free territory or on the survival of dispersers, variation in ecological constraints cannot explain variation in cooperative breeding. Lower adult mortality favours helping, not because it reduces the availability of free territories, but because it enhances the direct benefits of helpers. If density dependence acts on fecundity, lower probability of obtaining a free territory and lower survival of dispersers promote cooperative breeding. In this case, lower adult mortality works against the evolution of helping. We suggest that the difference between birds and social insects in the covariance between cooperative breeding and life-history traits is due to different mechanisms of density regulation that operate in these taxa, and we explain how natural selection on habitat choice might have caused these different mechanisms to operate.  相似文献   

15.
Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size.  相似文献   

16.
We analysed the influence of ecological factors, phylogenetic history and trade-offs between traits on the life-history variation among 10 loricariid species of the middle Paraná River. We measured eight life-history variables and classified the life-history strategies following the equilibrium–periodic–opportunistic (EPO) model. Principal-component analysis of life-history traits segregated species along a gradient from small opportunistic (low fecundity, low parental investment) to large equilibrium (low-medium fecundity, high parental investment) species. A clear periodic strategist was absent in the analysed assemblage. Variation partitioning by canonical phylogenetic ordination analysis showed both a component of variation uniquely explained by phylogenetic history (PH; 32.2%) and a component shared between PH and ecological factors (EF; 37%). The EPO model is a useful tool for predicting correlations among life-history traits and understanding potential demographic responses of species to environmental variation. Life-history patterns observed throughout Loricariidae suggests that this family has diversified across all three endpoint strategies of the EPO model. Our study indicates that evolutionary lineage affiliation at the level of subfamily can be a strong predictor of the life-history strategy used by each species.  相似文献   

17.
The evolution of resource specialism and generalism has attracted widespread interest. Evolutionary drivers affecting niche differentiation and resource specialization have focused on the role of trade-offs. Here, however, we explore how the role of cooperation, mediated through altruistic behaviors, and classic resource-consumer dynamics can influence the evolution of resource utilization. Using an evolutionary invasion approach, we investigate how critical thresholds in levels of altruism are needed for resource specialization to arise and be maintained. Differences between complementary (essential) and substitutable resources affect the evolution of resource generalists. The strength of resource preferences coupled with the levels of altruism are predicted to influence the evolution of generalism. Coupling appropriate evolutionary game and ecological dynamics lead to novel expectations in the feedbacks between social behaviors and population dynamics for understanding classic ecological problems.  相似文献   

18.
Demographic theory and data have emphasized that nonheritable variation in individual frailty enables selection within cohorts, affecting the dynamics of a population while being invisible to its evolution. Here, we include the component of individual variation in longevity or viability which is nonheritable in simple bacterial growth models and explore its ecological and evolutionary impacts. First, we find that this variation produces consistent trends in longevity differences between bacterial genotypes when measured across stress gradients. Given that direct measurements of longevity are inevitably biased due to the presence of this variation and ongoing selection, we propose the use of the trend itself for obtaining more exact inferences of genotypic fitness. Second, we show how species or strain coexistence can be enabled by nonheritable variation in longevity or viability. These general conclusions are likely to extend beyond bacterial systems.  相似文献   

19.
Considerable variation exists not only in the kinds of transposable elements (TEs) occurring within the genomes of different species, but also in their abundance and distribution. Noting a similarity to the assortment of organisms among ecosystems, some researchers have called for an ecological approach to the study of transposon dynamics. However, there are several ways to adopt such an approach, and it is sometimes unclear what an ecological perspective will add to the existing co‐evolutionary framework for explaining transposon‐host interactions. This review aims to clarify the conceptual foundations of transposon ecology in order to evaluate its explanatory prospects. We begin by identifying three unanswered questions regarding the abundance and distribution of TEs that potentially call for an ecological explanation. We then offer an operational distinction between evolutionary and ecological approaches to these questions. By determining the amount of variance in transposon abundance and distribution that is explained by ecological and evolutionary factors, respectively, it is possible empirically to assess the prospects for each of these explanatory frameworks. To illustrate how this methodology applies to a concrete example, we analyzed whole‐genome data for one set of distantly related mammals and another more closely related group of arthropods. Our expectation was that ecological factors are most informative for explaining differences among individual TE lineages, rather than TE families, and for explaining their distribution among closely related as opposed to distantly related host genomes. We found that, in these data sets, ecological factors do in fact explain most of the variation in TE abundance and distribution among TE lineages across less distantly related host organisms. Evolutionary factors were not significant at these levels. However, the explanatory roles of evolution and ecology become inverted at the level of TE families or among more distantly related genomes. Not only does this example demonstrate the utility of our distinction between ecological and evolutionary perspectives, it further suggests an appropriate explanatory domain for the burgeoning discipline of transposon ecology. The fact that ecological processes appear to be impacting TE lineages over relatively short time scales further raises the possibility that transposons might serve as useful model systems for testing more general hypotheses in ecology.  相似文献   

20.
Trade‐offs in evolutionary immunology: just what is the cost of immunity?   总被引:31,自引:0,他引:31  
It has become increasingly clear that life-history patterns among the vertebrates have been shaped by the plethora and variety of immunological risks associated with parasitic faunas in their environments. Immunological competence could very well be the most important determinant of life-time reproductive success and fitness for many species. It is generally assumed by evolutionary ecologists that providing immunological defences to minimise such risks to the host is costly in terms of necessitating trade-offs with other nutrient-demanding processes such as growth, reproduction, and thermoregulation. Studies devoted to providing assessments of such costs and how they may force evolutionary trade-offs among life-history characters are few, especially for wild vertebrate species, and their results are widely scattered throughout the literature. In this paper we attempt to review this literature to obtain a better understanding of energetic and nutritional costs for maintaining a normal immune system and examine how costly it might be for a host who is forced to up-regulate its immunological defence mechanisms. The significance of these various costs to ecology and life history trade-offs among the vertebrates is explored. It is concluded that sufficient evidence exists to support the primary assumption that immunological defences are costly to the vertebrate host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号