首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MYB转录因子是植物中重要的基因家族之一,参与多种生物学功能的调控.目前对花生(Arachis hypogaea)MYB转录因子家族的功能仍知之甚少,对花生中MYB转录因子的鉴定及生物信息学分析具有重要的意义.本研究在栽培花生中共鉴定出MYB转录因子443个,包括219个1R-MYB、209个2R-MYB、12个3R-...  相似文献   

4.
5.
6.
植物MYB类转录因子研究进展   总被引:23,自引:0,他引:23  
植物MYB转录因子以含有保守的MYB结构域为共同特征,广泛参与植物发育和代谢的调节。含单一MYB结构域的MYB转录因子在维持染色体结构和转录调节上发挥着重要作用,是MYB转录因子家族中较为特殊的一类。含两个MYB结构域的MYB转录因子成员众多,在植物体内主要参与次一代谢的调节和控制细胞的形态发生。含3个MYB结构域的MYB蛋白与c-MYB蛋白高度同源,可能在调节细胞周期中起作用。  相似文献   

7.
8.
在高等植物花药发育和花粉形成中, MYB转录因子起着非常重要的作用, 其中MYB80是参与绒毡层发育及引起雄性不育的重要转录因子。该研究以拟南芥(Arabidopsis thaliana) AtMYB80为参考序列, 通过BLAST比对分析, 在白菜(Brassica rapa)、甘蓝(B. oleracea)和甘蓝型油菜(B. napus)中分别获得MYB80基因的2、2和6个同源序列, 运用生物信息学方法对其核苷酸序列及编码的氨基酸序列进行组成成分、亚细胞定位、磷酸化位点、疏水性/亲水性、蛋白质二级、三级结构和功能域分析。结果表明, MYB80转录因子亚细胞定位于细胞核, 具有多个不同的磷酸化位点, 肽链表现为亲水性; 二级、三级结构预测显示, MYB80蛋白以α-螺旋和无规则卷曲为主要结构元件; 保守结构域分析表明, 其N端具有2个串联的SANT功能域, 属于R2R3型MYB转录因子。多重序列比对和进化树分析结果表明, 甘蓝型油菜与白菜、甘蓝的序列相似性大于92%, 且MYB80转录因子的功能结构域具有较高的同源性和较强的序列保守性。该研究结果对深入解析甘蓝型油菜MYB80的生物学功能及育性调控的分子机理具有重要意义, 为甘蓝型油菜杂种优势利用提供了依据。  相似文献   

9.
Multifunctionality and diversity within the plant MYB-gene family   总被引:49,自引:0,他引:49  
  相似文献   

10.
11.
Yeast Zuotin and Ssz are members of the conserved Hsp40 and Hsp70 chaperone families, respectively, but compared with canonical homologs, they atypically form a stable heterodimer termed ribosome-associated complex (RAC). RAC acts as co-chaperone for another Hsp70 to assist de novo protein folding. In this study, we identified the molecular basis for the unusual Hsp70/Hsp40 pairing using amide hydrogen exchange (HX) coupled with mass spectrometry and mutational analysis. Association of Ssz with Zuotin strongly decreased the conformational dynamics mainly in the C-terminal domain of Ssz, whereas Zuotin acquired strong conformational stabilization in its N-terminal segment. Deletion of the highly flexible N terminus of Zuotin abolished stable association with Ssz in vitro and caused a phenotype resembling the loss of Ssz function in vivo. Thus, the C-terminal domain of Ssz, the N-terminal extension of Zuotin, and their mutual stabilization are the major structural determinants for RAC assembly. We furthermore found dynamic changes in the J-domain of Zuotin upon complex formation that might be crucial for RAC co-chaperone function. Taken together, we present a novel mechanism for converting Zuotin and Ssz chaperones into a functionally active dimer.  相似文献   

12.
The wealth of available genomic data presents an unrivaled opportunity to study the molecular basis of evolution. Studies on gene family expansions and site-dependent analyses have already helped establish important insights into how proteins facilitate adaptation. However, efforts to conduct full-scale cross-genomic comparisons between species are challenged by both growing amounts of data and the inherent difficulty in accurately inferring homology between deeply rooted species. Proteins, in comparison, evolve by means of domain rearrangements, a process more amenable to study given the strength of profile-based homology inference and the lower rates with which rearrangements occur. However, adapting to a constantly changing environment can require molecular modulations beyond reach of rearrangement alone. Here, we explore rates and functional implications of novel domain emergence in contrast to domain gain and loss in 20 arthropod species of the pancrustacean clade. Emerging domains are more likely disordered in structure and spread more rapidly within their genomes than established domains. Furthermore, although domain turnover occurs at lower rates than gene family turnover, we find strong evidence that the emergence of novel domains is foremost associated with environmental adaptation such as abiotic stress response. The results presented here illustrate the simplicity with which domain-based analyses can unravel key players of nature's adaptational machinery, complementing the classical site-based analyses of adaptation.  相似文献   

13.
Whereas mammalian cells harbor two double strand telomeric repeat binding factors, TRF1 and TRF2, the fission yeast Schizosaccharomyces pombe has been thought to harbor solely the TRF1/TRF2 ortholog Taz1p to perform comparable functions. Here we report the identification of telomeric repeat binding factor 1 (Tbf1), a second TRF1/TRF2 ortholog in S. pombe. Like the Taz1p, the identified Tbf1p shares amino acid sequence similarity, as well as structural and functional characteristics, with the mammalian TRF1 and TRF2 proteins. This family of proteins shares a common architecture with two separate structural domains. An N-terminal domain is necessary and sufficient for the formation of homodimers, and a C-terminal MYB/homeodomain mediates sequence specific recognition of double-stranded telomeric DNA. The identified Tbf1p binds S. pombe telomeric DNA with high sequence specificity in vitro. Targeted deletion of the tbf1 gene reveals that it is essential for survival, and overexpression of the tbf1 gene leads to telomere elongation in vivo, which is dependent upon the MYB domain. These data suggest that fission yeast, like mammals, have two factors that bind double-stranded telomeric DNA and perform distinct roles in telomere length regulation.  相似文献   

14.
Induction of the Epstein-Barr virus lytic cycle is mediated through the immediate-early BZLF1 gene and the coordinately regulated BRLF1 gene. The BZLF1 gene product, Zta, transactivates its own promoter, as well as the promoters of a number of lytic genes, thereby initiating a cascade of viral gene expression. Previous work identified four related elements (ZIA, ZIB, ZIC, and ZID) and a cyclic AMP response element binding-AP-1 element (ZII) that are involved in the induction of the BZLF1 promoter (Zp) by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (E. Flemington and S. H. Speck, J. Virol. 64:1217-1226, 1990). Here we report a detailed characterization of TPA induction mediated by the ZI domains. Mutation of individual ZI domains within the context of the intact promoter significantly diminished TPA induction. Cloning of individual ZI domains upstream of a minimal promoter demonstrated that the ZIA, ZIC, and ZID domains, but not the ZIB domain, are TPA responsive. Furthermore, cloning of the ZII domain downstream of the ZI domains significantly augmented TPA induction. The critical regions within the ZIA and ZIC elements involved in binding of cellular factors were identified by using methylation interference and electrophoretic mobility shift analyses of ZI domain mutants. Four specific complexes were observed with the ZIA and ZID domains, all of which could be specifically competed for by either the ZIA or ZID domain. Methylation interference analyses of bound complexes revealed the presence of two overlapping binding sites for cellular factors in the ZIA domain, and functional studies provided evidence that both of these sites are involved in TPA induction. Functional analyses of the ZIC domain revealed that the 5' region of this domain is largely responsible for mediating TPA induction. Binding data correlated well with functional activity and revealed that the ZIC domain binds only a subset of the cellular factors that bind to the ZIA and ZID domains. Analysis of factor binding to the ZIB domain revealed only a single shifted complex, which correlated with the most slowly migrating complex observed with the ZIA and ZID domains. These data provide a direct demonstration of TPA induction mediated by the ZIA, ZIC, and ZID domains and also provide the first evidence that the ZI domains exhibit distinct functional characteristics.  相似文献   

15.
DIVARICATA AND RADIALIS INTERACTING FACTOR (DRIF) from snapdragon (Antirrhinum majus) is a MYB/SANT protein that interacts with related MYB/SANT proteins, RADIALIS and DIVARICATA, through its N‐terminal MYB/SANT domain. In addition to the MYB/SANT domain, DRIF contains a C‐terminal domain of unknown function (DUF3755). Here we describe novel protein–protein interactions involving a poplar (Populus trichocarpa) homolog of DRIF, PtrDRIF1. In addition to interacting with poplar homologs of RADIALIS (PtrRAD1) and DIVARICATA (PtrDIV4), PtrDRIF1 interacted with members of other families within the homeodomain‐like superfamily, including PtrWOX13c, a WUSCHEL‐RELATED HOMEOBOX protein, and PtrKNAT7, a KNOTTED1‐LIKE HOMEOBOX protein. PtrRAD1 and PtrDIV4 interacted with the MYB/SANT‐containing N‐terminal portion of PtrDRIF1, whereas DUF3755 was both necessary and sufficient for interactions with PtrWOX13c and PtrKNAT7. Of the two MYB/SANT domains present in PtrDIV4, only the N‐terminal MYB/SANT domain interacted with PtrDRIF1. GFP‐PtrDRIF1 expressed alone or with PtrRAD1 localized to the cytoplasm, whereas co‐expression of GFP‐PtrDRIF1 with PtrDIV4, PtrWOX13c or PtrKNAT7 resulted in nuclear localization of GFP‐PtrDRIF1. Modified yeast two‐hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments using PtrDRIF1 as a bridge protein revealed that PtrDRIF1 simultaneously interacted with PtrRAD1 and PtrWOX13c, but could not form a heterotrimeric complex when PtrDIV4 was substituted for PtrRAD1. Moreover, a Y2H competition assay indicated that PtrKNAT7 inhibits the interaction between PtrRAD1 and PtrDRIF1. The discovery of an additional protein–protein interaction domain in DRIF proteins, DUF3755, and its ability to form heterodimers and heterotrimers involving MYB/SANT and wood‐associated homeodomain proteins, implicates DRIF proteins as mediators of a broader array of processes than previously reported.  相似文献   

16.
17.
Since the identification of the first plant MYB-like protein, the Zea mays factor C1, the number of MYB-related genes described has greatly increased. All of the more than 150 plant MYB-like proteins known so far contain either two or only one sequence-related helix-turn-helix motif in their DNA-binding domain. Animal c-MYB genes contain three such helix-turn-helix motif-encoding repeats (R1R2R3 class genes). It has therefore been concluded that R2R3-MYB genes are the plant equivalents of c-MYB and that there are significant differences in the basic structure of MYB genes of plants and animals. Here, we describe expressed R1R2R3-MYB genes from Physcomitrella patients++ and Arabidopsis thaliana, designated PpMYB3R-1 and AtMYB3R-1. The amino acid sequences of their DNA-binding domains show high similarity to those of animal MYB factors, and less similarity to R2R3-MYB proteins from plants. In addition, R1R2R3-MYB genes were identified in different plant evolutionary lineages including mosses, ferns and monocots. Our data show that a DNA-binding domain consisting of three MYB repeats existed before the divergence of the animal and plant lineages. R1R2R3-MYB genes may have a conserved function in eukaryotes, and R2R3-MYB genes may predominantly regulate plant-specific processes which evolved during plant speciation.  相似文献   

18.
19.
拟南芥R2R3-MYB类转录因子在环境胁迫中的作用   总被引:5,自引:0,他引:5  
MYB转录因子是植物转录因子中最大的家族之一,以含有保守的MYB结构域为共同特征,分为三个亚族(R1/2-MYB、R2R3-MYB和R1R2R3-MYB),其中含有两个MYB结构域的R2R3-MYB成员最多,广泛参与植物次生代谢调控、细胞形态发生、胁迫应答、分生组织形成及细胞周期控制等。近年来,R2R3-MYB在植物逆境胁迫中的作用引起了广泛关注,本文综述了拟南芥R2R3-MYB蛋白在环境胁迫响应中作用的研究进展。  相似文献   

20.
The identification of LSD1-like genes in parasite, green algae, moss, pine, and monocot and dicot species allowed us to trace the phylogenetic history of this gene family. Computational analysis showed that the diversification of members of this family could be dated back to the early stage of plant evolution. The evolution of plant LSD1-like genes was possibly shaped by two duplication events. These proteins, which contain three copies of the LSD1 zinc finger (zf-LSD1) domain within their entire polypeptides and play crucial roles in modulating disease defense and cell death, resulted from the second duplication. A gain of zf-LSD1 domain model was reasonable for explaining the origination of three-zf-LSD1 domain-containing proteins. The zf-LSD1 domain phylogeny showed that the middle (M) and C-terminal (C) domains originated from a common ancestor; the N-terminal (N) domain might be more ancient than the former two. The divergence of the N, M, and C domains was well before the monocot-dicot split. Coevolution analysis revealed that four intramolecular domain pairs, including the N domain and the interregion between the M and the C domains (INTER2), the M and C domain, the N- and C-terminus, and the M domain and C-terminus, possibly coevolved during the evolution of three-zf-LSD1 domain-containing proteins. The three zf-LSD1 domains are evolutionary conserved. Thus, the differences at the N- and C-terminus would be crucial for functional specificity of LSD1 genes. Strong functional constraints should work on the zf-LSD1 domains, whereas reduced functional constraint was found in the INTER2 region. Functional divergence analysis showed that three-zf-LSD1 domain-containing proteins were significantly functionally divergent from those proteins containing only one zf-LSD1 domain, a result demonstrating that shifted evolutionary rates between the two clusters were significantly different from each other. [Reviewing Editor: Dr. Joshua Plotkin]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号