首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. This paper reviews studies carried out in our laboratory in which we have used the c-fos functional mapping method, in combination with other methods, to determine the functional organization of central baroreceptor pathways as they operate in the conscious rabbit.2. First, we showed that periods of induced hypertension or hypotension each result in a specific and reproducible pattern of activation of neurons in the brainstem and forebrain. In particular, hypotension (but not hypertension) results in the activation of catecholamine neurons in the medulla and pons and vasopressin-synthesizing neurons in the hypothalamus.3. The activation of medullary cell groups in response to induced hypertension or hypotension in the conscious rabbit is almost entirely dependent on inputs from arterial baroreceptors, while the activation of hypothalamic vasopressin-synthesising neurons in response to hypotension is largely dependent on baroreceptors, although an increase in circulating angiotensin also appears to contribute.4. Discrete groups of neurons in the rostral ventrolateral medulla (RVLM) and A5 area in the pons are the major groups of spinally projecting neurons activated by baroreceptor unloading. In contrast, spinally projecting neurons in the paraventricular nucleus in the hypothalamus appear to be largely unaffected by baroreceptor signals.5. Direct afferent inputs to RVLM neurons in response to increases or decreases in arterial pressure originate primarily from other medullary nuclei, particularly neurons located in the caudal and intermediate levels of the ventrolateral medulla (CVLM and IVLM), as well as in the nucleus tractus solitarius (NTS).6. There is also a direct projection from barosensory neurons in the NTS to the CVLM/IVLM region, which is activated by baroreceptor inputs.7. Collectively, the results of our studies in conscious animals indicate that baroreceptor signals reach all levels of the brain. With regard to the baroreceptor reflex control of sympathetic activity, our studies are consistent with previous studies in anesthetized animals, but in addition reveal other previously unrecognized pathways that also contribute to this reflex regulation.  相似文献   

2.
辣椒素对大鼠延髓腹外侧头端区神经元电活动的影响   总被引:5,自引:3,他引:2  
Xue BJ  He RR 《生理学报》1999,(6):687-691
在35只切断两侧缓冲神经的麻醉大鼠,应用细胞外记录的电生理学方法,观察颈总动脉注射辣椒素(capsaicin)对延髓腹外侧头端区(RVLM)巨细胞旁外侧核(PGL)自发电活动的影响。所得结果如下:(1)颈动脉注射辣椒素(10μmol,01ml),MAP由1074±013升至1256±021kPa(P<0001);HR由374±4增至395±5bpm(P<0001);30个PGL神经元自发放电单位的放电频率由126±07增至209±11spikes/s(P<0001)。(2)在10个放电单位,应用辣椒素受体阻断剂钌红(rutheniumred;200mmol,01ml)后,明显抑制辣椒素的上述效应。以上结果提示,辣椒素可能通过激活RVLM神经元上的辣椒素受体,进而兴奋PGL神经元  相似文献   

3.
Systemic administration of cholecystokinin (CCK) inhibits a subpopulation of rostral ventrolateral medulla (RVLM) presympathetic vasomotor neurons. This study was designed to determine whether this effect involved subdiaphragmatic vagal afferents and/or central N-methyl-d-aspartic acid (NMDA) receptors. Recordings were made from CCK-sensitive RVLM presympathetic vasomotor neurons in halothane-anesthetized, paralyzed male Sprague-Dawley rats. The responses of the neurons to CCK (2 and 4 microg/kg iv), phenylephrine (PE; 5 microg/kg iv), and phenylbiguanide (PBG; 5 microg/kg iv) were tested before and after application of the local anesthetic lidocaine (2% wt/vol gel; 1 ml) to the subdiaphragmatic vagi at the level of the esophagus. In seven separate experiments, lidocaine markedly reduced the inhibitory effects of CCK on RVLM presympathetic neuronal discharge rate. In other experiments, the effect of systemic administration of dizocilpine (1 mg/kg iv), a noncompetitive antagonist at NMDA receptor ion channels, on the RVLM presympathetic neuronal responses to CCK, PBG, and PE was tested. In all cases (n = 6 neurons in 6 individual rats), dizocilpine inhibited the effects of CCK, PBG, and PE on RVLM presympathetic neuronal discharge. These results suggest that the effects of systemic CCK on the discharge of RVLM presympathetic neurons is mediated via an action on receptors located on subdiaphragmatic vagal afferents. Furthermore, the data suggest that CCK activates a central pathway involving NMDA receptors to produce inhibition of RVLM presympathetic neuronal discharge.  相似文献   

4.
The role of 5-hydroxytryptamine 1A (5-HT(1A)) receptors located in the rostral ventrolateral medulla (RVLM) in the mediation of a sympathoinhibitory and depressor response elicited from the ventrolateral periaqueductal gray (vlPAG) matter of the midbrain was examined in pentobarbital sodium-anesthetized rats. Activation of neurons in the vlPAG evoked a decrease in renal and lumbar sympathetic nerve activities and a decrease in arterial blood pressure. After microinjection of the specific 5-HT(1A)-receptor antagonist WAY-100635 into the pressor area of the RVLM, the vlPAG-evoked sympathoinhibition and hypotension was attenuated to control levels (7 of 15 animals) or converted into a sympathoexcitation and pressor response (8 of 15 animals). Baroreflex inhibition of sympathetic nerve activity was not impaired by microinjection of WAY into the sympathoexcitatory region of the RVLM. These data suggest that sympathoinhibition and hypotension elicited by activation of neurons in the vlPAG are mediated by 5-HT(1A) receptors in the RVLM.  相似文献   

5.
6.
Neuromuscular blocking agents suppress central respiratory activity through their inhibitory effects on preinspiratory neurons and the synaptic drive from preinspiratory neurons to inspiratory neurons. Central CO2-chemosensitive areas, which partly consist of CO2-excited neurons, in the rostral ventrolateral medulla are thought to provide tonic drive to the central respiratory network and involve cholinergic mechanisms, which led us to hypothesize that neuromuscular blocking agents can inhibit CO2-excited neurons and attenuate respiratory CO2 responsiveness. To test this hypothesis, we used isolated brainstem-spinal cord preparations from newborn rats. The increase of C4 burst frequency induced by a hypercapnic superfusate, i.e. respiratory CO2 responsiveness, was suppressed by the application of neuromuscular blocking agents, either d-tubocurarine (10, 100 microM) or vecuronium (100 microM). These agents (40 microM) also induced hyperpolarization and decreases in firing frequency of CO2-excited neurons in the rostral ventrolateral medulla. Our results demonstrate that neuromuscular blocking agents inhibit CO2-excited tonic firing neurons and attenuate respiratory CO2 responsiveness.  相似文献   

7.
We studied the influences of a non-competitive blocker of glutamate NMDA-receptors ketamune and of a competitive blocker of AMPA-kainate non-NMDA receptors, CNQX, on the respiratory activity generelated by superfusedin situ semi-isolated medullo-spinal preparations (SIMSP) of 3- to 4-day-old rats. We compared the ampes recorded under conditions of superfusion, a standard solution and the solution saturated with an anoxic isocapine gas mixture were compared; pO2 in these solutions were 440±22 and 41±8 mm Hg, respectively. The experments were carried out with the ventrolateral medullary region (VLMR) left intact or after separation of its rostral part, which propertchonally corresponded to the chemosensitiveM zone. A 3-min-long hypoxic test initially evoked an increase in the frequency of inspiratory discharges (IR) in the phrenic nerve followed by a frequency drop within the final half of the test. After the rostral VLMR had been separated, the hypoxic test did not elicit a significant decrease in the IR frequency. After preliminary application of 1.0 or 10.0 μM ketamine or CNQX on intact preparations, the IR frequency under hypoxic conditions dropped within the first half of the test and increased in the second half, while the amplitude and integral intensity of these discharges were depressed more intensively than in hypoxia with no applications. Using ketamme and CNQX in the same concentrations resulted in significant drops in the amplitude, frequency, and integral intensity of IR recorde din the hypoxic test. Our experiments showed that in the early postnatal period glutamate ionotropic receptors of rostral VLMR neurons are involved in the control of IR frequency under hypoxic conditions. The possible role of glutamatergic control of the respiratory rhythm and mechanisms of the influences resulting from blocking of NMDA and non-NMDA receptors on the parameters of respiratory activity are discussed.  相似文献   

8.
Ye ZY  Li DP 《Regulatory peptides》2011,166(1-3):112-120
Sympathetic nerve activity is increased in obesity-related hypertension. However, the central mechanisms involved in the increased sympathetic outflow remain unclear. The hypothalamic melanocortin system is important for regulating energy balance and sympathetic outflow. To understand the mechanisms by which the melanocortin systems regulates sympathetic outflow, we investigated the role of melanocortin 4 receptors (MC4R) in regulating presympathetic paraventricular nucleus (PVN) neurons. We performed whole-cell patch-clamp recordings on retrogradely labeled PVN neurons projecting to the rostral ventrolateral medulla in brain slices from obese zucker rats (OZRs) and lean zucker rats (LZRs). The MC4R agonists melanotan II (MTII) and α-melanocyte-stimulating hormone (α-MSH) increased the firing activity and depolarized the labeled PVN neurons from both LZRs and OZRs in a concentration-dependent manner. MTII produced significant greater increase in the firing activity in OZRs than in LZRs. Blocking MC4R with the specific antagonist SHU9119 had no effect on the basal firing rate but abolished the MTII-induced increase in the firing rate in both OZRs and LZRs. Furthermore, intracellular dialysis of guanosine 5'-O-(2-thodiphosphate), but not bath application of kynurenic acid and bicuculline, eliminated the MTII-induced increase in firing activity. In addition, MTII had no effect on the frequency and amplitude of glutamatergic excitatory postsynaptic currents and GABAergic inhibitory postsynaptic currents in labeled PVN neurons. Collectively, our findings suggest that MC4R contributes to the elevated excitability of PVN presympathetic neurons, which may be involved in obesity-related hypertension.  相似文献   

9.
The dorsomedial hypothalamic nucleus (DMH) is believed to play a key role in mediating vasomotor and cardiac responses evoked by an acute stress. Inhibition of neurons in the rostral ventrolateral medulla (RVLM) greatly reduces the increase in renal sympathetic nerve activity (RSNA) evoked by activation of the DMH, indicating that RVLM neurons mediate, at least in part, the vasomotor component of the DMH-evoked response. In this study, the first aim was to determine whether neurons in the medullary raphe pallidus (RP) region also contribute to the DMH-evoked vasomotor response, because it has been shown that the DMH-evoked tachycardia is mediated by the RP region. The second aim was to directly assess the effect of DMH activation on the firing rate of RVLM sympathetic premotor neurons. In urethane-anesthetized rats, injection of the GABA(A) receptor agonist muscimol (but not vehicle solution) in the RP region caused a modest ( approximately 25%) but significant reduction in the increase in RSNA evoked by DMH disinhibition (by microinjection of bicuculline). In other experiments, disinhibition of the DMH resulted in a powerful excitation (increase in firing rate of approximately 400%) of 5 out of 6 spinally projecting barosensitive neurons in the RVLM. The results indicate that neurons in the RP region make a modest contribution to the renal sympathoexcitatory response evoked from the DMH and also that sympathetic premotor neurons in the RVLM receive strong excitatory inputs from DMH neurons, consistent with the view that the RVLM plays a key role in mediating sympathetic vasomotor responses arising from the DMH.  相似文献   

10.
1. Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder that manifests with parkinsonism, cerebellar ataxia, and autonomic failure in various combinations.2. Orthostatic hypotension, neurogenic bladder, laryngeal stridor and sleep apnea, and rapid eye movement (REM) sleep behavior disorder are prominent manifestations of MSA.3. In MSA, there is severe depletion of catecholaminergic neurons of the C1 and A1 areas in the ventrolateral medulla, and this may contribute to orthostatic hypotension and endocrine disturbances in this disorder, respectively.4. Loss of corticotrophin-releasing factor (CRF) neurons in the pontine micturition area may contribute to neurogenic bladder dysfunction.5. Respiratory abnormalities may reflect loss of cholinergic neurons in the arcuate nucleus of the ventral medulla.6. Loss of cholinergic mesopontine neurons, in the setting of loss of locus ceruleus neurons and preservation of rostral raphe neurons, may contribute to REM sleep abnormalities in MSA.  相似文献   

11.
Heme oxygenase has been linked to the oxygen-sensing function of the carotid body, pulmonary vasculature, cerebral vasculature, and airway smooth muscle. We have shown previously that the cardiorespiratory regions of the rostral ventrolateral medulla are excited by local hypoxia and that heme oxygenase-2 (HO-2) is expressed in the hypoxia-chemosensitive regions of the rostral ventrolateral medulla (RVLM), the respiratory pre-B?tzinger complex, and C1 sympathoexcitatory region. To determine whether heme oxygenase is necessary for the hypoxic-excitation of dissociated RVLM neurons (P1) cultured on confluent medullary astrocytes (P5), we examined their electrophysiological responses to hypoxia (NaCN and low Po(2)) using the whole-cell perforated patch clamp technique before and after blocking heme oxygenase with tin protoporphyrin-IX (SnPP-IX). Following the electrophysiological recording, immunocytochemistry was performed on the recorded neuron to correlate the electrophysiological response to hypoxia with the expression of HO-2. We found that the responses to NaCN and hypoxia were similar. RVLM neurons responded to NaCN and low Po(2) with either depolarization or hyperpolarization and SnPP-IX blocked the depolarization response of hypoxia-excited neurons to both NaCN and low Po(2) but had no effect on the hyperpolarization response of hypoxia-depressed neurons. Consistent with this observation, HO-2 expression was present only in the hypoxia-excited neurons. We conclude that RVLM neurons are excited by hypoxia via a heme oxygenase-dependent mechanism.  相似文献   

12.
Summary The activity of flight interneurons was recorded intracellularly in intact, tethered flying locusts (Locusta migratoria) and after removal of sensory input from the wing receptors. Depolarization patterns and spike discharges were characterized and compared for the two situations.In general, depressor interneurons (n=6) showed only minor changes in their activity as a result of deafferentation (Fig. 1). Exceptions were interneurons 308 and 506 (Fig. 2). By contrast, all but one of the elevator interneurons (n=9) produced distinctly different depolarization patterns in intact locusts and following deafferentation. Three different groups of elevator interneurons were found (excluding the one exceptional neuron, Fig. 6). (i) One group of interneurons (n=4) produced different, superthreshold depolarizations in intact and deafferented animals (Fig. 3). Characteristic, biphasic depolarizations were recorded from these fibres at lower wingbeat frequencies in the intact situation but only single, delayed potentials were recorded after deafferentation. (ii) The second group of interneurons (n=3) exhibited distinct rhythmic activity only in intact animals. After deafferentation their depolarizations were small and often below the threshold for spike initiation (Fig. 4). (iii) One interneuron produced rhythmic flight motor oscillations only after deafferentation. In intact locusts the membrane potential of this neuron showed very small oscillations and remained subthreshold (Fig. 5).Four main conclusions emerge from these data. (i) The activity of elevator interneurons is under greater sensory control than that of the depressors. This confirms the results of our previous electromyographic and motoneuronal analyses, (ii) A considerable portion of elevator activity is generated as a result of phasic sensory feedback. An essential input is from the hindwing tegulae (Table 1; Pearson and Wolf 1988). (iii) The activity of depressor interneurons appears to be determined by central mechanisms to a major extent. (iv) Different sets of central neurons appear to be involved in flight pattern generation in intact and deafferented locusts —although the two sets share many common elements.Abbreviations EMG electromyogram - PSP postsynaptic potential (EPSP excitatory andIPSP inhibitory)  相似文献   

13.
Effects of intravenous isoproterenol (2-3 micrograms) on arterial pressure, end-tidal CO2 partial pressure (PCO2), medullary extracellular fluid (ECF) pH, and phrenic activity were studied in 13 anesthetized paralyzed cats whose vagi and carotid sinus nerves were cut. The cats were servo-ventilated to keep PCO2 relatively constant. Injections of Ringer solution were without effect. Isoproterenol caused arterial pressure to fall, a transient small (1 Torr) increase of PCO2, increased venous CO2 return to the lungs, a medullary ECF acidosis, and a stimulation of respiration that continued to be elevated after arterial pressure, PCO2, and medullary ECF pH had returned to control. We show that the ECF acidosis is minimally due to the hypotension and to the small transient rise of PCO2. We also show that the respiratory response cannot be explained solely by the ECF acidosis. We conclude that, in addition to its known stimulation of peripheral chemoreceptors, isoproterenol causes medullary ECF to become acidic probably due to metabolic effects on neural tissue and has a separate direct stimulating effect on neurons in the brain.  相似文献   

14.
Neurochemical changes in the extracellular fluid of the rostral ventrolateral medulla (RVLM) were produced by changes in arterial blood pressure. Blood pressure was raised or lowered with systemic infusions of phenylephrine or nitroprusside and neurochemicals were recovered from RVLM by in vivo microdialysis. A dialysis probe 300 microns in diameter and 500 microns in length was stereotaxically implanted in the RVLM of the urethane-anesthetized rat. Sterile physiological Ringer's solution was perfused at a rate of 1.5 microliter/min. The perfusate was collected under ice-cold conditions every 15 min for the assay of epinephrine, dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), ascorbic acid, and uric acid. After stable baseline neurochemical concentrations were achieved, animals were infused with phenylephrine or nitroprusside intravenously to raise or lower the blood pressure. Increasing blood pressure 50 mm Hg above the baseline value by phenylephrine led to a significant reduction in heart rate and a reduction in extracellular epinephrine and DOPAC concentrations. The 5-HIAA concentration was increased during the hypertensive drug infusion. There were no changes in the concentrations of ascorbic acid or uric acid. Hypotension produced by nitroprusside (-20 mm Hg) led to neurochemical changes which were the reciprocal of those seen during hypertension. During hypotension, heart rate increased as did the extracellular fluid epinephrine concentration. The 5-HIAA concentration fell with hypotension and remained depressed following the nitroprusside infusion. Ascorbic acid and uric acid concentrations did not change during hypotension but ascorbic acid did increase after the nitroprusside infusion stopped. These data provide direct evidence that epinephrine release in RVLM is linked to changes in systemic blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.  相似文献   

16.
Using a histochemical technique, we examined distribution of the neurons containing a marker of nitric oxide synthase (NOS), NADPH-diaphorase (NADPH-d), on frontal slices of the medulla and upper cervical spinal segments of 4-day-old rats. It was demonstrated that NADPH-d-positive cells are present within the dorsal and ventral medullary respiratory groups. The highest density of the labeled middle-size multipolar neurons (27.9±2.6 cells per 0.1 mm2 of the slice) was observed in the rostral part of the ventral respiratory group, within the reticular lateral paragigantocellular nucleus. Similar NADPH-d-positive neurons were also observed in other reticular formation structures: rostroventrolateral reticular, gigantocellular, and ventral medullary nuclei, and in the ventral part of the paramedial nucleus. There were no labeled neurons in the lateral reticular nucleus. Single small and medium-size labeled neurons were found at all rostro-caudal levels of thenucl. ambiguous (nuclei retrofacialis, ambiguous, andretroam-biguous). Groups of NADPH-d-positive neurons were also revealed within the dorsal respiratory group, along the whole length of thenucl. tractus solitarii (mostly in its ventrolateral parts). Single labeled neurons were also observed in thenucl. n. hypoglossi, and their groups were observed in the dorsal motor part of thenucl. n. vagus. Involvement of the structures containing NADPH-d-positive neurons in the processes related to generation of the respiratory activity is discussed. Our neuroanatomical experiments prove that in early postnatal mammals NO is actively involved in generation and regulation of the medullary respiratory rhythm. Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 128–136, March–April, 2000.  相似文献   

17.
Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.  相似文献   

18.
According to prior evidence opioid and serotonin release by lower brain stem neurons may contribute to hemorrhage-induced sympathoinhibition (HISI). Here we seek direct evidence for the activation of opioidergic, GABAergic, or serotonergic neurons by severe hemorrhage in the medulla oblongata. Blood was withdrawn from awake rats (40-50% total volume) causing hypotension and profound initial bradycardia. Other rats received the vasodilator hydralazine, causing tachycardia and hypotension. Neuronal activation was gauged by the presence of Fos-immunoreactive (ir) nuclei after 2 h. Serotonergic, enkephalinergic, and GABAergic neurons were identified by the presence of a diagnostic enzyme or mRNA. Hemorrhaged rats had 30% fewer non-GABAergic Fos-ir neurons in the rostral ventrolateral medulla (RVLM) than hydralazine-treated rats, but they had six times more Fos-ir neurons within the subependymal parapyramidal nucleus (SEPPN). Fos-labeled SEPPN neurons were serotonergic (40-60%), GABAergic (31%), enkephalinergic (15%), or had mixed phenotypes. The data suggest that a reduced sympathoexcitatory drive from RVLM may contribute to HISI. SEPPN neuronal activation may also contribute to HISI or could mediate defensive thermoregulatory mechanisms triggered by hemorrhage-induced hypothermia.  相似文献   

19.
内皮素通过最后区易化大鼠延髓腹外侧头端区神经元活动   总被引:1,自引:0,他引:1  
Li DP  He RR 《生理学报》1999,51(3):263-271
在35只切断双侧缓冲神经、用氨基甲酸乙酯-α氯醛糖混合麻醉的Sprague-Dawley大鼠,应用细胞外记录的电生理学方法,由RM-6000型多道生理记录仪和WS-682G热阵记录器(频响范围0~2.8kHz)同步记录血压、心率和单位神经元放电,观察颈动脉注射内皮素对87个延髓腹是头端区(RVLM)自发放电神经元活动的影响,所得结果如下;(1)颈动脉注射ET-1(0.3nmol/kg)时36个单位  相似文献   

20.
Effects of a non-competetive blocker of glutamate NMDA receptors, ketamine, on respiratory activity recorded from the phrenic nerve were studied in experiments on superfusedin situ semi-isolated medullo-spinal preparations (SIMSP) of 3− to 4-day-old rats. The experiments were carried out under conditions where the ventrolateral medullary region (VLM) was left intact, or its rostral portion (projectionally corresponding to the chemosensitiveM zone) was separated by transection. Three-min-long application of 1.0 μM ketamine evoked a slight increase in the duration of inspiratory discharges (ID) and a statistically significant increase in their frequency. After the rostral VLM had been separated, similar ketamine application resulted in significant increases in the duration, amplitude, and integral intensity of ID and some drop in their frequency. An increase to 10 μM ketamine concentration in the superfusing solution determined a significant rise of the ID duration, which indicates the possibility of inhibition of the mechanisms switching inspiration to expiration. Concurrently, the ID frequency significantly dropped, while their amplitude and integral intensity increased. After separation of the rostral VLM, the latter ketamine concentration ceased to increase the ID duration, and their frequency and amplitude significantly dropped. Application of ketamine in the concentration of 100 μM resulted in rather profound decreases of all measured ID parameters, and separation of the rostral VLM exerted no influence on the direction of the above modifications. Thus, we obtained evidence of the involvement of NMDA receptors of the VLM in the control of temporal and frequency-amplitude parameters of respiratory activity of early postnatal rats. Possible localization of NMDA receptors and mechanisms of their involvement in inspiration-expiration switching and tonic inhibitory control of respiratory rhythms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号