首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis.  相似文献   

2.
Receptor tyrosine phosphatases in axon growth and guidance   总被引:3,自引:0,他引:3  
Receptor-like protein tyrosine phosphatases (RPTPs) continue to emerge as important signalling molecules in axons and their growth cones. Recent findings show that Drosophila RPTPs play key roles in guiding retinal axons and in preventing midline crossing of longitudinal axons. Vertebrate RPTPs are now implicated in controlling axon outgrowth, and preliminary evidence suggests that they too may influence axon guidance.  相似文献   

3.
Receptor protein tyrosine phosphatases (RPTPs) are regulators of axon outgrowth and guidance in a variety of different vertebrate and invertebrate systems. Three RPTPs, CRYP-alpha, PTP-delta, and LAR, are expressed in overlapping but distinct patterns in the developing Xenopus retina, including expression in retinal ganglion cells (RGCs) as they send axons to the tectum (Johnson KG, Holt CE. 2000. Expression of CRYP-alpha, LAR, PTP-delta, and PTP-rho in the developing Xenopus visual system. Mech Dev 92:291-294). In order to examine the role of these RPTPs in visual system development, putative dominant negative RPTP mutants (CS-CRYP-alpha, CS-PTP-delta, and CS-LAR) were expressed either singly or in combination in retinal cells. No effect was found on either retinal cell fate determination or on gross RGC axon guidance to the tectum. However, expression of these CS-RPTP constructs differentially affected the rate of RGC axon outgrowth. In vivo, expression of all three CS-RPTPs or CS-PTP-delta alone inhibited RGC axon outgrowth, while CS-LAR and CS-CRYP-alpha had no significant effect. In vitro, expression of CS-CRYP-alpha enhanced neurite outgrowth, while CS-PTP-delta inhibited neurite outgrowth in a substrate-dependent manner. This study provides the first in vivo evidence that RPTPs regulate retinal axon outgrowth.  相似文献   

4.
Comm sorts robo to control axon guidance at the Drosophila midline   总被引:9,自引:0,他引:9  
Axon growth across the Drosophila midline requires Comm to downregulate Robo, the receptor for the midline repellent Slit. We show here that comm is required in neurons, not in midline cells as previously thought, and that it is expressed specifically and transiently in commissural neurons. Comm acts as a sorting receptor for Robo, diverting it from the synthetic to the late endocytic pathway. A conserved cytoplasmic LPSY motif is required for endosomal sorting of Comm in vitro and for Comm to downregulate Robo and promote midline crossing in vivo. Axon traffic at the CNS midline is thus controlled by the intracellular trafficking of the Robo guidance receptor, which in turn depends on the precisely regulated expression of the Comm sorting receptor.  相似文献   

5.
6.
Seven protein tyrosine phosphatase (PTPase) genes have been identified in the fruit-fly Drosophila melanogaster. Four of these genes encode receptor-linked PTPases (R-PTPs) that are expressed on central nervous system axons in the embryo. Each axonal R-PTP has an extracellular domain that is homologous to vertebrate adhesion molecules and to identified mammalian R-PTPs. Two non-receptor PTPase genes have been isolated to date. One of these, corkscrew (csw), encodes an SH2 domain-containing PTPase that appears to be a homolog of mammalian PTP1D. Genetic evidence indicates that the csw PTPase is involved in the transduction of signals from receptor tyrosine kinases to their down-stream targets, which include Ras proteins.  相似文献   

7.
The presentation of secreted axon guidance factors plays a major role in shaping central nervous system (CNS) connectivity. Recent work suggests that heparan sulfate (HS) regulates guidance factor activity; however, the in vivo axon guidance roles of its carrier proteins (heparan sulfate proteoglycans, or HSPGs) are largely unknown. Here we demonstrate through genetic analysis in vivo that the HSPG Syndecan (Sdc) is critical for the fidelity of Slit repellent signaling at the midline of the Drosophila CNS, consistent with the localization of Sdc to CNS axons. sdc mutants exhibit consistent defects in midline axon guidance, plus potent and specific genetic interactions supporting a model in which HSPGs improve the efficiency of Slit localization and/or signaling. To test this hypothesis, we show that Slit distribution is altered in sdc mutants and that Slit and its receptor bind to Sdc. However, when we compare the function of the transmembrane Sdc to a different class of HSPG that localizes to CNS axons (Dallylike), we find functional redundancy, suggesting that these proteoglycans act as spatially specific carriers of common HS structures that enable growth cones to interact with and perceive Slit as it diffuses away from its source at the CNS midline.  相似文献   

8.
H Hing  J Xiao  N Harden  L Lim  S L Zipursky 《Cell》1999,97(7):853-863
The SH2/SH3 adaptor protein Dock has been proposed to transduce signals from guidance receptors to the actin cytoskeleton in Drosophila photoreceptor (R cell) growth cones. Here, we demonstrate that Drosophila p21-activated kinase (Pak) is required in a Dock pathway regulating R cell axon guidance and targeting. Dock and Pak colocalize to R cell axons and growth cones, physically interact, and their loss-of-function phenotypes are indistinguishable. Normal patterns of R cell connectivity require Pak's kinase activity and binding sites for both Dock and Cdc42/Rac. A membrane-tethered form of Pak (Pak(myr) acts as a dominant gain-of-function protein. Retinal expression of Pak(myr) rescues the R cell connectivity phenotype in dock mutants. These data establish Pak as a critical regulator of axon guidance and a downstream effector of Dock in vivo.  相似文献   

9.
Evidence is offered that the axons of developing sensory neurons in the wing of Drosophila are guided (given both location and polarity information) by the epithelium over which they grow. This guidance is effective in the absence of such potential additional cues as guidepost neurons and physical channels.  相似文献   

10.
Proper axon pathfinding requires that growth cones execute appropriate turns and branching at particular choice points en route to their synaptic targets. Here we demonstrate that the Drosophila metalloprotease tolloid-related (tlr) is required for proper fasciculation/defasciculation of motor axons in the CNS and for normal guidance of many motor axons enroute to their muscle targets. Tlr belongs to a family of developmentally important proteases that process various extracellular matrix components, as well as several TGF-beta inhibitory proteins and pro-peptides. We show that Tlr is a circulating enzyme that processes the pro-domains of three Drosophila TGF-beta-type ligands, and, in the case of the Activin-like protein Dawdle (Daw), this processing enhances the signaling activity of the ligand in vitro and in vivo. Null mutants of daw, as well as mutations in its receptor babo and its downstream mediator Smad2, all exhibit axon guidance defects that are similar to but less severe than tlr. We suggest that by activating Daw and perhaps other TGF-beta ligands, Tlr provides a permissive signal for axon guidance.  相似文献   

11.
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.  相似文献   

12.
We demonstrate that Drosophila capulet (capt), a homolog of the adenylyl cyclase-associated protein that binds and regulates actin in yeast, associates with Abl in Drosophila cells, suggesting a functional relationship in vivo. We find a robust and specific genetic interaction between capt and Abl at the midline choice point where the growth cone repellent Slit functions to restrict axon crossing. Genetic interactions between capt and slit support a model where Capt and Abl collaborate as part of the repellent response. Further support for this model is provided by genetic interactions that both capt and Abl display with multiple members of the Roundabout receptor family. These studies identify Capulet as part of an emerging pathway linking guidance signals to regulation of cytoskeletal dynamics and suggest that the Abl pathway mediates signals downstream of multiple Roundabout receptors.  相似文献   

13.
Wills Z  Marr L  Zinn K  Goodman CS  Van Vactor D 《Neuron》1999,22(2):291-299
The ability of neuronal growth cones to be guided by extracellular cues requires intimate communication between signal transduction systems and the dynamic actin-based cytoskeleton at the leading edge. Profilin, a small, actin-binding protein, has been proposed to be a regulator of the cell motility machinery at leading edge membranes. However, its requirement in the developing nervous system has been unknown. Profilin associates with members of the Enabled family of proteins, suggesting that Profilin might link Abl function to the cytoskeleton. Here, genetic analysis in Drosophila is used to demonstrate that mutations in Profilin (chickadee) and Abl (abl) display an identical growth cone arrest phenotype for axons of intersegmental nerve b (ISNb). Moreover, the phenotype of a double mutant suggests that these components function together to control axonal outgrowth.  相似文献   

14.
Receptor-linked protein tyrosine phosphatases (RPTPs) regulate axon guidance and synaptogenesis in Drosophila embryos and larvae. We describe DPTP52F, the sixth RPTP to be discovered in Drosophila. Our genomic analysis indicates that there are likely to be no additional RPTPs encoded in the fly genome. Five of the six Drosophila RPTPs have C. elegans counterparts, and three of the six are also orthologous to human RPTP subfamilies. DPTP52F, however, has no clear orthologs in other organisms. The DPTP52F extracellular domain contains five fibronectin type III repeats and it has a single phosphatase domain. DPTP52F is selectively expressed in the CNS of late embryos, as are DPTP10D, DLAR, DPTP69D and DPTP99A. To define developmental roles of DPTP52F, we used RNA interference (RNAi)-induced phenotypes as a guide to identify Ptp52F alleles among a collection of EMS-induced lethal mutations. Ptp52F single mutant embryos have axon guidance phenotypes that affect CNS longitudinal tracts. This phenotype is suppressed in Dlar Ptp52F double mutants, indicating that DPTP52F and DLAR interact competitively in regulating CNS axon guidance decisions. Ptp52F single mutations also cause motor axon phenotypes that selectively affect the SNa nerve. DPTP52F, DPTP10D and DPTP69D have partially redundant roles in regulation of guidance decisions made by axons within the ISN and ISNb motor nerves.  相似文献   

15.
The development of axon tracts in the early vertebrate brain is controlled by combinations of soluble, membrane-bound and extracellular matrix molecules. How these multiple and sometimes conflicting guidance cues are integrated in order to establish stereotypical pathways remains to be determined. We show here that when interactions between the chemoattractive signal Netrin1a and its receptor Dcc are suppressed using a loss-of-function approach, a novel axon trajectory emerges in the dorsal diencephalon. Axons arising from a subpopulation of telencephalic neurons failed to project rostrally into the anterior commissure in the absence of either Netrin1a or Dcc. Instead these axons inappropriately exited the telencephalon and ectopically coursed caudally into virgin neuroepithelium. This response was highly specific since loss-of-function of Netrin1b, a paralogue of Netrin1a, generated a distinct phenotype in the rostral brain. These results show that a subpopulation of telencephalic neurons, when freed from long-range chemoattraction mediated by Netrin1a-Dcc interactions, follow alternative instructive cues that lead to creation of an ectopic axon bundle in the diencephalon. This work provides insight into how integration of multiple guidance signals defines the initial scaffold of axon tracts in the embryonic vertebrate forebrain.  相似文献   

16.
Lee S  Kim S  Nahm M  Kim E  Kim TI  Yoon JH  Lee S 《Molecules and cells》2011,32(5):477-482
Sac1 phosphoinositide (PI) phosphatases are important regulators of PtdIns(4)P turnover at the ER, Golgi, and plasma membrane (PM) and are involved in diverse cellular processes including cytoskeletal organization and vesicular trafficking. Here, we present evidence that Sac1 regulates axon guidance in the embryonic CNS of Drosophila. Sac1 is expressed on three longitudinal axon tracts that are defined by the cell adhesion molecule Fasciclin II (Fas II). Mutations in the sac1 gene cause ectopic midline crossing of Fas II-positive axon tracts. This phenotype is rescued by neuronal expression of wild-type Sac1 but not by a catalytically-inactive mutant. Finally, sac1 displays dosage-sensitive genetic interactions with mutations in the genes that encode the midline repellent Slit and its axonal receptor Robo. Taken together, our results suggest that Sac1-mediated regulation of PIs is critical for Slit/Robo-dependent axon repulsion at the CNS midline.  相似文献   

17.
18.
Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics   总被引:4,自引:0,他引:4  
During development of the adult Drosophila visual system, axons of the eight photoreceptors in each ommatidium fasciculate together and project as a single bundle towards the optic lobes of the brain. Within the brain, individual photoreceptor axons from each bundle then seek specific targets in distinct layers of the optic lobes. The axons of photoreceptors R1-R6 terminate in the lamina, while R7 and R8 axons pass through the lamina to terminate in separate layers of the medulla. To identify genes required for photoreceptor axon guidance, including those with essential functions during early development, we have devised a strategy for the simple and efficient generation of genetic mosaics in which mutant photoreceptor axons innervate a predominantly wild-type brain. In a large-scale saturation mutagenesis performed using this system, we recovered new alleles of the gene encoding the receptor tyrosine phosphatase PTP69D. PTP69D has previously been shown to function in the correct targeting of motor axons in the embryo and R1-R6 axons in the visual system. Here, we show that PTP69D is also required for correct targeting of R7 axons. Whereas mutant R1-R6 axons occasionally extend beyond their normal targets in the lamina, mutant R7 axons often fail to reach their targets in the medulla, stopping instead at the same level as the R8 axon. These targeting errors are difficult to reconcile with models in which PTP69D plays an instructive role in photoreceptor axon targeting, as previously proposed. Rather, we suggest that PTP69D plays a permissive role, perhaps reducing the adhesion of R1-R6 and R7 growth cones to the pioneer R8 axon so that they can respond independently to their specific targeting cues.  相似文献   

19.
The conserved DCC ligand-receptor pair Netrin and Frazzled (Fra) has a well-established role in axon guidance. However, the specific sequence motifs required for orchestrating downstream signaling events are not well understood. Evidence from vertebrates suggests that P3 is important for transducing Netrin-mediated turning and outgrowth, whereas in C. elegans it was shown that the P1 and P2 conserved sequence motifs are required for a gain-of-function outgrowth response. Here, we demonstrate that Drosophila fra mutant embryos exhibit guidance defects in a specific subset of commissural axons and these defects can be rescued cell-autonomously by expressing wild-type Fra exclusively in these neurons. Furthermore, structure-function studies indicate that the conserved P3 motif (but not P1 or P2) is required for growth cone attraction at the Drosophila midline. Surprisingly, in contrast to vertebrate DCC, P3 does not mediate receptor self-association, and self-association is not sufficient to promote Fra-dependent attraction. We also show that in contrast to previous findings, the cytoplasmic domain of Fra is not required for axonal localization and that neuronal expression of a truncated Fra receptor lacking the entire cytoplasmic domain (Fra delta C) results in dose-dependent defects in commissural axon guidance. These findings represent the first systematic dissection of the cytoplasmic domains required for Fra-mediated axon attraction in the context of full-length receptors in an intact organism and provide important insights into attractive axon guidance at the midline.  相似文献   

20.
The convergence of olfactory axons expressing particular odorant receptor (Or) genes on spatially invariant glomeruli in the brain is one of the most dramatic examples of precise axon targeting in developmental neurobiology. The cellular and molecular mechanisms by which olfactory axons pathfind to their targets are poorly understood. We report here that the SH2/SH3 adapter Dock and the serine/threonine kinase Pak are necessary for the precise guidance of olfactory axons. Using antibody localization, mosaic analyses and cell-type specific rescue, we observed that Dock and Pak are expressed in olfactory axons and function autonomously in olfactory neurons to regulate the precise wiring of the olfactory map. Detailed analyses of the mutant phenotypes in whole mutants and in small multicellular clones indicate that Dock and Pak do not control olfactory neuron (ON) differentiation, but specifically regulate multiple aspects of axon trajectories to guide them to their cognate glomeruli. Structure/function studies show that Dock and Pak form a signaling pathway that mediates the response of olfactory axons to guidance cues in the developing antennal lobe (AL). Our findings therefore identify a central signaling module that is used by ONs to project to their cognate glomeruli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号