首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental and clinical evidences indicate that endocrine mechanisms, particularly involving the pineal gland, exert a role in the development of postural deficits leading to the occurrence of idiopatic scoliosis (IS). In particular, experiments performed in bipedal animals have shown that removal of the pineal gland, which secretes melatonin (M), induced a scoliosis, and that in such preparations, administration of this hormone prevented the development of this deformity (cf. 131). It appears also that adolescents with IS showed a reduced level of serum M with respect to age-related control subjects. The possible mechanisms involved in the M regulation of the tonic contraction of the axial musculature have been discussed. It is known that the pineal gland is implicated in the control of circadian rhythms, including the sleep-waking cycle, and that during this cycle there are prominent changes in postural activity, which affect not only the limbs, but also the axial musculature. These changes are characterized by a decrease followed by a suppression of postural activity, which occur particularly during transition from wakefulness to synchronized sleep and, more prominently, to rapid eye movement (REM) sleep. Episodes of postural atonia may also occur during the cataplectic episodes, which are typical of narcolepsy. Cholinergic and/or cholinoceptive neurons located in the dorsal pontine reticular formation (pRF) and the related medullary inhibitory reticulospinal (RS) system, intervene in the suppression of posture during REM sleep, as well as during the cataplectic episodes which occur in narcolepsy. These structures are under the modulatory (inhibitory) influence of the dorsomedial and the dorsolateral pontine tegmentum, where serotoninergic raphe nuclei (RN) neurons and noradrenergic locus coeruleus (LC) neurons are located. We postulated that M may act not only on the circadian pacemaker, but also directly on the pontine tegmental structures involved in the regulation of posture during the animal states indicated above. This hypothesis is supported by the facts that: 1) the dorsal pRF may contain specific binding sites for M; 2) this structure is particularly sensitive to M in adolescents, as well as in adult subjects affected by narcoleptic disturbances leading to cataplexy; 3) M increases the release of serotonin (5-HT), a neurotransmitter which enhances the postural tone by acting on the dorsal pRF: on the other hand, deficits in M levels may lower the activity of the serotoninergic raphe system, thus leading to a decrease or suppression of postural activity similar to that occurring either during REM sleep or during the cataplectic episodes typical of narcoleptic patients; 4) IS patients may show episodes of sleep apnea, a phenomenon which has been attibuted to a reduced tonic contraction of primary and accessory respiratory muscles during REM, resulting from a reduced release of 5-HT at dorsal pontine level. It has been postulated that, if the reduced M and 5-HT levels are subliminal to produce a complete suppression of posture under the conditions reported above, the reduced postural tone, which results from this condition may lead to the development of IS, due to hypotonia which affects the axial musculature. M secretion could be regulated not only by the activity of the serotoninergic raphe neurons projecting to the pineal gland, but probably also by the activity of noradrenergic LC neurons. It is likely that the development of IS, which results from a reduced level of M and 5-HT, may occur provided that the noradrenergic LC inhibition of the pontine structures is impaired. Such impairment could depend upon genetic factors, similar to those postulated to play a role in narcolepsy. In conclusion, the possibility exists that an impaired activity of brain monoaminergic systems may lead to disfunction in the production of M, which is apparently an important factor in the etiopathogenesis of IS.  相似文献   

2.
The depression of the postural activity induced by intravenous injection of eserine sulphate (0.1 mg/kg), an anticholinesterase, has been studied in precollicular decerebrate cats. The extensor and flexor monosynaptic reflexes elicited by single shock stimulation of the GS, P1-FDHL and DP nerves are tonically depressed during the episodes of postural atonia induced by the anticholinesterase. A further phasic depression of the monosynaptic reflexes occurs during the bursts of rapid eye movements (REM) typical of these episodes. These changes in spinal reflex activity closely resemble the tonic depression of the spinal reflexes described in the unrestrained cats during the desynchronized sleep as well as the phasic depression of the spinal reflexes characteristic of the hypnic bursts of REM. Results obtained after spinal cord section indicate that both the tonic and the phasic depression of the spinal reflexes induced by eserine are due to active inhibitory influences originating from supraspinal structures. A complete bilateral destruction of the vestibular nuclei or limited to the medial and descending vestibular nuclei abolishes not only the cholinergically induced bursts of REM, as reported in a previous paper, but also the related phasic depression of the monosynaptic reflexes. These findings can be related with previous observations showing that a bilateral lesion of the vestibular nuclei abolishes the REM bursts of desynchronized sleep, as well as the related phasic inhibition of the spinal reflexes. The tonic depression of the monosynaptic reflexes induced by the anticholinesterase, on the other hand, remains unmodified by this vestibular lesion. This depression, therefore, can be attributed to supraspinal descending inhibitory volleys originating from extravestibular structures.  相似文献   

3.
The oculomotor pattern which appears in intact preparations during desynchronized sleep is characterized by the irregular occurrence of isolated ocular movements and bursts of rapid eye movements (REM). This complex oculomotor pattern results from the activity of two premotor structures which influence the extraocular motoneurons during this phase of sleep: one is located in the pontine reticular formation, the other in the vestibular nuclei. In the decerebrate preparation the intravenous injection of an anticholinesterase leads to the appearance of a typical pattern of oculomotor activity, which differs from that occurring during physiological sleep in so far as it consists quite exclusively of bursts of REM which appear at very regular intervals. Lesion experiments as well as unit recordings have shown that these bursts of REM depend in particular upon rhythmic discharges of the vestibular nuclear neurons. The underlying anatomical structures responsible for these bursts of REM are therefore the vestibular nuclei, the oculomotor nuclei and the oculo-orbital system. This mechanism is under the influence of cholinergic reticular neurons which generate the oculomotor rhythm. We have postulated the existence of a self-excitatory cholinergic system, located in the pontine reticular formation, whose steady discharge impinges upon an oscillatory neuronal system located in the dorso-lateral pontine tegmentum, which transforms the tonic input into a sinusoidal final output. We have assumed also that the periodic increases in the discharge frequency of this oscillatory system trigger a fast phase generator acting on the different components of the REM system, and that the behavior of each component follows a first-order differential equation. The state of excitation of the components of the system is defined as proportional to frequency of nerve impulses. Assuming ipsilateral and crossed connections, a pattern of oculomotor activity is obtained that simulates the experimental oculomotor output fairly well. The repetition of the eye jerks is described by a Fourier series. The model proposed in this paper may be taken as a first approach in describing the generation mechanism of REM, and as a theoretical guide to new experimental researches and the development of other more realistic models.  相似文献   

4.
The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic motor output to subserve balance and locomotion, as well as sensorimotor integration.  相似文献   

5.
Researchers studied the convergence of the vertical posterior semicircular canal (PC), saccular nerves (SAC), utricular nerves (UT), and horizontal semicircular canal nerves (HC) on single vestibular neurons. The vestibular neurons were categorized by their innervating targets. Vestibular neurons were classified as vestibulospinal proper neurons (VS), vestibulo-ocular proper neurons (VO), vestibulo-oculo-spinal neurons sending axon collaterals to the extraocular motoneuron pools and spinal cord (VOS), and vestibular nucleus neurons without axons to the oculomotor nuclei or the spinal cord (V). Results indicate that the percentage of convergence of VS neurons was higher that that of neurons sending axons to the oculomotor nuclei (VO and VOS). They conclude that the convergence of canal and otolith inputs likely contributes mainly to vestibulospinal reflexes by sending inputs to the neck and other muscles during head inclination, which creates the combined stimuli of angular and linear acceleration.  相似文献   

6.
The vestibular system participates in cardiovascular regulation during postural changes. In prior studies (Holmes MJ, Cotter LA, Arendt HE, Cas SP, and Yates BJ. Brain Res 938: 62-72, 2002, and Jian BJ, Cotter LA, Emanuel BA, Cass SP, and Yates BJ. J Appl Physiol 86: 1552-1560, 1999), transection of the vestibular nerves resulted in instability in blood pressure during nose-up body tilts, particularly when no visual information reflecting body position in space was available. However, recovery of orthostatic tolerance occurred within 1 wk, presumably because the vestibular nuclei integrate a variety of sensory inputs reflecting body location. The present study tested the hypothesis that lesions of the vestibular nuclei result in persistent cardiovascular deficits during orthostatic challenges. Blood pressure and heart rate were monitored in five conscious cats during nose-up tilts of varying amplitude, both before and after chemical lesions of the vestibular nuclei. Before lesions, blood pressure remained relatively stable during tilts. In all animals, the blood pressure responses to nose-up tilts were altered by damage to the medial and inferior vestibular nuclei; these effects were noted both when animals were tested in the presence and absence of visual feedback. In four of the five animals, the lesions also resulted in augmented heart rate increases from baseline values during 60 degrees nose-up tilts. These effects persisted for longer than 1 wk, but they gradually resolved over time, except in the animal with the worst deficits. These observations suggest that recovery of compensatory cardiovascular responses after loss of vestibular inputs is accomplished at least in part through plastic changes in the vestibular nuclei and the enhancement of the ability of vestibular nucleus neurons to discriminate body position in space by employing nonlabyrinthine signals.  相似文献   

7.
The technique of matrix analysis is used to compare the connectivity between vestibular neurons and oculomotor neurons of the two eyes that would generate a conjugate vestibulo-ocular reflex (VOR). The technique shows that the connectivity is normally anatomically symmetric. The technique is also used to determine the types and loci of adaptation within the VOR that will maintain conjugacy. Adaptation is divided into1) that evoked by changes in visual feedback, which requires VOR or system-specific changes and2) that produced by changes in the canals or muscles, which requires deficit-specific adaptation. In the former case, the adaptation could best be achieved by an additive alteration of the vestibularmotoneuron projections. In the latter case, the appropriate adaptations would be serial, multiplicative changes, applied at the level of the vestibular neurons when the canals are at fault or at the level of the motoneurons of the eye whose muscles are impaired. The analysis thus suggests multiple loci of plasticity within the VOR, specialized for adapting to different deficits.  相似文献   

8.
Recent work on the coding of spatial information in central otolith neurons has significantly advanced our knowledge of signal transformation from head-fixed otolith coordinates to space-centered coordinates during motion. In this review, emphasis is placed on the neural mechanisms by which signals generated at the bilateral labyrinths are recognized as gravity-dependent spatial information and in turn as substrate for otolithic reflexes. We first focus on the spatiotemporal neuronal response patterns (i.e. one- and two-dimensional neurons) to pure otolith stimulation, as assessed by single unit recording from the vestibular nucleus in labyrinth-intact animals. These spatiotemporal features are also analyzed in association with other electrophysiological properties to evaluate their role in the central construction of a spatial frame of reference in the otolith system. Data derived from animals with elimination of inputs from one labyrinth then provide evidence that during vestibular stimulation signals arising from a single utricle are operative at the level of both the ipsilateral and contralateral vestibular nuclei. Hemilabyrinthectomy also revealed neural asymmetries in spontaneous activity, response dynamics and spatial coding behavior between neuronal subpopulations on the two sides and as a result suggested a segregation of otolith signals reaching the ipsilateral and contralateral vestibular nuclei. Recent studies have confirmed and extended previous observations that the recovery of resting activity within the vestibular nuclear complex during vestibular compensation is related to changes in both intrinsic membrane properties and capacities to respond to extracellular factors. The bilateral imbalance provides the basis for deranged spatial coding and motor deficits accompanying hemilabyrinthectomy. Taken together, these experimental findings indicate that in the normal state converging inputs from bilateral vestibular labyrinths are essential to spatiotemporal signal transformation at the central otolith neurons during low-frequency head movements.  相似文献   

9.
Convergence of both afferents from the PC and saccular macula, and those from the PC and utricular macula on single vestibular neurons was noted by use of intercellular recording from vestibular neurons. Vestibular neurons were classified VO neurons (vestibulo-ocular proper neurons), VOS (Vestibulo-oculo-spinal neurons sending axon collaterals both to the extraocular motoneuron pools and to the spinal cord), VS neurons (vestibulospinal proper neurons) and V neurons (vestibular neurons without axons to the oculomotor nuclei or the spinal cord) on the basis of whether or not they responded antidromically to stimulation of the oculomotor nuclei and the spinal cord. Of the total 143 vestibular neurons recorded in the series of experiments on convergence of the PC and saccular afferents, 47 neurons (33%) were received inputs from both the PC and saccular nerves. Twenty-six of the 47 convergent neurons were identified as having the nature of VS neurons. Half (13/26) of those were activated monosynaptically from both the PC and saccular nerves. Only one saccular-activated neuron without PC inputs sent an axon to the oculomotor nuclei. In the other series of experiments on the convergence of the PC and utricular afferents, 41 (37%) of 111 vestibular neurons were proved to converge on inputs from both nerves. The majority (35/41) of the neurons received monosynaptic inputs from the PC nerve and polysynaptic EPSP-IPSP sequences from the utricular nerve, or vice versa. The ratio of PC-otolith convergent neurons among utricular-activated neurons (41/54, 76%) was higher than that among saccular activated neurons (47/88, 53%). The percentage of utricular alone neurons without PC inputs (13/111, 12%) was less than that of the saccular alone without PC inputs (41/145, 28%). In conclusion, the convergence of canal and otolith inputs likely contribute mainly to vestibulospinal reflexes including the vestibulocollic reflex, by sending inputs to the neck and other muscles during head inclination which creates the combined stimuli of angular and linear acceleration.  相似文献   

10.
11.
Glycogen phosphorylase (GP) and cytochrome oxidase (CO) activities were mapped histochemically in the brain of the turtle Trachemys dorbigni. In the telencephalon, both activities occurred in the olfactory bulb, in all cortical areas, in the dorsal ventricular ridge, striatum, primordium hippocampi and olfactory tubercle. In the diencephalon, they were identified in some areas of the hypothalamus, and in rotundus and geniculate nuclei. Both reactions were detected in the oculomotor, trochlear, mesencephalic trigeminal nuclei, the nucleus of the posterior commissure, torus semicircularis, substantia nigra and ruber and isthmic nuclei of the mesencephalon. In all layers of the optic tectum GP activity was found, but CO only labelled the stratum griseum centrale. In the medulla oblonga both enzymes appear in the reticular, raphe and vestibular nuclei, locus coeruleus and nuclei of cranial nerves. In the cerebellum, the granular and molecular layers, and the deep cerebellar nuclei were positive for both enzymes. The Purkinje cells were only reactive for CO. In the spinal cord, motor and commissural neurones exhibited a positive reaction for the two enzymes. However, CO also occurred in the marginal nucleus and in the lateral funiculus. These results may be useful as a basis for subsequent studies on turtle brain metabolism.  相似文献   

12.
Although the extraocular muscles contain stretch receptors it is generally believed that their afferents exert no influence on the control of eye movement. However, we have shown previously that these afferent signals reach various brainstem centres concerned with eye movement, notably the vestibular nuclei, and that the decerebrate pigeon is a favourable preparation in which to study their effects. If the extraocular muscle afferents do influence oculomotor control from moment-to-moment they should exert a demonstrable effect on the oculomotor nuclei. We now present evidence that extraocular muscle afferent signals do, indeed, alter the responses of units in an oculomotor nucleus (the abducens, VI nerve nucleus, which supplies the lateral rectus muscle) to horizontal, vestibular stimulation induced by sinusoidal oscillation of the bird. Such stimuli evoke a vestibulo-ocular reflex in the intact bird. The extraocular stretch receptors were activated by passive eye movement within the pigeon's saccadic range; such movements modified the vestibular responses of all 19 units studied which were all, histologically, in the abducens nucleus. The magnitude of the effects, purely inhibitory in 15 units, depended both on the amplitude and the velocity of the eye movement and most units showed selectivity for particular combinations of plane (e.g. horizontal versus vertical) and direction (e.g. rostral versus caudal) of eye movement. The results show that an afferent signal from the extraocular muscles influences vestibularly driven activity in the abducens nucleus to which it carries information related to amplitude, velocity, plane and direction of eye movement in the saccadic range. They thus strongly support the view that extraocular afferent signals are involved in the control of eye movement.  相似文献   

13.
The cellular origin of the brainstem projections to the oculomotor nucleus in the rabbit has been investigated by using free (HRP) and lectin-conjugated horseradish peroxidase (WGA-HRP). Following injections of these tracers into the somatic oculomotor nucleus (OMC), retrogradely labeled cells have been observed in numerous brainstem structures. In particular, bilateral labeling has been found in the four main subdivisions of the vestibular complex, predominantly in the superior and medial vestibular nuclei and the interstitial nucleus of Cajal, while ipsilateral labeling was found in the rostral interstitial nucleus of the medial longitudinal fascicle (Ri-MLF), the Darkschewitsch and the praepositus nuclei. Neurons labeled only contralaterally have been identified in the following structures: mesencephalic reticular formation dorsolateral to the red nucleus, abducens internuclear neurons, group Y, several areas of the lateral and medial regions of the pontine and medullary reticular formation, ventral region of the lateral cerebellar nucleus and caudal anterior interpositus nucleus. This study provides also information regarding differential projections of some centers to rostral and caudal portions of the OMC. Thus, the rostral one-third appears to receive predominant afferents from the superior and medial vestibular nuclei, while the caudal two-thirds receive afferents from all the four vestibular nuclei. Finally, the group Y sends afferents to the middle and caudal, but not to the rostral OMC.  相似文献   

14.
The vestibulo-ocular reflex (VOR) and other oculomotor subsystems such as pursuit and saccades are ultimately mediated in the brainstem by premotor neurons in the vestibular and prepositus nuclei that relay eye movement commands to extraocular motoneurons. The premotor neurons receive vestibular signals from canal afferents. Canal afferent frequency responses have a component that can be characterized as a fractional-order differentiation (d k x/dt k where k is a nonnegative real number). This article extends the use of fractional calculus to describe the dynamics of motor and premotor neurons. It suggests that the oculomotor integrator, which converts eye velocity into eye position commands, may be of fractional order. This order is less than one, and the velocity commands have order one or greater, so the resulting net output of motor and premotor neurons can be described as fractional differentiation relative to eye position. The fractional derivative dynamics of motor and premotor neurons may serve to compensate fractional integral dynamics of the eye. Fractional differentiation can be used to account for the constant phase shift across frequencies, and the apparent decrease in time constant as VOR and pursuit frequency increases, that are observed for motor and premotor neurons. Fractional integration can reproduce the time course of motor and premotor neuron saccade-related activity, and the complex dynamics of the eye. Insight into the nature of fractional dynamics can be gained through simulations in which fractional-order differentiators and integrators are approximated by sums of integer-order high-pass and low-pass filters, respectively. Fractional dynamics may be applicable not only to the oculomotor system, but to motor control systems in general.  相似文献   

15.
The influence of the efferent vestibular system on vestibulo-spinal activity was investigated during experiments on guinea pigs decerebrated and following cerebellar extirpation at precollincular level. Efferent vestibular neurons forming compact groups ventromedially to the vestibular nuclei were excited by means of electrical stimulation. Electromyographic activity in the triceps brachii extensor muscles of the right and left forelimbs was adopted as a test reaction (crossed extensor reflex and locomotor activity produced by stimulating the mesencephalic locomotor region). Adequate stimulation of the vestibular apparatus was accomplished by static tilting and cyclic shifting of the animal around its longitudinal axis at angles of ±20°. The efferent vestibular system was found to exert a bilateral inhibitory action on vestibulo-spinal activity. Vestibular efferent stimulation produced a reduction in the intensity of vestibulo-fugal influences: it does not change the dynamics of vestibulo-spinal reflex effects, however. Mechanisms of vestibular efferent action on vestibular control of spinal motor activity are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 78–86, January–February, 1989.  相似文献   

16.
Afferents to the fetal rat cerebellum have been studied in fixed tissue with the fluorescent tracer, 1,1'-dioctadecyl-3,3,3',3'tetramethylindocarbocyanine perchlorate (DiI). The dye was applied to the cerebellar anlage at ages from embryonic day (E) 12 to birth (P0). Central processes of vestibular ganglion cells were found to be the first identifiable afferents to the cerebellum, being present at least by E13 and perhaps as early as E12. Ipsilateral spinocerebellar fibres may be labelled from E15, vestibular nuclei (both ipsi- and contralateral) also from E15, while contralateral inferior olivary nuclei could not be retrogradely labelled until E17. Trigeminocerebellar neurons in the interpolaris subnucleus of the nucleus of the trigeminal spinal tract and neurons of the lateral reticular nucleus were not labelled until E22 and P0, respectively. Finally, contralateral pontine nuclei were retrogradely labelled from the cerebellum after birth.  相似文献   

17.
The aim of this study was to investigate the potential plasticity of the vestibular system, in structural and biochemical terms, at the level of the gravity receptors (the sensory hair cells), the primary neurons relaying the sensory signals (the vestibular ganglion neurons) and their projections into the vestibular nuclei. We studied the biochemical differentiation of the sensory cells and of the vestibular ganglion by investigating which calcium-binding proteins were present. We studied the development of peripheral synaptic connections of the efferent system by investigating the distribution of CGRP (calcitonin-gene related-peptide) and we also studied the cerebellar synaptic connections in the vestibular nuclei, as identified by the presence of calbindin. Putative changes were studied after a 17-day episode of microgravity (Neurolab STS-90), in developing rats between postnatal days 8 and 25. The extent to which these changes could be caused by alterations in gravity was determined by examining sensory and nervous structures not involved in gravity detection, the cochlea and the cochlear nuclei.  相似文献   

18.
Extracellular recordings were made during vestibular stimulation from an in vitro turtle brain stem in which the temporal bones remained attached. Under visual control, microelectrodes were slowly advanced into the vestibular nucleus (VN) while we rotated the brain and searched for a single isolated unit whose spike activity was modulated by the lateral semicircular canals. In some experiments, responses were shown to be due to stimulation of the lateral canals, either by positioning the brains in forward or backward pitch during horizontal rotation or by plugging the vertical canals with wax. VN neurons usually had low spontaneous activity and rectified sinusoidal responses to sinusoidal stimulation. Spike response histograms were averaged from many stimulus cycles and were then fit to a sine function. The fitted phase and amplitude parameters were plotted relative to stimulus frequency and amplitude. The sample of VN cells were quite heterogeneous. Using stimuli at 1 Hz, however, each cell's response phase was weakly correlated with the slope of the plots of response amplitude versus frequency so that a cell could be categorized as sensitive to velocity or acceleration and as sensitive to ipsiversive or contraversive rotation, depending on whether its phase was near −180°, −90°, 0°, or 90°, and whether the gain exceeded 0.4 spikes/s per °/s. The properties of these VN cells suggest that there is substantial complexity in the vestibular responses at this first site of central vestibular processing. These data are compared to that of other species where such vestibular signals play an important role in oculomotor and spinal reflexes. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 99–177, 1997  相似文献   

19.

Introduction

Dual-task performance is known to affect postural stability in children. This study focused on the effect of oculomotor tasks like saccadic eye movements on postural stability, studied in a large population of children by recording simultaneously their eye movements and posture.

Materials and Methods

Ninety-five healthy children from 5.8 to 17.6 years old were examined. All children were free of any vestibular, neurological, ophtalmologic and orthoptic abnormalities. Postural control was measured with a force platform TechnoConcept®, and eye movements with video oculography (MobilEBT®). Children performed two oculomotor tasks: fixation of a stable central target and horizontal saccades. We measured the saccade latency and the number of saccades during fixation as well as the surface, length and mean velocity of the center of pressure.

Results

During postural measurement, we observed a correlation between the age on the one hand and a decrease in saccade latency as well as an improvement in the quality of fixation on the other. Postural sway decreases with age and is reduced in the dual task (saccades) in comparison with a simple task of fixation.

Discussion - Conclusion

These results suggest a maturation of neural circuits controlling posture and eye movements during childhood. This study also shows the presence of an interaction between the oculomotor system and the postural system. Engaging in oculomotor tasks results in a reduction of postural sway.  相似文献   

20.
To study the effect of exercise and dehydration on the postural sensory-motor strategies, 10 sportsmen performed a 45 min-exercise on a cycle ergometer at intensity just below the ventilatory threshold without fluid intake. They performed, before, immediately and 20 min after exercise, a sensory organization test to evaluate balance control in six different sensory situations, that combine three visual conditions (eyes open, eyes closed and sway-referenced visual surround motion) with two platform conditions (stable platform, sway-referenced platform motion). Blood samples were collected before and after exercise. Exercise induced a mild dehydration, characterized by body mass loss and increase in proteinemia. Postural performances decreased immediately after exercise, mainly in the standard situation (eyes open, stable visual surround and platform) and when only the vestibular cue was reliable (eyes closed and sway-referenced platform). Moreover, the decreased use of vestibular input was correlated with the dehydration level. Finally, postural performances normalized 20 min after exercise. Even though muscular fatigue could explain the decrease in postural performances, vestibular fluid modifications may also be involved by its influence on the intralabyrinthine homeostasis, lowering thus the contribution of vestibular information on balance control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号