首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Src homology 3 (SH3) domains mediate specific protein-protein interactions crucial for signal transduction and protein subcellular localization. Upon phagocyte stimulation, two SH3 domain-containing cytosolic components of the NADPH oxidase, p47phox and p67phox, are recruited to the membrane where they interact with flavocytochrome b558 to form an activated microbicidal oxidase. Deletion analysis of p47phox and p67phox in transfected K562 cells demonstrated multiple SH3-mediated interactions between p47phox and the transmembrane flavocytochrome b558 and also between the cytosolic components themselves. The core region of p47phox (residues 151-284), spanning both SH3 domains, was required for flavocytochrome-dependent translocation and oxidase activity in whole cells. Furthermore, translocation of p67phox occurred through interactions of its N-terminal domain (residues 1-246) with p47phox SH3 domains. Both of these interactions were promoted by PMA activation of cells and were influenced by the presence of other domains in both cytosolic factors. Deletion analysis also revealed a third SH3 domain-mediated interaction involving the C-termini of both cytosolic factors, which also promoted p67phox membrane translocation. These data provide evidence for a central role for p47phox in regulation of oxidase assembly through several SH3 domain interactions.  相似文献   

2.
Activation of the phagocyte NADPH oxidase requires the regulatory proteins p47(phox) and p67(phox), each harboring two SH3 domains. p67(phox) interacts with p47(phox) via simultaneous binding of the p67(phox) C-terminal SH3 domain to both the proline-rich region (PRR) of amino acid residues 360-369 and its C-terminally flanking region of p47(phox); the role of the interaction in oxidase regulation has not been fully understood. Here we show that the p47(phox)-p67(phox) interaction is disrupted not only by deletion of the PRR but also by substitution for basic residues in the extra-PRR (K383E/K385E). The substitution impaired oxidase activation partially in vitro and much more profoundly in vivo, indicating the significance of the p47(phox) extra-PRR. Replacement of Ser-379 in the extra-PRR, a residue known to undergo phosphorylation in stimulated cells, by aspartate attenuates the interaction and thus results in a defective superoxide production, suggesting that phosphorylation of Ser-379 is involved in oxidase regulation.  相似文献   

3.
Activation of phagocyte NADPH oxidase requires interaction between p47(phox) and p22(phox). p47(phox) in resting phagocytes does not bind p22(phox). Phosphorylation of serines in the p47(phox) C terminus enables binding to the p22(phox) C terminus by inducing a conformational change in p47(phox) that unmasks the SH3A domain. We report that an arginine/lysine-rich region in the p47(phox) C terminus binds the p47(phox) SH3 domains expressed in tandem (SH3AB) but does not bind the individual N-terminal SH3A and C-terminal SH3B domains. Peptides matching amino acids 301-320 and 314-335 of the p47(phox) arginine/lysine-rich region block the p47(phox) SH3AB/p22(phox) C-terminal and p47(phox) SH3AB/p47(phox) C-terminal binding and inhibit NADPH oxidase activity in vitro. Peptides with phosphoserines substituted for serines 310 and 328 do not block binding and are poor inhibitors of oxidase activity. Mutated full-length p47(phox) with aspartic acid substitutions to mimic the effects of phosphorylations at serines 310 and 328 bind the p22(phox) proline-rich region in contrast to wild-type p47(phox). We conclude that the p47(phox) SH3A domain-binding site is blocked by an interaction between the p47(phox) SH3AB domains and the C-terminal arginine/lysine-rich region. Phosphorylation of serines in the p47(phox) C terminus disrupts this interaction leading to exposure of the SH3A domain, binding to p22(phox), and activation of the NADPH oxidase.  相似文献   

4.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

5.
SH3 domains are found in many signal transduction proteins where they mediate protein-protein binding by recognizing specific peptides rich in proline. Based on the analysis of sequence alignment data, the NADPH oxidase p67(phox) C-terminal SH3 domain possesses a typical compact beta-barrel consisting of five beta-strands arranged in two antiparallel beta-sheets of three and two beta-strands. Multiple amino acid substitutions were made at beta e and its flanking residues to determine the role of the boundary sequences in binding activity and conformational specificity of the domain. Analysis of amino acid P55 indicated that all mutants were completely abolished in their binding activities. The substitution of F58 with Y58 showed no effect of the binding, whereas substitution with stop codon abolished activity. Furthermore, when amino acid V59 was substituted with stop codon, activity was also completely abolished. Substitution of E60 with stop codon showed no effect of binding. Moreover, our data show that V59 particularly could not be replaced by Leu. Taken together, these data suggest that V59 may not only contribute the exact boundary site but also play on the specificity for protein-protein interactions in phagocyte NADPH oxidase.  相似文献   

6.
The NADPH oxidase of phagocytes is a membrane-bound heterodimeric flavocytochrome which catalyses the transfer of electrons from NADPH in the cytoplasm to oxygen in the phagosome. A number of cytosolic proteins are involved in its activation/deactivation: p47phox, p67phox, p40phox and the small GTP-binding protein, rac. The cytosolic phox proteins interact with the cytoskeleton in human neutrophils and, in particular, an interaction with coronin has been reported (Grogan A., Reeves, E., Keep, N. H., Wientjes, F., Totty, N., Burlingame, N. L., Hsuan, J., and Segal, A. W. (1997) J. Cell Sci. 110, 3071-3081). Here, we report on the interaction of another cytoskeletal protein, moesin, with the phox proteins. Moesin belongs to the ezrin-radixin-moesin family of F-actin-binding proteins and we show that it binds to p47phox and p40phox in a phosphoinositide-dependent manner. Furthermore, we show that its N-terminal part binds to the PX domain of p47phox and p40phox.  相似文献   

7.
Phox (PX) domains are phosphoinositide (PI)-binding domains with broad PI specificity. Two cytosolic components of NADPH oxidase, p40(phox) and p47(phox), contain PX domains. The PX domain of p40(phox) specifically binds phosphatidylinositol 3-phosphate, whereas the PX domain of p47(phox) has two lipid binding sites, one specific for phosphatidylinositol 3,4-bisphosphate and the other with affinity for phosphatidic acid or phosphatidylserine. To delineate the mechanisms by which these PX domains interact with PI-containing membranes, we measured the membrane binding of these domains and respective mutants by surface plasmon resonance and monolayer techniques and also calculated the electrostatic potentials of the domains as a function of PI binding. Results indicate that membrane binding of both PX domains is initiated by nonspecific electrostatic interactions, which is followed by the membrane penetration of hydrophobic residues. The membrane penetration of the p40(phox) PX domain is induced by phosphatidylinositol 3-phosphate, whereas that of the p47(phox) PX domain is triggered by both phosphatidylinositol 3,4-bisphosphate and phosphatidic acid (or phosphatidylserine). Studies of enhanced green fluorescent protein-fused PX domains in HEK293 cells indicate that this specific membrane penetration is also important for subcellular localization of the two PX domains. Further studies on the full-length p40(phox) and p47(phox) proteins showed that an intramolecular interaction between the C-terminal Src homology 3 domain and the PX domain prevents the nonspecific monolayer penetration of p47(phox), whereas such an interaction is absent in p40(phox).  相似文献   

8.
9.
Prodigiosins are natural red pigments that have multi-biological activities. Recently, we discovered a marine bacterial strain, which produces a red pigment. Extensive two-dimensional nuclear magnetic resonance and mass spectrometry analysis showed that the pigment is a prodigiosin analogue (PG-L-1). Here, we investigated the effect of PG-L-1 on NADPH oxidase activity in macrophage cells. PG-L-1 significantly inhibited superoxide anion (O(2)(-)) production by phorbol 12-myristate 13-acetate (PMA)-stimulated RAW 264.7 cells, a mouse macrophage cell line. The ED(50) value was estimated to be approximately 0.3 microM. PG-L-1 had no direct scavenging effect on O(2)(-) generated by hypoxanthine/xanthine oxidase system in electron spin resonance-spin trapping determinations, suggesting that this compound directly acts on the O(2)(-) production system, NADPH oxidase, in macrophage cells. We further investigated the effect of PG-L-1 on the behaviour of the cytosolic components of the NADPH oxidase, p67(phox), p47(phox), p40(phox), Rac and protein kinase C (PKC), in PMA-stimulated RAW 264.7 cells. Although PG-L-1 showed no effect on the activation of PKC, the immunoblotting analysis using specific antibodies showed that PG-L-1 strongly inhibits the association of p47(phox) and Rac in the plasma membrane of PMA-stimulated RAW 264.7 cells. These results suggest that PG-L-1 inactivates NADPH oxidase through the inhibition of the binding of p47(phox) and Rac to the membrane components of NADPH oxidase.  相似文献   

10.
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here, we investigate the mechanism of angiotensin II-induced endothelial NADPH oxidase activation. Angiotensin II (100 nmol/liter)-induced reactive oxygen species production (as measured by dichlorohydrofluorescein fluorescence or lucigenin chemiluminescence) was completely absent in coronary microvascular endothelial cells isolated from p47(phox) knockout mice. Transfection of p47(phox) cDNA into p47(phox-/-) cells restored the angiotensin II response, whereas transfection of antisense p47(phox) cDNA into wild-type cells depleted p47(phox) and inhibited the angiotensin II response. In unstimulated human microvascular endothelial cells, there was significant p47(phox)-p22(phox) complex formation but minimal detectable p47(phox) phosphorylation. Angiotensin II induced rapid serine phosphorylation of p47(phox) (within 1 min, peaking at approximately 15 min), a 1.9 +/- 0.1-fold increase in p47(phox)-p22(phox) complex formation and a 1.6 +/- 0.2-fold increase in NADPH-dependent O(2)-* production (p < 0.05). p47(phox) was redistributed to "nuclear" and membrane-enriched cell fractions. These data indicate that angiotensin II-stimulated endothelial NADPH oxidase activity is regulated through serine phosphorylation of p47(phox) and its enhanced binding to p22(phox).  相似文献   

11.
The PX domain of p47phox is thought to be involved in autoinhibition. However, when the domain was deleted, the ability to activate the phagocyte NADPH oxidase was markedly diminished. We have mutated the proline-rich region of the PX domain and examined the mutants for the ability to activate. Substitution of Gln for Pro-73 of p47phox(1-286) (P73Q) resulted in a considerably lower activity than the wild type and P73Q had a much lower affinity for the oxidase complex. Whereas, Gln substitution for Pro-76 (P76Q) showed a slightly enhanced activation and the mutant had a slightly higher affinity for the complex than the wild type. Affinity for p67phox(1-210) was slightly decreased either by P73Q or P76Q. Optimal SDS concentration for the activation was lowered by these mutations. Binding of PX domain with phosphatidylinositol-3,4-bisphosphate was diminished by P73Q mutation. The results in this study suggest that Pro-73 has a role in interaction with the catalytic component cytochrome b558.  相似文献   

12.
The catalytic core of a superoxide-producing NADPH oxidase (Nox) in phagocytes is gp91phox/Nox2, a membrane-integrated protein that forms a heterodimer with p22phox to constitute flavocytochrome b558. The cytochrome becomes activated by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. Here we describe the cloning of human cDNAs for novel proteins homologous to p47phox and p67phox, designated p41nox and p51nox, respectively; the former is encoded by NOXO1 (Nox organizer 1), and the latter is encoded by NOXA1 (Nox activator 1). The novel homologue p41nox interacts with p22phox via the two tandem SH3 domains, as does p47phox. The protein p51nox as well as p67phox can form a complex with p47phox and with p41nox via the C-terminal SH3 domain and binds to GTP-bound Rac via the N-terminal domain containing four tetratricopeptide repeat motifs. These bindings seem to play important roles, since p47phox and p67phox activate the phagocyte oxidase via the same interactions. Indeed, p41nox and p51nox are capable of replacing the corresponding classical homologue in activation of gp91phox. Nox1, a homologue of gp91phox, also can be activated in cells, when it is coexpressed with p41nox and p51nox, with p41nox and p67phox, or with p47phox and p51nox; in the former two cases, Nox1 is partially activated without any stimulants added, suggesting that p41nox is normally in an active state. Thus, the novel homologues p41nox and p51nox likely function together or in combination with a classical one, thereby activating the two Nox family oxidases.  相似文献   

13.
The neutrophil NADPH oxidase produces superoxide anions in response to infection. This reaction is activated by association of cytosolic factors, p47phox and p67phox, and a small G protein Rac with the membranous flavocytochrome b558. Another cytosolic factor, p40phox, is associated to the complex and is reported to play regulatory roles. Initiation of the NADPH oxidase activation cascade has been reported as consecutive to phosphorylation on serines 359/370 and 379 of the p47phox C terminus. These serines surround a polyproline motif that can interact with the Src homology 3 (SH3) module of p40phox (SH3p40) or the C-terminal SH3 of p67phox (C-SH3p67). The latter one presents a higher affinity in the resting state for p47phox. A change in SH3 binding preference following phosphorylation has been postulated earlier. Here we report the crystal structures of SH3p40 alone or in complex with a 12-residue proline-rich region of p47phox at 1.46 angstrom resolution. Using intrinsic tryptophan fluorescence measurements, we compared the affinity of the strict polyproline motif and the whole C terminus peptide with both SH3p40 and C-SH3p67. These data reveal that SH3p40 can interact with a consensus polyproline motif but also with a noncanonical motif of the p47phox C terminus. The electrostatic surfaces of both SH3 are very different, and therefore the binding preference for C-SH3p67 can be attributed to the polyproline motif recognition and particularly to the Arg-368p47 binding mode. The noncanonical motif contributes equally to interaction with both SH3. The influence of serine phosphorylation on residues 359/370 and 379 on the affinity for both SH3 domains has been checked. We conclude that contrarily to previous suggestions, phosphorylation of Ser-359/370 does not modify the SH3 binding affinity for both SH3, whereas phosphorylation of Ser-379 has a destabilizing effect on both interactions. Other mechanisms than a phosphorylation induced switch between the two SH3 must therefore take place for NADPH oxidase activation cascade to start.  相似文献   

14.
The production of reactive oxygen species (ROS) is central to the etiology of endothelial dysfunction in sepsis. Endothelial cells respond to infection by activating NADPH oxidases that are sources of intracellular ROS and potential targets for therapeutic administration of antioxidants. Ascorbate is an antioxidant that accumulates in these cells and improves capillary blood flow, vascular reactivity, arterial blood pressure, and survival in experimental sepsis. Therefore, the present study tested the hypothesis that ascorbate regulates NADPH oxidases in microvascular endothelial cells exposed to septic insult. We observed that incubation with Escherichia coli lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) increased NADPH oxidase activity and expression of the enzyme subunit p47phox in mouse microvascular endothelial cells of skeletal muscle origin. Pretreatment of the cells with ascorbate prevented these increases. Polyethylene glycol-conjugated catalase and selective inhibitors of Jak2 also abrogated induction of p47phox. Exogenous hydrogen peroxide induced p47phox expression that was prevented by pretreatment of the cells with ascorbate. LPS+IFNgamma or hydrogen peroxide activated the Jak2/Stat1/IRF1 pathway and this effect was also inhibited by ascorbate. In conclusion, ascorbate blocks the stimulation by septic insult of redox-sensitive Jak2/Stat1/IRF1 signaling, p47phox expression, and NADPH oxidase activity in microvascular endothelial cells. Because endothelial NADPH oxidases produce ROS that can cause endothelial dysfunction, their inhibition by ascorbate may represent a new strategy for sepsis therapy.  相似文献   

15.
Activation of the superoxide-producing phagocyte NADPH oxidase requires interaction between p47(phox) and p22(phox), which is mediated via the SH3 domains of the former protein. This interaction is considered to be induced by exposure of the domains that are normally masked by an intramolecular interaction with the C-terminal region of p47(phox). Here we locate the intramolecular SH3-binding site at the region of amino acid residues 286-340, where Ser-303, Ser-304, and Ser-328 that are among several serines known to become phosphorylated upon cell stimulation exist. Simultaneous replacement of the three serines in p47(phox) with aspartates or glutamates, each mimicking phosphorylated residues, is sufficient for disruption of the intramolecular interaction and resultant access to p22(phox). The triply mutated proteins are also capable of activating the NADPH oxidase without in vitro activators such as arachidonate under cell-free conditions. In a whole-cell system where expression of the wild-type p47(phox) reconstitutes the stimulus-dependent oxidase activity, substitution of the kinase-insensitive residue alanine for Ser-328 as well as for Ser-303/Ser-304 leads to a defective production of superoxide. These findings suggest that phosphorylation of the three serines in p47(phox) induces a conformational change to a state accessible to p22(phox), thereby activating the NADPH oxidase.  相似文献   

16.
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the production of O2- from oxygen using NADPH as the electron donor. Dormant in resting neutrophils, the enzyme acquires catalytic activity when the cells are exposed to appropriate stimuli. During activation, the cytosolic oxidase components p47phox and p67phox migrate to the plasma membrane, where they associate with cytochrome b558, a membrane-integrated flavohemoprotein, to assemble the active oxidase. In whole cells and under certain circumstances in the cell-free system, the phosphorylation of p47phox mediates the activation process. It has been proposed that conformational changes in the protein structure of cytosolic factor p47phox may be an important part of the activation mechanism. The total protein steady-state intrinsic fluorescence (an emission maximum of 338 nm) exhibited by the tryptophan residues of p47phox was substantially decreased, reflecting on the conformational change that occurs when p47phox was phosphorylated with protein kinase C. We show here that the phosphorylation of p47phox by protein kinase A or mitogen-activated protein kinase, however, had little effect on the intrinsic fluorescence of p47phox. In addition, the present experiments indicate that in the mutant p47phoxS379A, only the single S-->A mutation appears to be a major importance for the function of p47phox, which is able to undergo the change in conformation that takes place when p47phox is phosphorylated by protein kinase C.  相似文献   

17.
The production of reactive oxygen species by the NADPH oxidase complex of phagocytes plays a critical role in our defence against bacterial and fungal infections. The PX domains of two oxidase components, p47(phox) and p40(phox), are known to bind phosphoinositide products of PI3Ks but the physiological roles of these interactions are unclear. We have created mice which carry an R58A mutation in the PX domain of their p40(phox) gene, which selectively prevents binding to PtdIns3P. p40(phoxR58A/R58A) embryos do not develop normally but p40(phoxR58A/-) mice are viable and neutrophils from these animals exhibit significantly reduced oxidase responses compared to those from their p40(phox+/-) siblings (e.g. 60% reduced in response to phagocytosis of Staphylococcus aureus). Wortmannin inhibition of the S. aureus oxidase response correlates with inhibition of phagosomal PtdIns3P accumulation and overlaps with the reduction in this response caused by the R58A mutation, suggesting PI3K regulation of this response is substantially dependent on PtdIns3P-binding to p40(phox). p40(phoxR58A/-) mice are significantly compromised in their ability to kill S. aureus in vivo, defining the physiological importance of this interaction.  相似文献   

18.
An NADPH oxidase is thought to be a main source of vascular superoxide (O(2)(-)) production. The functional role of this oxidase, however, and the contribution of the different subunits of the enzyme to cellular signaling are still incompletely understood. We determined the role of the p47phox subunit of the oxidase in O(2)(-) generation and signaling in aortic rings and cultured smooth muscle cells (SMC) from wild-type (WT) and p47phox-deficient (p47phox -/-) mice. Basal O(2)(-) levels in aortae of p47phox -/- mice were lower than those in WT aortae. Infusion of [val(5)]-angiotensin II increased O(2)(-) levels in aortae from WT more than in aortae from p47phox -/- mice. O(2)(-) generation was similar in quiescent SMC from WT and p47phox -/- mice. However, exposure to thrombin selectively increased O(2)(-) generation in VSMC from WT, but not from p47phox -/- mice. Thrombin-activated redox-mediated signal transduction and gene expression was attenuated in VSMC from p47phox -/- compared to cells from WT mice as determined by p38 MAP kinase activation and VEGF gene expression. We conclude that p47phox is important for vascular ROS production and redox-modulated signaling and gene expression in VSMC.  相似文献   

19.
The cell-free activation of human neutrophil NADPH oxidase is enhanced by actin, and actin filaments formed during activation are suggested to stabilize the oxidase. In an attempt to elucidate the mechanism, we examined the protein-protein interactions between actin and cytosolic components of the oxidase. Far-Western blotting using recombinant phox proteins showed that both alpha- and beta-actin interacted with p47(phox) and rac1, and weakly with rac2. A deletion mutant of p47(phox) proved that its C-terminal region was essential for the interaction. The dissociation constant (K(d)) for interaction between actin and p47(phox) was estimated to be 0.45 microM by surface plasmon resonance, and that between actin and rac1 or rac2 was 1.7 or 4.6 microM, respectively. Far-Western blotting using cytosol as a target showed an interaction between actin and endogenous p47(phox) and rac proteins. These results suggest that actin can directly interact with p47(phox) and possibly with rac in the cells.  相似文献   

20.
Glycated albumin, an early-glycation Amadori-modified protein, stimulates transforming growth factor-β (TGF-β) expression and increases the production of the extracellular matrix proteins in mesangial cells, contributing to the pathogenesis of diabetic nephropathy. Glycated albumin has been shown to increase NADPH oxidase-dependent superoxide formation in mesangial cells. However, the mechanisms are not well understood. Therefore, in the present studies, we determined the mechanisms by which glycated albumin activates NADPH oxidase in primary rat mesangial cells and its contribution to glycated albumin-induced TGF-β expression and extracellular matrix protein production. Our data showed that glycated albumin treatment stimulated NADPH oxidase activity and increased the formation of superoxide formation in rat mesangial cells. Moreover, glycated albumin treatment stimulated the expression and phosphorylation of p47phox, one of the cytosolic regulatory subunits of the NADPH oxidase. However, the levels of other NADPH oxidase subunits including Nox1, Nox2, Nox4, p22phox, and p67phox were not altered by glycated albumin. Moreover, siRNA-mediated knockdown of p47phox inhibited glycated albumin-induced NADPH oxidase activity and superoxide formation. Glycated albumin-induced TGF-β expression and extracellular matrix production (fibronectin) was also inhibited by p47phox knock down. Taken together, these data suggest that up-regulation of p47phox is involved in glycated albumin-mediated activation of NADPH oxidase, leading to glycated albumin-induced expression of TGF-β and extracellular matrix proteins in mesangial cells and contributing to the development of diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号