首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syntheses are described of some mono- and di-glycosylated analogues of vespulakinin 1. The solid phase procedure, based on the Fmoc chemistry, was used to prepare (Gal alpha)Thr3-vespulakinin 1, (Gal beta)Thr3-vespulakinin 1 and the di-glycosylated analogue ((Gal alpha)Thr3, (Gal alpha)Thr4-vespulakinin 1. The beta-glycosylated derivative was also prepared by the continuous flow variant of the Fmoc polyamide method. The synthesized glycopeptides were purified and characterized by amino acid analysis, optical rotation, analytical HPLC, 1H- and 13C-NMR and FAB-MS. Preliminary pharmacological experiments showed that the carbohydrate-free vespulakinin 1 is less active than bradykinin (about 0.3 times on a molar basis) when tested by guinea pig rectum contraction, and the two monoglycosylated analogues are equiactive (about 0.9 times the bradykinin activity). The most active derivative, the (Gal alpha)Thr3, (Gal alpha)Thr4-vespulakinin 1 analogue, was about 2.5 times as active as bradykinin.  相似文献   

2.
X Zou  D Liu  L Zhong  B Yang  Y Lou  Y Yin 《Carbohydrate polymers》2012,90(2):799-804
In this study we describe a method for highly specific enrichment of glycopeptides with boronic acid-functionalized chitosan polymeric nanospheres and matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS). This is the first time chitosan has been used to create nanosphere support material for selective enrichment of glycopeptides by modification with glycidyl methacrylate (GMA) and derivatization with 3-aminophenylboronic acid (APB). Due to their multifunctional chemical moieties, these 20-100nm chitosan-GMA-APB nanospheres have unique properties, such as good dispersibility, good biocompatibility and chemical stability, as well as augmented specificity with glycopeptides. Enrichment conditions were optimized by using trypsin digested glycoprotein horseradish peroxidase. The high specificity of chitosan-GMA-APB nanospheres was demonstrated by effectively enriching glycopeptides from a digest mixture of horseradish peroxidase and nonglycoproteins (bovine serum albumin (BSA)).  相似文献   

3.
M C Glick 《Biochemistry》1979,18(12):2525-2532
Comparisons of membrane glycopeptides from baby hamster kidney fibroblasts (BHK21/C13) and a clone transformed by Rous sarcoma virus (C13/B4) were made by using cells metabolically labeled with radioactive D-glucose and L-fucose. Most of the glycopeptides were metabolically labeled with both the general and the specific glycoprotein precursors. The glycopeptides obtained from the cell surface by controlled trypsinization were representative of the surface membrane as shown by comparing them with those of purified membrane preparations. The trypsin-removable glycopeptides from both cell types were further processed and examined by successive chromatography on Sephadex G-50 and DEAE-cellulose. The chromatographic distribution patterns showed that each cell type had glycopeptides of similar characteristics, although the proportions of the glycopeptides differed dramatically between the two cell types. After transformation there was an increase in the larger, more highly charged glycopeptides. This was verified by the increased sialic acid content in these glycopeptides. Some of the glycopeptides were homogeneous after the size and charge separations, since a variety of procedures did not separate them further. The apparent homogeneity and reasonably few species obtained may be due to the methods of isolation, with the procedures selecting particular glycopeptides from the external portion of the membrane. These results corroborate the concept and show for the first time that virus transformation is accompanied by an increase in certain species of glycopeptides rather than de novo synthesis.  相似文献   

4.
alpha-L-Fucosidase was purified from human liver to apparent homogeneity and subjected to exhaustive digestion with Pronase. The resulting glycopeptides were isolated by gel filtration on Sephadex G-50 and further fractionated by Bio-Gel P-4 chromatography. Five glycopeptide fractions were obtained. The structures of the carbohydrate portions of all glycopeptide components were fully characterized by a combination of 500-MHz 1H NMR spectroscopy and carbohydrate composition analysis. Fraction I contained disialyl diantennary glycopeptides of the N-acetyllactosamine type. Fractions II and III contained predominantly mono(sialyl-N-acetyllactosaminyl) diantennary glycopeptides with the NeuAc alpha(2----6)Gal beta(1----4)GlcNAc beta(1----2) branch attached to alpha(1----3)-linked Man in II and to alpha(1----6)-linked Man in III. The N-acetyllactosamine-type glycopeptides in fractions I to III have a small portion (10-15%) of their Asn-linked GlcNAc residues substituted by additional alpha(1----6)-linked Fuc. Also, a minor portion of the NeuAc residues appeared to be attached to Gal in alpha(2----3) rather than alpha(2----6) linkage. Fraction IV contained a mixture of larger-size oligomannoside-type glycopeptides with a variable number (6 to 9) of Man residues. Smaller-size oligomannoside-type glycopeptides were found in fraction V, containing 3 or 5 Man residues; a small portion (10%) of the Man3GlcNAc2Asn component appeared to contain in addition a Fuc residue in alpha(1----6) linkage to the Asn-bound GlcNAc. The overall ratio of oligomannoside-type to N-acetyllactosamine-type carbohydrate structures was found to be 5:4. This article is the first account of the complete characterization of the oligomannoside-type structures in alpha-L-fucosidase; furthermore, the occurrence in alpha-L-fucosidase of mono(sialyl-N-acetyllactosaminyl) structures, Fuc-containing oligosaccharides, and NeuAc alpha(2----3) linked to Gal are reported for the first time.  相似文献   

5.
In comparisons of [3H]mannose-labelled glycopeptides from chick-embryo fibroblasts infected and transformed with non-defective Prague C Rous-sarcoma virus and from untransformed fibroblasts infected with a transformation-defective derivative of Prague C Rous-sarcoma virus, we have detected transformation-dependent alterations in both the acidic-type and the neutral-type asparagine-linked oligosaccharides of cellular glycoproteins. Pronase-digested glycopeptides were analysed by the combined techniques of gel filtration, exo- and endo-glycosidase digestion and concanavalin A-agarose affinity chromatography. The transformed cell glycoproteins contained more sialic acid and were enriched for more highly branched (versus biantennary) acidic-type structures compared with the untransformed cell glycoproteins, similarly to previously reported transformation-dependent alterations. In addition, the glycopeptides from the virus-transformed cells contained several neutral-type structures that were apparently absent from the untransformed cells: small neutral-type oligosaccharides (Man3GlcNAc2) that were sensitive to endo-beta-N-acetylglucosaminidase D but resistant to endo-beta-N-acetylglucosaminidase H, and oligosaccharides with the property of 'truncated' precursor oligosaccharides (endoglycosidase-resistant, alpha-mannosidase-sensitive). Endoglycosidase-released oligosaccharides with the properties of hybrid-type structures were derived from the glycoproteins of both transformed and untransformed cells.  相似文献   

6.
To investigate the molecular changes in cell-surface glycoproteins during chick embryo development, fibroblasts from 8- and 16-day embryos were extensively digested by pronase after (i) metabolic labeling with radioactive precursors and (ii) external labeling. Two main classes of glycopeptide pronase digestion product were distinguished by Sephadex G-50 column chromatography. The large material excluded was mostly composed of glycosaminoglycans. The small retarded glycopeptides underwent age-related modifications. Those in the 8-day cells were mainly N-linked, whereas 16-day cells contained both O- and N-linked glycopeptides. The evolution of high-mannose chains in younger cells to complex-type chains in the older cells is suggested by (i) the decrease in the mannose-to-galactose and mannose-to-N-acetylglucosamine ratio with embryo development, and (ii) the fact that endo-β-N-acetylglucosaminidase H treatment released more oligomannosyls from younger than from older embryo cell glycopeptides. Small glycopeptides were also more highly sialylated in 16-day cells than in 8-day cells. The present results provide the first biochemical evidence that both quantitative and qualitative modifications occur in cell-surface glycoconjugates during the late stages of chick embryo development.  相似文献   

7.
UDP-D-galactose: 2-acetamido-2-deoxy-beta-D-glucopyranosyl 4-beta-D-galactosyltransferase (GalTase) activity was purified, from primary chick embryo fibroblast (CEF) transformed by a temperature-sensitive, Rous sarcoma virus mutant (CEF-RSV), by chromatography on an affinity resin prepared with monoclonal antibodies to GalTase. Cellular glycopeptides from CEF, as well as CEF-RSV, maintained at permissive (37 degrees) [CEF-RSF (37 degrees)] and nonpermissive temperatures (41 degrees) [CEF-RSV (41 degrees)], were solubilized and galactosylated in vitro by incubation with purified GalTase substrates, composed of at least six discrete complex glycopeptides having bi- to tetra-antennary structures. The glycopeptides isolated from transformed cells, CEF-RSV (37 degrees), included the six types observed in nontransformed cells, but demonstrated alterations in their relative amounts, including an increase in the content of a glycopeptide containing 3 mannose and 4 glucosamine residues. Furthermore, two additional complex-type glycopeptides were isolated from CEF- but demonstrated alterations in their relative amounts, including an increase in the content of a glycopeptide containing 3 mannose and 4 glucosamine residues. Furthermore, two additional complex type glycopeptides were isolated from CEF-RSV (37 degrees). These malignant transformation-related glycopeptides were partially characterized and found to represent tri- and tetra-antennary complex glycopeptides. Endogenous galactosylation appeared to have occurred in a branched, nonspecific manner in these transformed cell-derived glycopeptides. These findings indicate that transformed cells may contain a greater preponderance of more highly branched, complex oligosaccharides which are randomly galactosylated at nonreducing termini by cellular GalTase.  相似文献   

8.
The first potent nonpeptidic ligands for somatostatin, luteinizing hormone-releasing hormone, glucagon and bradykinin receptors have been reported. Nonpeptidic clinical candidates have been identified or are currently under study for substance P, bradykinin, endothelin, growth hormone secretagogue, angiotensin, vasopressin, motilin and cholecystokinin. Design, screening, combinatorial chemistry and classical medicinal chemistry all played important roles in these advances.  相似文献   

9.

Background

Glycosylation is an important and universal post-translational modification for many proteins, and regulates protein functions. However, simple and rapid methods to analyze glycans on individual proteins have not been available until recently.

Methods/Principal Findings

A new technique to analyze glycopeptides in a highly sensitive manner by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the liquid matrix 3AQ/CHCA was developed recently and we optimized this technique to analyze a small amount of transmembrane protein separated by SDS-PAGE. We used the MALDI-MS method to evaluate glycosylation status of membrane-type 1 matrix metalloproteinase (MT1-MMP). O-glycosylation of MT1-MMP is reported to modulate its protease activity and thereby to affect cancer cell invasion. MT1-MMP expressed in human fibrosarcoma HT1080 cells was immunoprecipitated and resolved by SDS-PAGE. After in-gel tryptic digestion of the protein, a single droplet of the digest was applied directly to the liquid matrix on a MALDI target plate. Concentration of hydrophilic glycopeptides within the central area occurred due to gradual evaporation of the sample solution, whereas nonglycosylated hydrophobic peptides remained at the periphery. This specific separation and concentration of the glycopeptides enabled comprehensive analysis of the MT1-MMP O-glycosylation.

Conclusions/Significance

We demonstrate, for the first time, heterogeneous O-glycosylation profile of a protein by a whole protein analysis using MALDI-MS. Since cancer cells are reported to have altered glycosylation of proteins, this easy-to-use method for glycopeptide analysis opens up the possibility to identify specific glycosylation patterns of proteins that can be used as new biomarkers for malignant tumors.  相似文献   

10.
Enterococci are responsible for various community- and hospital-acquired infections. Glycopeptides (vancomycin and teicoplanin) are active against these microorganisms by inhibiting cell wall synthesis through binding to cell wall precursors. Enterococcus faecium has developed multidrug resistance, including resistance to glycopeptides. Resistance to glycopeptides is due to the acquisition of an operon of genes cooperating to synthesize precursors devoid of affinity for the glycopeptides. Outbreaks were recently reported in hospital settings. These outbreaks were due to E. faecium isolates belonging to an hospital-adapted clonal complex (CC17) characterized by high level resistance to ampicillin and fluoroquinolones and frequently containing virulence factors. Outbreaks may be controlled by appropriate measures and new antibiotics are available in therapy. However, spreading of clonal strains adapted to hospitals require close surveillance.  相似文献   

11.
Glycopeptides obtained after pronase digestion of normal rat hepatocytes and Zajdela hepatoma cells after 3H-mannose or 3H-glucosamine incorporation were compared. In both cell types, the glycopeptides were resolved in four peaks after gel filtration on Biogel P6 with a different distribution of radioactivity in normal and tumoral cells. The first peak (I) contained high molecular weight glycopeptides, and particularly a megaloglycopeptide (MW 70,000) exclusively present in malignant cells. Peaks II and III contained only N-linked glycopeptides but the ratio bi-antennary/tri-tetra-antennary glycopeptides was very different in normal and malignant cells. Only polymannosidic oligosaccharides were detected in peak IV and their amount was more important in normal than in malignant cells. These results are discussed in relation with the differentiation state of hepatic cells.  相似文献   

12.
M Shimamura  Y Inoue  S Inoue 《Biochemistry》1985,24(20):5470-5480
Structures of glycopeptides obtained by exhaustive Pronase digestion of high molecular weight (1.7 X 10(5)) salmon egg polysialoglycoprotein have been elucidated. Six principal glycopeptides isolated by gel chromatography and DEAE-Sephadex A-25 chromatography in the absence or presence of borate ion were analyzed for their carbohydrate and amino acid composition, as well as amino acid sequence, and found to be of two distinct types: glycotripeptides, Thr*-Ser*-Glu, and glycotetrapeptides, Thr*-Gly-Pro-Ser, where an asterisk indicates the amino acid residues to which either the Gal beta 1----3GalNAc or Fuc alpha 1----3GalNAc beta 1----3Gal beta 1----4Gal beta 1----3GalNAc chain is attached. Their final yield corresponds to 64% of the original desialylated glycoprotein. In view of the simple amino acid composition of salmon egg polysialoglycoprotein (molar ratio Asp2Thr2Ser3Glu1Pro1Gly1Ala3) and the result of alkaline beta-elimination indicating three carbohydrate units linked to two of two threonine and one of three serine residues, a unique primary structure comprising repetitive sequences of the above two types of glycopeptides, which are interspersed by short nonglycosylated peptides consisting of alanine and aspartic acid, has been proposed for the core protein. The molecular secondary ion mass spectra of underivatized glycopeptides were used to obtain their structural information. The anomeric configuration of the proximal sugar-peptide linkages was proven to be alpha by proton nuclear magnetic resonance spectroscopy. This is the first systematic reported study of O-glycosidically linked glycopeptides by these instrumental methods.  相似文献   

13.
In this paper we report the first application of fast atom bombardment mass spectrometry (FAB-MS) to O-linked N-acetylglucosamine (O-GlcNAc)-bearing glycopeptides. Using N-acetylgalactosamine (GalNAc)- and Gal-GalNAc-containing glycopeptides (isolated from Tn glycophorin and desialylated normal glycophorin, respectively) as readily available model compounds, rapid and sensitive derivatization/FAB-MS strategies applicable to serine/threonine-rich glycopeptides have been devised. Peptides and glycopeptides were propionylated in a 1 min reaction using a mixture of trifluoroacetic anhydride and propionic acid, and the product mixtures were analysed directly by FAB-MS. Glycopeptides and peptides rich in hydroxylated residues afforded characteristic clusters of molecular ions at high sensitivity. Additional sensitivity enhancement was achieved by prior esterification of carboxyl groups. These methods were used in a study of O-GlcNAc glycopeptides produced by purified O-GlcNAc transferase addition of GlcNAc to the synthetic peptides YSDSPSTST and YSGSPSTST in which Y is tyrosine, S is serine, D is aspartic acid, P is proline, T is threonine and G is glycine. The propionyl derivatives afforded high-quality spectra which unequivocally showed that the majority of the glycopeptides were substituted with a single GlcNAc residue. Low pmol quantities of material gave detectable signals. The propionylation/FAB-MS procedure has been combined with gas-phase sequencing strategies and shows promise for defining the sites of glycosylation of O-GlcNAc glycopeptides that are available in limited quantities.  相似文献   

14.
Urine is a complex mixture of proteins and waste products and a challenging biological fluid for biomarker discovery. Previous proteomic studies have identified more than 2800 urinary proteins but analyses aimed at unraveling glycan structures and glycosylation sites of urinary glycoproteins are lacking. Glycoproteomic characterization remains difficult because of the complexity of glycan structures found mainly on asparagine (N-linked) or serine/threonine (O-linked) residues. We have developed a glycoproteomic approach that combines efficient purification of urinary glycoproteins/glycopeptides with complementary MS-fragmentation techniques for glycopeptide analysis. Starting from clinical sample size, we eliminated interfering urinary compounds by dialysis and concentrated the purified urinary proteins by lyophilization. Sialylated urinary glycoproteins were conjugated to a solid support by hydrazide chemistry and trypsin digested. Desialylated glycopeptides, released through mild acid hydrolysis, were characterized by tandem MS experiments utilizing collision induced dissociation (CID) and electron capture dissociation fragmentation techniques. In CID-MS(2), Hex(5)HexNAc(4)-N-Asn and HexHexNAc-O-Ser/Thr were typically observed, in agreement with known N-linked biantennary complex-type and O-linked core 1-like structures, respectively. Additional glycoforms for specific N- and O-linked glycopeptides were also identified, e.g. tetra-antennary N-glycans and fucosylated core 2-like O-glycans. Subsequent CID-MS(3), of selected fragment-ions from the CID-MS(2) analysis, generated peptide specific b- and y-ions that were used for peptide identification. In total, 58 N- and 63 O-linked glycopeptides from 53 glycoproteins were characterized with respect to glycan- and peptide sequences. The combination of CID and electron capture dissociation techniques allowed for the exact identification of Ser/Thr attachment site(s) for 40 of 57 putative O-glycosylation sites. We defined 29 O-glycosylation sites which have, to our knowledge, not been previously reported. This is the first study of human urinary glycoproteins where "intact" glycopeptides were studied, i.e. the presence of glycans and their attachment sites were proven without doubt.  相似文献   

15.
Bradykinin is a vasoactive peptide that has been shown to increase the permeability of the cerebral microvasculature to blood-borne macromolecules. The two zinc metalloendopeptidases EC (EP 24.15) and EC (EP 24.16) degrade bradykinin in vitro and are highly expressed in the brain. However, the role that these enzymes play in bradykinin metabolism in vivo remains unclear. In the present study, we investigated the role of EP 24.15 and EP 24.16 in the regulation of bradykinin-induced alterations in microvascular permeability. Permeability of the cerebral microvasculature was assessed in anesthetized Sprague-Dawley rats by measuring the clearance of 70-kDa FITC dextran from the brain. Inhibition of EP 24.15 and EP 24.16 by the specific inhibitor N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA-2) resulted in the potentiation of bradykinin-induced increases in cerebral microvessel permeability. The level of potentiation was comparable to that achieved by the inhibition of angiotensin-converting enzyme. These findings provide the first evidence of an in vivo role for EP 24.15/EP 24.16 in brain function, specifically in regulating alterations in microvessel permeability induced by exogenous bradykinin.  相似文献   

16.
The glycopeptides obtained by pronase digestion of two ecotropic strains of murine leukemia virus (MuLV) were compared by gel filtration. Four different glycopeptide size classes, designated G(1), G(2), G(3), and G(4), with molecular weights of approximately 5,100, 2,900, 2,200, and 1,500, respectively, were shown to be associated with Rauscher MuLV virions grown in JLS-V9 cells. Various sugar precursors, including glucosamine, galactose, fucose, and mannose were incorporated into G(1) and G(2), suggesting that these are complex (type I) glycopeptides. The two smaller glycopeptide size classes, G(3) and G(4), were shown to be mannoserich (type II) glycopeptides. G(4) was more sensitive to digestion with endo-beta-N-acetylglucosaminidase H than G(3), suggesting that the core of G(3) may contain fewer mannose residues. Glycopeptides of the same size class as G(1) and G(2) were associated with both Rauscher MuLV and AKR-MuLV grown in III6A (mouse embryo) cells. Previous studies have shown that gp52, a proteolytic cleavage product of gp70, possessed primarily G(1) glycopeptides and that gp52 was more highly sulfated than gp70. We observed that G(1) is approximately twofold more highly sulfated than G(2), explaining the observed difference in sulfation of gp52. The unusually large size of G(1) suggested that infection with MuLV may alter the host cell glycosylation pattern. To test this possibility, glycopeptides from Sindbis virions grown in uninfected and Rauscher MuLV-infected JLS-V9 cells were compared, and no differences were observed. G(1) was not detected in Sindbis virions, indicating that acquisition of G(1) depends on properties of the virus-coded polypeptide backbone of the gp70 molecule.  相似文献   

17.
Proteomic techniques, such as HPLC coupled to tandem mass spectrometry (LC-MS/MS), have proved useful for the identification of specific glycosylation sites on glycoproteins (glycoproteomics). Glycosylation sites on glycopeptides produced by trypsinization of complex glycoprotein mixtures, however, are particularly difficult to identify both because a repertoire of glycans may be expressed at a particular glycosylation site, and because glycopeptides are usually present in relatively low abundance (2% to 5%) in peptide mixtures compared to nonglycosylated peptides. Previously reported methods to facilitate glycopeptide identification require either several pre-enrichment steps, involve complex derivatization procedures, or are restricted to a subset of all the glycan structures that are present in a glycoprotein mixture. Because the N-linked glycans expressed on tryptic glycopeptides contribute substantially to their mass, we demonstrate that size exclusion chromatography (SEC) provided a significant enrichment of N-linked glycopeptides relative to nonglycosylated peptides. The glycosylated peptides were then identified by LC-MS/MS after treatment with PNGase-F by the monoisotopic mass increase of 0.984 Da caused by the deglycosylation of the peptide. Analyses performed on human serum showed that this SEC glycopeptide isolation procedure results in at least a 3-fold increase in the total number of glycopeptides identified by LC-MS/MS, demonstrating that this simple, nonselective, rapid method is an effective tool to facilitate the identification of peptides with N-linked glycosylation sites.  相似文献   

18.
我们曾报道从小鼠Lewis肺癌组织通过蛋白水解酶及分子筛层析分离的总糖肽,在体外可明显地抑制某些肿瘤细胞及分离的层粘连蛋受体与基膜成分层粘连蛋白的识别和结合。本文报告将此糖肽与Lewis肺癌细胞混合,通过尾静脉注入小鼠体内,对实验性癌转移的抑制作用。初步病理结果表明,此糖肽几乎可以完全抑制实验性转移瘤的形成,保护小鼠不死于癌转移。提示糖肽可能具有阻断癌转移之作用。将实验组一部分存活小鼠再行同种癌细胞皮下接种,可以照常成瘤。表明糖肽阻抑实验性癌转移的效能可能并非调动了宿主的免疫机制所致。糖肽还可减慢皮下接种的癌细胞的生长速度,但对癌细胞并无直接毒性作用。  相似文献   

19.
We have previously reported that concanavalin A (ConA) is precipitated by a high mannose type glycopeptide (Brewer, C. F. (1979) Biochem. Biophys. Res. Commun. 90, 117-122; Bhattacharyya, L., and Brewer, C. F. (1986) Biochem. Biophys. Res. Commun. 137, 670-674). In the present study, we have investigated the ability of a series of high mannose and bisected hybrid type glycopeptides to bind and precipitate the lectin. The modes of binding of the glycopeptides were studied by nuclear magnetic relaxation dispersion (NMRD) techniques, and their affinities were determined by hemagglutination inhibition measurements. The stoichiometries of the precipitation reactions were investigated by quantitative precipitation analysis. The equivalence zones (regions of maximum precipitation) of the precipitin curves indicate that certain high mannose and bisected hybrid type glycopeptides are bivalent for lectin binding. From the NMRD and precipitation data, we have identified two protein binding sites on each glycopeptide: one site on the alpha(1-6) arm of the core beta-mannose residue involving a trimannosyl moiety which binds with high affinity (primary site); and the other site on the alpha(1-3) arm of the core beta-mannose residue involving an alpha-mannose residue(s), which binds with lower affinity (secondary site). These two types of sites bind to ConA by different mechanisms. Certain bisected hybrid type glycopeptides were found to possess only the primary ConA binding sites, but not the secondary sites, and hence were able to bind but not precipitate the lectin. Other related glycopeptides have only the secondary type sites and thus exhibit low affinity and are unable to precipitate the protein. The results are related to the possible structure-function properties of cell-surface glycopeptides.  相似文献   

20.
In the accompanying paper (Gabel, Den, and Ambron, in press) it was shown that eight populations of glycopeptides are synthesized by single neurons of Aplysia californica. To see which glycopeptides might mediate interactions with target cells, we first identified glycopeptides that are transported selectively to synapses and growth cones. The giant neuron R2 was injected intrasomatically with 3H-glucosamine. Twenty-four hours later, 3H-glycopeptides in the axon and cell body were isolated and resolved by serial lectin affinity chromatography. Of the eight populations, the biantennary-type glycopeptides (GPbi) and those that bind to WGA (GPwga) were preferentially associated with rapidly transported glycoproteins. In contrast, the glycopeptide that consists of N-acetylglucosamine O-linked to ser/thr was mostly retained in the cell body. GPbi and GPwga were also preferentially transported to growth cones. Analyses of RUQ cells, exposed to 3H-glucosamine in vitro for 36 h showed an enrichment of GPbi and GPwga at the growth cone relative to the cell body. The disposition of the various glycopeptides in growing neurons was also examined using FITC lectins. FITC-coupled WGA, Vicia vellosa, and lentil lectin showed extensive staining of the cell body, but only WGA stained the growth cones. To investigate if GPwga interacts specifically with target cells, these glycopeptides were isolated from the neurons of 180 abdominal ganglia. GPwga, other Aplysia glycopeptides, and glycopeptides prepared from ovalbumin were coupled separately to fluorescent spheres. The spheres were then added to muscle cells isolated from the auricle of the heart, which is innervated by many neurons from the ganglion. While spheres coupled to GPwga bound to the muscle cell surface, the other glycopeptides did not. These results indicate that glycopeptides class GPwga, found among rapidly transported glycoproteins and on the growth cone surface, is able to bind to muscle cells and may therefore play some role in neuron-target interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号