首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Lacertilian species display a remarkable diversity in the organization of the neural apparatus of their pineal organ (epiphysis cerebri). The occurrence of immunoreactive S-antigen and opsin was investigated in the retina and pineal organ of adult lizards, Uromastix hardwicki. In this species, numerous retinal photoreceptors displayed S-antigen-like immunoreactivity, whereas only very few pinealocytes were labeled. Immunoreactive opsin was found neither in retinal photoreceptors nor in pinealocytes. Electron microscopy showed that all pinealocytes of Uromastix hardwicki resemble modified pineal photoreceptors. A peculiar observation is the existence of a previously undescribed membrane system in the inner segments of these cells. It is evidently derived from the rough endoplasmic reticulum but consists of smooth membranes. The modified pineal photoreceptor cells of Uromastix hardwicki were never seen to establish synaptic contacts with somata or dendrites of intrapineal neurons, which are extremely rare. Vesiclecrowned ribbons are prominent in the basal processes of the receptor cells, facing the basal lamina or establishing receptor-receptor and receptor-interstitial type synaptoid contacts. Dense-core granules (60–250 nm in diameter) speak in favor of a secretory activity of the pinealocytes. Attention is drawn to the existence of receptor-receptor and receptor-interstitial cell contacts indicating intramural cellular relationships that deserve further study.Supported by the Deutsche Forschungsgemeinschaft (Ko 758/31) and the Deutscher Akademischer Austauschdienst (Senior DAAD Research Fellowship to M.A.H.)  相似文献   

2.
Summary In Xenopus laevis Daud., the ontogenetic occurrence of two photoreceptor-specific proteins, S-antigen and rod-opsin, was investigated and correlated to the maturation of the neurohormonal effector system involved in melatonin-dependent color-change mechanisms. Tadpoles ranging from stage 12 to 57 (Nieuwkoop and Faber 1956) were fixed in Zamboni's or Bouin's solution. Frozen or paraffin sections of either total heads or dissected brains and eyes were prepared and treated with highly specific antisera against S-antigen and rod-opsin. In the retina, immunoreactive S-antigen and rod-opsin were first demonstrated in a few centrally located photoreceptors at stage 37/38. Photoreceptors of the peripheral (iridical) portions of the retina gradually became immunoreactive during further development. As in the retina, the first S-antigen-immunoreactive photoreceptors in the pineal complex appeared at stage 37/ 38. At this and all later stages investigated rod-opsin immunoreactivity was restricted to a few dot-like structures resembling developing pineal outer and inner segments. In most animals rod-opsin immunoreactivity was completely absent from the pineal complex. The analysis of retinal proteins with the immunoblotting technique (Western blot) revealed that the S-antigen antibody bound to a 48-kDa protein and the rod-opsin antibody to a 38-kDa protein. The body lightening reaction was determined with the aid of the melanophore index in larvae fixed in light or darkness, respectively. Aggregation of melanophore melanosomes in darkness (the melatonin-dependent primary chromatic response) first occurred at stage 37/38 when melanophores started to differentiate and became pigmented. These results indicate that in Xenopus laevis (i) the molecular mechanisms of photoreception develop simultaneously in retina and pineal complex; (ii) most pineal photoreceptors differ from retinal rods in that they contain immunoreactive S-antigen but essentially no immunoreactive rod-opsin; and (iii) the differentiation of phototransduction processes coincides with the onset of melatonin-dependent photoneuroendocrine regulation of color-change mechanisms.Supported by USUHS protocol C07049 (MDR) and the Deutsche Forschungsgemeinschaft (HWK)  相似文献   

3.
Physiological characteristics of the photoreceptors involved in the photoperiodic induction of diapause were investigated in the flesh fly Sarcophaga similis. Both the early and late phases of scotophase were sensitive to light and a light pulse during each of these phases prevented diapause. Certain physiological differences between the phases were, nevertheless, detected. Compared with early scotophase, late scotophase required a light pulse with a long period and a large number of night interruption photoperiodic cycles in order to effectively prevent diapause. The diapause-averting effects of a light pulse during early scotophase were canceled by an additional long dark period, but those during late scotophase were not. Thus, the diapause-averting effects produced during early scotophase are different to those produced during late scotophase. The early scotophase was sensitive to light at wavelengths of 470 nm or shorter, but not to light of 583 nm or longer. In contrast, the late scotophase was sensitive to light of a broad range of wavelengths, ranging from 395 to 660 nm. Furthermore, the early scotophase was considerably more sensitive to monochromatic light with low photon flux density than the late scotophase. These results suggest that different types of photoreceptor are involved in the photoperiodic response.  相似文献   

4.
Summary The pineal complex of the river lamprey, Lampetra japonica, was examined by means of immunocytochemistry with antisera against serotonin, the precursor of melatonin, and two photoreceptor proteins, rod-opsin (the apoprotein of the photopigment rhodopsin) and S-antigen. Serotonin-immunoreactive cells were observed in both the pineal and the parapineal organ. The proximal portion of the pineal organ (atrium) comprised numerous serotonin-immunoreactive cells displaying spherical somata. In the distal end-vesicle of the pineal organ, the serotonin-immunoreactive elements resembled photoreceptors in their size and shape. These cells projecting into the pineal lumen and toward the basal lamina were especially conspicuous in the ventral portion of the end-vesicle. In addition, single serotonin-immunoreactive nerve cells were found in this location. Retinal photoreceptors were never seen to contain immunoreactive serotonin; amacrine cells were the only retinal elements exhibiting serotonin immunoreaction. Strong S-antigen immunoreactivity was found in numerous photoreceptors located in the pineal end-vesicle. In contrast, the S-antigen immunoreactivity was weak in the spherical cells of the atrium. Thus, the pattern of S-antigen immunoreactivity was roughly opposite to that of serotonin. Similar findings were obtained in the parapineal organ. The rod-opsin immunoreaction was restricted to the outer segments of photoreceptors in the pineal end-vesicle and parapineal organ. No rodopsin immunoreactive outer segments occurred in the proximal portion of the atrium. Double immunostaining was employed to investigate whether immunoreactive opsin and serotonin are colocalized in one and the same cell. This approach revealed that (i) most of the rodopsin-immunoreactive outer segments in the end-vesicle belonged to serotonin-immunonegative photoreceptors; (ii) nearly all serotonin-immunoreactive cells in the end-vesicle bore short rod-opsin-immunoreactive outer segments protruding into the pineal lumen; and (iii) the spherical serotonin-immunoreactive cells in the pineal stalk lacked rod-opsin immunoreaction and an outer segment. These results support the concept that multiple cell lines of the photoreceptor type exist in the pineal complex at an early evolutionary stage.  相似文献   

5.
Light absorbed by a photopigment in a photoreceptor cell causes a photochemical reaction converting the 11-cis retinal chromophore into the all-trans configuration. These changes lead to a series of events that causes cGMP hydrolysis, a following decrease of cGMP in the cytoplasm of the photoreceptor outer segment and a closure of cGMP-gated cationic channels. As a consequence of these processes the membrane hyperpolarizes. In pineal photoreceptor cells of lower vertebrates these processes are only partly investigated. Molecules involved in the phototransduction process and the desensitization, like opsin, vitamin A, α-transducin and arrestin, have been immunocytochemically localized in pineal photoreceptors and also electrophysiological studies have shown that phototransduction mechanisms in pineal photoreceptors might be very similar to those found in retinal photoreceptors. This review will summarize some of the current knowledge on pineal photoreception and compare it with retinal processes.  相似文献   

6.
The avian pineal organ contains several types of photoreceptors with different photopigments: rhodopsin, iodopsin, and pinopsin. We have previously examined the differentiation of both rhodopsin-like and iodopsin-like immunoreactive cells during pineal development in quail embryos to determine the onset of synthesis of specific proteins and their cellular localization. In the present study, we have performed pinopsin immunohistochemistry on in-vivo developing and in-vitro cultured pineal organs of quail embryos. The results were compared with those obtained with rhodopsin and iodopsin immunohistochemistry. In the developing pineal organs, pinopsin immunoreactivity was detected at embryonic day 8, i.e. five days earlier than rhodopsin-like and iodopsin-like immunoreactivities. It was localized exclusively in the protrusions extending into the lumen throughout development, whereas rhodopsin-like and iodopsin-like immunoreactivities were usually found both in cell bodies and processes. These differences were also observed under two different types of culture conditions (dissociated cell culture and organ culture) indicating that, in the avian pineal organ, the expression pattern of the pinopsin gene is basically different from those of the other two pineal photopigments. The present study suggests that pineal cells have a mechanism for the polarized transport of pinopsin molecules.  相似文献   

7.
Converging lines of evidence suggest that the pineal hormone, melatonin, may regulate changes in pain threshold by modulating fluctuations in opioid receptor expression and levels of beta-endorphin (beta-END). This study investigated whether the circadian oscillation in plasma melatonin is involved in the modulation of plasma beta-END immunoreactivity (beta-END-ir), and whether fluctuations in pain threshold measured using the hotplate test are contingent upon the fluctuation of these two hormones in Rattus Norvegicus. The role of melatonin was explored using light-induced functional pinealectomy (LFPX) to suppress nocturnal melatonin release. Pinealectomized rats were found to have significantly elevated levels of beta-END-ir compared to control animals at both photophase (398 +/- 89 pg/ml versus 180 +/- 23 pg/ml) and scotophase (373 +/- 45 pg/ml versus 203 +/- 20 pg/ml) test-periods, thus supporting the putative melatonin-opioid axis. Similarly, latency to pain threshold of LFPX rats was significantly longer when compared to control animals at photophase (7.3 +/- 1.4 sec versus 4.8 +/- 0.7 sec) and scotophase (6.3 +/- 0.7 sec versus 5.1 +/- 0.7 sec). Previous studies have produced conflicting data regarding the role of the pineal system in modulating levels of corticosterone (CORT). We observed a moderate, but non-significant, increase in the CORT concentration of LFPX rats during the photophase test period.  相似文献   

8.
The pineal organ of Ensatina eschscholtzi, a terrestrial and secretive species of salamander of the family Plethodontidae, is a photoreceptive structure lying on the dorsal surface of the diencephalon. The pineal is flattened with a broad lumen and consists of three cell types: photoreceptors, supportive cells, and neurons. Pineal photoreceptors are typical vertebrate photoreceptors and possess outer segment formations which, however, are frequently contorted and disorganized. Sloughing of apical portions of outer segments and vesiculation along the lateral edges of outer segment membrane disks are consistently observed and presumed to represent mechanisms of outer segment membrane recycling. Photoreceptors have basal processes which synapse with neural dendrites. Synapses between photoreceptor basal processes are occasionally observed. All synapses are characterized by synaptic ribbon structures of variable number, size, and configuration. Dense-core vesicles are occasionally observed mingled with clear synaptic vesicles within photoreceptor basal processes. Supportive cells within the pineal function in phagocytosis and recycling of shed outer segment membrane material, and neurons are localized at the lateral margins of the organ. The latter send axons into the ipsilateral side of the dorsal diencephalon. The pineal organ of Ensatina shows marked variation in overall size (cell total), cell type proportions, absolute neuron number, and ratio of photoreceptor number to neuron number for individual pineals. None of these morphological parameters is correlated with body size, sex, or season, and it is assumed that such variability represents significant variation in photosensory capabilities. It is suggested that the pineal organ of Ensatina is a partially degenerate photoreceptive structure.  相似文献   

9.
The role of the nonvisual photoreception is to synchronise periodic functions of living organisms to the environmental light periods in order to help survival of various species in different biotopes. In vertebrates, the so-called deep brain (septal and hypothalamic) photoreceptors, the pineal organs (pineal- and parapineal organs, frontal- and parietal eye) and the retina (of the "lateral" eye) are involved in the light-based entrain of endogenous circadian clocks present in various organs. In humans, photoperiodicity was studied in connection with sleep disturbances in shift work, seasonal depression, and in jet-lag of transmeridional travellers. In the present review, experimental and molecular aspects are discussed, focusing on the histological and histochemical basis of the function of nonvisual photoreceptors. We also offer a view about functional changes of these photoreceptors during pre- and postnatal development as well as about its possible evolution. Our scope in some points is different from the generally accepted views on the nonvisual photoreceptive systems. The deep brain photoreceptors are hypothalamic and septal nuclei of the periventricular cerebrospinal fluid (CSF)-contacting neuronal system. Already present in the lancelet and representing the most ancient type of vertebrate nerve cells ("protoneurons"), CSF-contacting neurons are sensory-type cells sitting in the wall of the brain ventricles that send a ciliated dendritic process into the CSF. Various opsins and other members of the phototransduction cascade have been demonstrated in telencephalic and hypothalamic groups of these neurons. In all species examined so far, deep brain photoreceptors play a role in the circadian and circannual regulation of periodic functions. Mainly called pineal "glands" in the last decades, the pineal organs actually represent a differentiated form of encephalic photoreceptors. Supposed to be intra- and extracranially outgrown groups of deep brain photoreceptors, pineal organs also contain neurons and glial elements. Extracranial pineal organs of submammalians are cone-dominated photoreceptors sensitive to different wavelengths of light, while intracranial pineal organs predominantly contain rod-like photoreceptor cells and thus scotopic light receptors. Vitamin B-based light-sensitive cryptochromes localized immunocytochemically in some pineal cells may take part in both the photoreception and the pacemaker function of the pineal organ. In spite of expressing phototransduction cascade molecules and forming outer segment-like cilia in some species, the mammalian pineal is considered by most of the authors as a light-insensitive organ. Expression of phototransduction cascade molecules, predominantly in young animals, is a photoreceptor-like characteristic of pinealocytes in higher vertebrates that may contribute to a light-percepting task in the perinatal entrainment of rhythmic functions. In adult mammals, adrenergic nerves--mediating daily fluctuation of sympathetic activity rather than retinal light information as generally supposed--may sustain circadian periodicity already entrained by light perinatally. Altogether three phases were supposed to exist in pineal entrainment of internal pacemakers: an embryological synchronization by light and in viviparous vertebrates by maternal effects (1); a light-based, postnatal entrainment (2); and in adults, a maintenance of periodicity by daily sympathetic rhythm of the hypothalamus. In addition to its visual function, the lateral eye retina performs a nonvisual task. Nonvisual retinal light perception primarily entrains genetically-determined periodicity, such as rod-cone dominance, EEG rhythms or retinomotor movements. It also influences the suprachiasmatic nucleus, the primary pacemaker of the brain. As neither rods nor cones seem to represent the nonvisual retinal photoreceptors, the presence of additional photoreceptors has been supposed. Cryptochrome 1, a photosensitive molecule identified in retinal nerve cells and in a subpopulation of retinal photoreceptors, is a good candidate for the nonvisual photoreceptor molecule as well as for a member of pacemaker molecules in the retina. When comparing various visual and nonvisual photoreceptors, transitory, "semi visual" (directional) light-perceptive cells can be detected among them, such as those in the parietal eye of reptiles. Measuring diffuse light intensity of the environment, semivisual photoreceptors also possess some directional light perceptive capacity aided by complementary lens-like structures, and screening pigment cells. Semivisual photoreception in aquatic animals may serve for identifying environmental areas of suitable illumination, or in poikilotermic terrestrial species for measuring direct solar irradiation for thermoregulation. As directional photoreceptors were identified among nonvisual light perceptive cells in the lancelet, but eyes are lacking, an early appearance of semivisual function, prior to a visual one (nonvisual --> semivisual --> visual?) in the vertebrate evolution was supposed.  相似文献   

10.
Diurnal rhythm in body temperature of pigeons subjected to different experimental conditions (pinealectomized, sham-operated, melatonin-implanted, cold-exposed) was studied under a 12 h light and 12 h dark regimen. The body temperature of pigeons during photophase was higher than that during scotophase in the normal as well as every treatment group studied. Pinealectomized pigeons showed higher body temperature in the photophase as well as scotophase, than that of the normal and sham-operated birds when examined 2 or 3 weeks following the post-surgical acclimatization to 25 or 3 degrees C. However, subcutaneous implantation of melatonin pellets into pinealectomized pigeons nullified or even reversed the hyperthermic effect of pinealectomy. Exposure of pigeons to--18 degrees C for 280 min during photophase as well as scotophase, produced a marked drop in body temperature in pinealectomized, sham-operated and normal pigeons. The pinealectomized pigeons exhibited a higher body temperature than that of the sham-operated and normal ones when exposed to--18 degrees C during the photophase, but not during the scotophase. It was concluded that while the pineal is not necessary for maintaining the daily thermal rhythm in the avian body, it has a thermoregulatory role, in that it prevents rise in body temperature in warm (25 degrees C) acclimatized and chronic cold (3 degrees C) exposed birds. In acute short-term cold (--18 degrees C) exposure however, the temperature regulatory role of the pineal was not effective during the scotophase.  相似文献   

11.
Light and transmission electron microscopy were used to characterize the ultrastructural features of the pineal glands of wild-type and two mutant zebrafish strains that have retinal defects. Particular attention was given to the pineal photoreceptors. Photoreceptors in the pineal gland appear quite similar to retinal cone photoreceptors, having many of the same structural characteristics including outer segment disk membranes often confluent with the plasma membrane, calycal processes surrounding the outer segments, and classic connecting cilia. The pineal photoreceptor terminals differ from photoreceptor terminals in the retina in that they have short synaptic ribbons and make dyad synapses which may or may not be invaginated. Pineal photoreceptors in two zebrafish mutants with abnormal retinal photoreceptors were also studied. Pineal photoreceptors in the niezerka (nie) mutant degenerate, as they do in the retina, indicating that pineal and retinal photoreceptors share at least some genes. However, the synaptic terminals of no optokinetic response c (nrc) pineal photoreceptors are normal, suggesting that this mutation is specific to the retina.  相似文献   

12.
Summary Opsin-like immunoreactivity was observed in the retinae and pineal organs of the mouse, rat and guinea pig, and the pineal organ of the cat. In the retina the immunoreaction was restricted to photoreceptor cells, which displayed immunostaining in their perikarya and outer and inner segments. Distinct pinealocytes endowed with characteristic processes were labelled in the pineal organs of the mouse and cat. However, in the cat the number of immunoreactive pinealocytes was very limited. In the pineal organs of the rat and guinea pig immunoreaction was very weak and diffuse. No immunoreaction was observed when the antibody was preabsorbed with purified bovine (rhod)opsin. These findings are in accord with the results of previous studies indicating molecular similarities between retinal photoreceptors and pinealocytes in mammals.Supported by grants from the Deutsche Forschungsgemeinschaft to HWK, the European Science Foundation to RGF, the Alexander-von-Humboldt Stiftung to PE, and the Dutch Foundation for the Advancement of Basic Research. The authors are greatly indebted to Dr. Willem de Grip, Nijmegen, and Profesor Andreas Oksche, Giessen, for their critical interest in this study  相似文献   

13.
The most simple pineal complex (the pineal and parapineal organs of lampreys), consists of saccular evaginations of the diencephalic roof, and has a retina-like structure containing photoreceptor cells and secondary neurons. In more differentiated vertebrates, the successive folding of the pineal wall multiplies the cells and reduces the lumen of the organ, but the pattern of the histological organization remains similar to that of lampreys; therefore, we consider the histological structure of the pineal organ of higher vertebrates as a 'folded retina'. The cell membrane of several pineal photoreceptor outer-segments of vertebrates immunoreact with anti-retinal opsin antibodies supporting the view of retina-like organization of the pineal. Some other pineal outer segments do not react with retinal anti-opsin antibodies, a result suggesting the presence of special pineal photopigments in different types of pinealocytes that obviously developed during evolution. The chicken pinopsin, detected in the last years, may represent one of these unknown photopigments. Using antibodies against chicken pinopsin, we compared the immunoreactivity of different photoreceptors of the pineal organs from cyclostomes to birds at the light and electron microscopic levels. We found pinopsin immunoreaction on all pinealocytes of birds and on the rhodopsin-negative large reptilian pinealocytes. As the pinopsin has an absorption maximum at 470 nm, these avian and reptilian immunoreactive pinealocytes can be regarded as green-blue light-sensitive photoreceptors. Only a weak immunoreaction was observed on the frog and fish pinealocytes and no reaction was seen in cyclostomes and in the frontal organ of reptiles. Some photoreceptors of the retina of various species also reacted the pinopsin antibodies, therefore, pinopsin must have certain sequential similarity to individual retinal opsins of some vertebrates.  相似文献   

14.
Photoperiodic control of several biological rhythms is exerted through the inhibitory effect of light on melatonin synthesis in the pineal organ. Hydroxyindole-O-methyltransferase (HIO-MT), the last acting-enzyme in melatonin biosynthesis, constitutes a specific marker of melatoninergic cells. In the present study, an antibody directed against chicken HIOMT was affinity-purified and used to identify melatoninergic cells in the pineal organ of chicken, quail, sparrow and blackbird. Regardless of the species, intense immunocytochemical reactions were observed in modified photoreceptors, whereas other cellular constituents (mostly glial cells) remained unlabeled. We conclude that modified photoreceptors synthesize melatonin in the avian pineal gland and are thus accountable for the translation of the photoperiodic input into hormonal output.  相似文献   

15.
The putative cholinergic and GABAergic elements of the pineal organ of lampreys were investigated with immunocytochemistry to choline acetyltransferase (ChAT) and γ-aminobutyric acid (GABA), and by acetylcholinesterase (AChE) histochemistry. For comparison we also carried out immunocytochemistry to serotonin (5-HT) and a tract-tracing investigation of the two types of projecting cells, i.e., ganglion cells and long-axon photoreceptors. Most photoreceptors were ChAT-immunoreactive (ChAT-ir) and AChE-positive, while ganglion cells and the pineal tract were ChAT-negative and AChE-negative or only faintly positive. These results strongly suggest the presence of a cholinergic system of photoreceptors in the lamprey pineal organ. GABA-ir fibers that appear to originate from faintly to moderately stained ganglion cells were observed in the pineal stalk. Immunocytochemistry to 5-HT indicated the presence of two types of 5-HT-ir cells, bipolar cells and ganglion-like cells. The connections of the ganglion cells and long-axon photoreceptors were also studied by application of DiI to the pineal stalk in fixed brains or of biotinylated dextran amine (BDA) to one of the main targets of pinealofugal fibers (optic tectum or mesencephalic tegmentum) in isolated brains in vitro. Some long-axon photoreceptors and ganglion cells were labeled from the optic tectum. However, BDA application to the tegmentum exclusively labeled ganglion cells in the pineal organ. These results indicate that the two morphological types of afferent pineal neuron have different projections. No labeled cells were observed in the parapineal organ in BDA experiments, indicating that this organ and the pineal organ are involved in different neural circuits.  相似文献   

16.
17.
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP), PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation. Furthermore, the staining of pinealocytes for PGP 9.5 may be exploited to study the three-dimensional morphology and the architecture of pinealocytes and their processes under various experimental conditions.  相似文献   

18.
A [3H]-PBAN (pheromone biosynthesis-activating neuropeptide) analog was synthesized, and binding of the radioligand to a specific PBAN-antiserum was achieved. The inhibition of binding of the radioligand by unlabeled PBAN, several PBAN analogs, and other competitors was studied and a specific radio-immunoassay was developed. Using this radioimmunoassay we found PBAN-like immunoreactivity in methanol extracts of hemolymph and neural tissues from females. Higher levels of PBAN-like immunoreactivity in extracts of brain-suboesophageal ganglion complexes, corpora cardiaca, thoracic ganglia, and abdominal ganglia were observed during the 4-5th h scotophase when compared to the PBAN-like immunoactivity levels during the 6-11th h photophase. On the other hand, the concentrations of PBAN-like immunoreactivity, in the terminal abdominal ganglion were higher during the photophase relative to minimal levels observed during the scotophase, indicating an accumulation before the onset of pheromone production. These differences in concentrations of PBAN were also reflected in the stimulation of in vitro pheromone glands, whereby significant stimulations were obtained by scotophase and photophase brain extracts, scotophase thoracic ganglia extracts, and photophase terminal abdominal ganglia extracts. No detectable levels of PBAN were found in hemolymph extracts during the sampling periods.  相似文献   

19.
Summary The initial appearance of S-antigen, -transducin, opsin and 5-HT during embryogenesis of the pineal organ and retina was studied by means of immunocytochemistry in the Atlantic salmon, Salmo salar L. The presence of these substances may be taken as a good indication of photoreceptor differentiation; -transducin and S-antigen are involved in the phototransduction process, opsin is the proteinaceous component of the photopigment rhodopsin, and 5-HT is a neurotransmitter or neurohormone produced by pineal photoreceptors. Two days after the retinal pigment layer became visible in the eggs, the outer segments of a few pineal photosensory cells showed immunoreactivity to opsin and -transducin. At the same time S-antigen and serotonin were present in pineal cells of the photoreceptor type. The number of immunoreactive cells in the pineal organ increased up to hatching. In the differentiating retina of the salmon, no immunoreactivity to antibodies raised against the mentioned substances was detectable until after hatching. These results indicate that in ontogeny the developing pineal organ of the salmon embryo has the ability to perceive light information much earlier than the retina.A preliminary account of this work was presented at the Tenth European Neuroscience Congress, Marseille, France, September 14–18, 1986  相似文献   

20.
Summary The levels of melatonin and the activities of two enzymes of the melatonin biosynthetic pathway, serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), were measured throughout the light-dark cycle in the retina of a teleost fish, the pike. HIOMT activity did not display significant variations, whereas NAT activity and melatonin content showed a daily rhythm, high levels occurring during the night. The profiles of the latter two rhythms did not closely match one another and differed from those previously described in the pineal organ of the same species. These results are discussed with respect to a possible paracrine role of retinal melatonin. Melatonin-like immunoreactivity was found in the photoreceptor cell layer and in the Müller cells of the inner nuclear layer. The intensity of the melatonin-like immunoreactivity varied throughout the 24 h light-dark cycle, in good correlation with the variations in the melatonin level as measured by radioimmunoassay.This article is dedicated to the memory of Dr. Klaus Hoffmann  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号