首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antioxidant effects of indole compounds such as melatonin (MLT), tryptophan, and serotonin, on cisplatin (cis-diaminedichloroplatinum, or CDDP)-induced reactive oxygen species (ROS) generation were examined by electron spin resonance (ESR). In addition, DNA fragmentation by CDDP-induced ROS and the effect of MLT on it were analyzed in primary cultures of rat renal tubular epithelial cells. MLT and serotonin had scavenging effects on CDDP-induced hydroxy radicals (*OH), and the scavenging activity of MLT was higher than that of serotonin. The exposure of primary-cultured renal tubular cells to CDDP caused severe cytotoxicity. Tryptophan, serotonin, and 6-OH-MLT did not reduce the CDDP-induced cytotoxicity, whereas MLT did. CDDP exposure induced DNA fragmentation in primary-cultured renal tubular cells, but the simultaneous administration of MLT inhibited the DNA fragmentation. These results indicate that MLT inhibits CDDP-induced cytotoxicity by directly scavenging *OH, and that MLT markedly reduces renal cytotoxicity and DNA fragmentation caused by CDDP-induced ROS in vitro.  相似文献   

2.
Biochemical reactivity of melatonin with reactive oxygen and nitrogen species   总被引:16,自引:0,他引:16  
Melatonin (N-acetyl-5-methoxytryptamine), an endogenously produced indole found throughout the animal kingdom, was recently reported, using a variety of techniques, to be a scavenger of a number of reactive oxygen and reactive nitrogen species both in vitro and in vivo. Initially, melatonin was discovered to directly scavenge the high toxic hydroxyl radical (*OH). The methods used to prove the interaction of melatonin with the *OH included the generation of the radical using Fenton reagents or the ultraviolet photolysis of hydrogen peroxide (H202) with the use of spin-trapping agents, followed by electron spin resonance (ESR) spectroscopy, pulse radiolysis followed by ESR, and several spectrofluorometric and chemical (salicylate trapping in vivo) methodologies. One product of the reaction of melatonin with the *OH was identified as cyclic 3-hydroxymelatonin (3-OHM) using high-performance liquid chromatography with electrochemical (HPLC-EC) detection, electron ionization mass spectrometry (EIMS), proton nuclear magnetic resonance (1H NMR) and COSY 1H NMR. Cyclic 3-OHM appears in the urine of humans and other mammals and in rat urine its concentration increases when melatonin is given exogenously or after an imposed oxidative stress (exposure to ionizing radiation). Urinary cyclic 3-OHM levels are believed to be a biomarker (footprint molecule) of in vivo *OH production and its scavenging by melatonin. Although the data are less complete, besides the *OH, melatonin in cell-free systems has been shown to directly scavenge H2O2, singlet oxygen (1O2) and nitric oxide (NO*), with little or no ability to scavenge the superoxide anion radical (O2*-) In vitro, melatonin also directly detoxifies the peroxynitrite anion (ONOO-) and/or peroxynitrous acid (ONOOH), or the activated form of this molecule, ONOOH*; the product of the latter interaction is proposed to be 6-OHM. How these in vitro findings relate to the in vivo antioxidant actions of melatonin remains to be established. The ability of melatonin to scavenge the lipid peroxyl radical (LOO*) is debated. The weight of the evidence is that melatonin is probably not a classic chain-breaking antioxidant, since its ability to scavenge the LOO* seems weak. Its ability to reduce lipid peroxidation may stem from its function as a preventive antioxidant (scavenging initiating radicals), or yet unidentified actions. In sum, in vitro melatonin acts as a direct free radical scavenger with the ability to detoxify both reactive oxygen and reactive nitrogen species; in vivo, it is an effective pharmacological agent in reducing oxidative damage under conditions in which excessive free radical generation is believed to be involved.  相似文献   

3.
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce *OH. The addition of Fe2+ and Cu+ (0-20 microM) to KH resulted in a concentration-dependent increase in *OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 microM) did not result in *OH formation, these ions mediated significant *OH production in the presence of a number of reducing agents. The *OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 microM, 5 microM or 10 microM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in *OH formation. For each Fe2+ concentration tested, the *OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting *OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the *OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate *OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.  相似文献   

4.
The mechanism of mitomycin C-induced lipid peroxidation has been studied at pH 7.5, using systems containing phospholipid membranes (liposomes) and an Fe3+-ADP complex with purified NADPH-cytochrome P-450 reductase. Both O2- and H2O2 are generated during the aerobic enzyme-catalyzed reaction in the presence of mitomycin C. Hydroxyl radical is formed in the reaction by the reduction of H2O2. This is catalyzed by the Fe2+-ADP complex in a phosphate buffer or to a lesser extent when in a Tris-HCl buffer. The reduction of Fe3+-ADP to Fe2+-ADP is mainly achieved by O2-. The resulting Fe2+-ADP in the presence of O2 forms a perferryl ion complex which is a powerful stimulator of lipid peroxidation. However, the formation of such an iron-oxygen complex is strongly inhibited by phosphate ions, which do not interfere with the generation of OH radicals. These findings suggest that, since lipid peroxidation occurs in a Tris-HCl buffer (but not in a phosphate buffer), the OH radical is unlikely to be involved in the observed lipid peroxidation process.  相似文献   

5.
6.
Although it is assumed from in vitro experiments that the hydroxyl radical (*OH) may be responsible for chromium(VI) toxicity/carcinogenicity, no electron spin resonance (ESR) evidence for the generation of *OH in vivo has been reported. In this study, we have employed an ESR spin-trapping technique with 5,5-dimethylpyrroline-N-oxide (DMPO), a selective *OH trap, to detect *OH in blood. The ESR spectrum of spin adduct observed in the blood of mice given 4.8 mmol Cr(VI)/kg body weight exhibited the 1:2:2:1 intensity pattern of a quartet with a hyperfine coupling constant A(N) = A(H) = 14.81 G and g-value = 2.0067. The concentration of the spin adduct detected in the blood was 7.37 microM. The adduct production was inhibited by the addition of specific *OH scavengers such as sodium benzoate and methional to the blood. The results indicate that the spin adduct is nitroxide produced by the reaction of *OH with DMPO. This is the first report of ESR evidence for the in vivo generation of *OH in mammals by Cr(VI).  相似文献   

7.
Measurement of hydroxyl radical (*OH) in living animals irradiated with ionizing radiation should be required to clarify the mechanisms of radiation injury and the in vivo assessment of radiation protectors, because generation of *OH is believed to be one of the major triggers of radiation injury. In this study, *OH generation was monitored by spin trapping the secondary methyl radical formed by the reaction of *OH with dimethyl sulfoxide (DMSO). Rats were injected intraperitoneally with a DMSO solution of alpha-phenyl-N-tert-butylnitrone (PBN). X-irradiation of the rats remarkedly increased the six-line EPR signal in the bile. The strengthened signal was detectable above 40 Gy. Use of 13C-substituted DMSO revealed that the signal included the methyl radical adduct of PBN as a major component. The EPR signal of the PBN-methyl radical adduct was completely suppressed by preadministration of methyl gallate, a scavenger of *OH but not of methyl radical. Methyl gallate did not reduce the spin adducts to EPR-silent forms. These observations indicate that what we were measuring was *OH generated in vivo by x-irradiation. This is the first report of the in vivo monitoring of *OH generation at a radiation dose close to what people might receive in the case of radiological accident or radiation therapy.  相似文献   

8.
A mechanism for the production of hydroxyl radical (*OH) during the oxidation of hydroquinones by laccase, the ligninolytic enzyme most widely distributed among white-rot fungi, has been demonstrated. Production of Fenton reagent (H2O2 and ferrous ion), leading to *OH formation, was found in reaction mixtures containing Pleurotus eryngii laccase, lignin-derived hydroquinones, and chelated ferric ion. The semiquinones produced by laccase reduced both ferric to ferrous ion and oxygen to superoxide anion radical (O2*-). Dismutation of the latter provided the H2O2 for *OH generation. Although O2*- could also contribute to ferric ion reduction, semiquinone radicals were the main agents accomplishing the reaction. Due to the low extent of semiquinone autoxidation, H2O2 was the limiting reagent in Fenton reaction. The addition of aryl alcohol oxidase and 4-methoxybenzyl alcohol (the natural H2O2-producing system of P. eryngii) to the laccase reaction greatly increased *OH generation, demonstrating the synergistic action of both enzymes in the process.  相似文献   

9.
Ionizing radiation is classified as a potent carcinogen, and its injury to living cells is, to a large extent, due to oxidative stress. The molecule most often reported to be damaged by ionizing radiation is DNA. Hydroxyl radicals (*OH), considered the most damaging of all free radicals generated in organisms, are often responsible for DNA damage caused by ionizing radiation. Melatonin, N-acetyl-5-methoxytryptamine, is a well-known antioxidant that protects DNA, lipids, and proteins from free-radical damage. The indoleamine manifests its antioxidative properties by stimulating the activities of antioxidant enzymes and scavenging free radicals directly or indirectly. Among known antioxidants, melatonin is a highly effective scavenger of *OH. Melatonin is distributed ubiquitously in organisms and, as far as is known, in all cellular compartments, and it quickly passes through all biological membranes. The protective effects of melatonin against oxidative stress caused by ionizing radiation have been documented in in vitro and in vivo studies in different species and in in vitro experiments that used human tissues, as well as when melatonin was given to humans and then tissues collected and subjected to ionizing radiation. The radioprotective effects of melatonin against cellular damage caused by oxidative stress and its low toxicity make this molecule a potential supplement in the treatment or co-treatment in situations where the effects of ionizing radiation are to be minimized.  相似文献   

10.
Diesel exhaust particles (DEP) induce pulmonary tumors, asthma-like symptoms, and the like in experimental animals. The involvement of reactive oxygen species (ROS) is suggested in the injuries induced by DEP, though the generation of ROS has not been proven. The present study provided the first direct evidence of *OH generation in the lungs of living mice after intratracheal instillation of DEP, using noninvasive L-band ESR spectroscopy and a membrane-impermeable nitroxyl probe. *OH generation is confirmed with the enhancement of in vivo ESR signal decay rate of the probe. The decay rate at mid-thorax was significantly enhanced in DEP-treated mice compared to that in vehicle-treated mice. The enhancement was completely suppressed by the administration of either *OH scavengers, catalase, or desferrioxamine, while the administration of SOD further increased the rate. The administration of Fenton's reagents into the lung also enhanced the decay rate of the probe at mid-thorax of mice. These results clearly provided evidence that the intratracheal exposure to DEP in mice produced *OH in the lung through an iron-catalyzed reaction of superoxide/H(2)O(2). This first direct evidence of *OH generation in DEP-treated mice lung may be utilized to determine treatments for DEP-induced lung injury.  相似文献   

11.
O2- was produced by gamma irradiation of formate solutions, by the action of xanthine oxidase on hypoxanthine and O2, and by the action of ferredoxin reductase on NADPH and paraquat in the presence of O2. Its reaction with H2O2 and various iron chelates was studied. Oxidation of deoxyribose to thiobarbituric acid-reactive products that was appropriately inhibited by OH. scavengers, or formate oxidation to CO2, was used to detect OH(.). With each source of O2-, and by these criteria, Fe(EDTA) efficiently catalyzed this (Haber-Weiss) reaction, but little catalysis was detectable with iron bound to DTPA, citrate, ADP, ATP, or pyrophosphate, or without chelator in phosphate buffer. O2- produced from xanthine oxidase, but not from the other sources, underwent another iron-dependent reaction with H2O2, to produce an oxidant that did not behave as free OH(.). It was formed in phosphate or bicarbonate buffer, and caused deoxyribose oxidation that was readily inhibited by mannitol or Tris, but not by benzoate, formate, or dimethyl sulfoxide. It did not oxidize formate to CO2. Addition of EDTA changed the pattern of inhibition to that expected for a reaction of OH(.). The other chelators all inhibited deoxyribose oxidation, provided their concentrations were high enough. The results are compatible with iron bound to xanthine oxidase catalyzing production of a strong oxidant (which is not free OH.) from H2O2 and O2- produced by the enzyme.  相似文献   

12.
Quantitative 31P NMR spin trapping techniques can be used as effective tools for the detection and quantification of many free radical species. Free radicals react with a nitroxide phosphorus compound, 5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide (DIPPMPO), to form stable radical adducts, which are suitably detected and accurately quantified using (31)P NMR in the presence of phosphorus containing internal standards. Initially, the 31P NMR signals for the radical adducts of oxygen-centered (*OH, O2*-) and carbon-centered (*CH3, *CH2OH, CH2*CH2OH) radicals were assigned. Subsequently, the quantitative reliability of the developed technique was demonstrated under a variety of experimental conditions. The 31P NMR chemical shifts for the hydroxyl and superoxide reaction adducts with DIPPMPO were found to be 25.3, 16.9, and 17.1 ppm (in phosphate buffer), respectively. The 31P NMR chemical shifts for *CH3, *CH2OH, *CH(OH)CH3, and *C(O)CH3 spin adducts were 23.1, 22.6, 27.3, and 30.2 ppm, respectively. Overall, this effort forms the foundations for a targeted understanding of the nature, identity, and mechanisms of radical activity in a variety of biomolecular processes.  相似文献   

13.
Reactive oxygen species (ROS) and endothelin-1 (ET-1) contribute to vascular pathophysiology in obesity. In this context, whether ET-1 modulates hydroxyl radical (*OH) formation and the function of ROS/*OH in obesity is not known. In the present study, formation and function of ROS, including *OH, were investigated in the aorta of lean and leptin-deficient obese ob/ob mice. Hydroxyl radical formation was detected ex vivo using terephthalic acid in intact aortic rings and the involvement of ROS in ET-1-mediated vasoreactivity was analyzed using the antioxidant EPC-K1, a combination of alpha-tocopherol and ascorbic acid. Generation of either *OH, *O(2)(-), and H(2)O(2) was strongly inhibited by EPC-K1 (all P < 0.05). In obese mice, basal vascular *OH formation and ROS activity were reduced by 3-fold and 5-fold, respectively (P < 0.05 vs. lean). ET-1 markedly enhanced *OH formation in lean (6-fold, P < 0.05 vs. untreated) but not in obese mice. Obesity increased ET-1-induced contractions (P < 0.05 vs. lean), and ROS scavenging further enhanced the response (P < 0.05 vs. untreated). Exogenous ROS, including *OH caused stronger vasodilation in obese animals (P < 0.05 vs. lean), whereas endothelium-dependent relaxation was similar between lean and obese animals. In conclusion, we present a sensitive method allowing ex vivo measurement of vascular *OH generation and provide evidence that ET-1 regulates vascular *OH formation. The data indicate that in obesity, vascular formation of ROS, including *OH is lower, whereas the sensitivity to ROS is increased, suggesting a novel and important role of ROS, including *OH in the regulation of vascular tone in disease status associated with increased body weight.  相似文献   

14.
G. Bottu 《Luminescence》1991,6(3):147-151
The chemiluminescence of the system luminol +Fe2+ + H2O2 was measured in aqueous buffer at pH 7.2. In veronal (5,5-diethybarbiturate) buffer, the luminescence is strongly quenched by ethanol and mannitol, but only weakly by t-butanol, benzoate and superoxide dismutase (SOD); complexing Fe2+ with 1,10-phenanthroline or 2,2′-dipyridyl causes a decrease of light production that can be partially obviated by the simultaneous addition of SOD. In phosphate buffer, the luminescence is higher than in veronal and it is efficiently quenched by all four OH · quenchers and by SOD. In Tris buffer, no light production is observed as long as the Fe2+ is not complexed. When Fe2+ is complexed by pyrophosphate or phytate, there is a strong chemiluminescence in all three buffers, which is quenched by all four OH · quenchers and by SOD. When Fe2+ is complexed by EDTA or DTPA, very little luminescence is observed. The luminol analogue phthalhydrazide, which was suggested by Merényi and Lind as a reliable OH · detector, can replace luminol only in phosphate buffer, and thus turns out to be very specific indeed for free OH ·.  相似文献   

15.
N-[4-(3)H]Benzoylglycylglycylglycine ([(3)H]BzG(3)) was tested as a probe for detecting hydroxyl radicals (*OH). Aerated solutions of l-ascorbate generated *OH, which oxidized [(3)H]BzG(3), yielding hydrophilic (probably hydroxylated) derivatives plus tritiated water. The (3)H(2)O was separated from organic products and remaining [(3)H]BzG(3) on Dowex-1. (3)H(2)O production was much greater with *OH than with other reactive oxygen species (ROS) (e.g., H(2)O(2), superoxide). The slight (3)H(2)O production in the presence of H(2)O(2) or superoxide was blocked by *OH scavengers (e.g., glycerol, mannitol, butan-1-ol) that do not scavenge H(2)O(2) or superoxide. This indicates that (3)H(2)O production was caused by *OH and that other ROS only generated any (3)H(2)O by forming traces of *OH. Doses of *OH that caused detectable nonenzymic polysaccharide scission also caused (3)H(2)O production, indicating that [(3)H]BzG(3) is a sensitive *OH probe in studies of polymer scission. The ability of scavengers and chelators to protect against ascorbate-mediated polysaccharide scission paralleled their ability to inhibit concurrent (3)H(2)O production, indicating that both processes were due to *OH. Thus, [(3)H]BzG(3) is a simple, specific, sensitive, and robust probe for detecting *OH production in vitro. It may have applications for in vivo detection of extracellular *OH in arthritic joints and of apoplastic *OH in plant cell walls.  相似文献   

16.
It has been suggested that both free metals and reduced ferredoxin (Fd) participate in the light-induced production of hydroxyl radicals (OH*) in thylakoid membranes of chloroplasts. The most direct evidence for the involvement of Fd in OH* formation under physiological conditions was reported by Jakob and Heber (Plant Cell Physiol., 1996, 37, 629-635), who used the oxidation of dimethylsulfoxide to methane sulfinic acid as an indicator of OH* production. We confirmed their conclusions using a more sensitive and reliable EPR spin-trapping method and extended their work by additional findings. Free metal-dependent and ferredoxin-dependent OH* production was studied simultaneously and strong metal chelator Desferal was used to distinguish between these reaction pathways. The participation of protein-bound iron within photosystem I was confirmed by partial suppression of OH* generation in broken chloroplasts by methyl viologen. The enhancement in the production of OH* in thylakoid membranes by externally added ferredoxin can be considered as a straightforward evidence of the involvement of ferredoxin in OH* formation.  相似文献   

17.
Liszkay A  Kenk B  Schopfer P 《Planta》2003,217(4):658-667
Hydroxyl radicals (*OH), produced in the cell wall, are capable of cleaving wall polymers and can thus mediate cell wall loosening and extension growth. It has recently been proposed that the biochemical mechanism responsible for *OH generation in the cell walls of growing plant organs represents an enzymatic reaction catalyzed by apoplastic peroxidase (POD). This hypothesis was investigated by supplying cell walls of maize ( Zea mays L.) coleoptiles and sunflower ( Helianthus annuus L.) hypocotyls with external NADH, an artificial substrate known to cause *OH generation by POD in vitro. The effects of NADH on wall loosening, growth, and *OH production in vivo were determined. NADH mediates cell wall extension in vitro and in vivo in an H2O2-dependent reaction that shows the characteristic features of POD. NADH-mediated production of *OH in vivo was demonstrated in maize coleoptiles using electron paramagnetic resonance spectroscopy in combination with a specific spin-trapping reaction. Kinetic properties and inhibitor/activator sensitivities of the *OH-producing reaction in the cell walls of coleoptiles resembled the properties of horseradish POD. Apoplastic consumption of external NADH by living coleoptiles can be traced back to the superimposed action of two enzymatic reactions, a KCN-sensitive reaction mediated by POD operating in the *OH-forming mode, and a KCN-insensitive reaction with the kinetic properties of a superoxide-producing plasma-membrane NADH oxidase the activity of which can be promoted by auxin. Under natural conditions, i.e. in the absence of external NADH, this enzyme may provide superoxide (O2*-) (and H2O2 utilized by POD for) *OH production in the cell wall.  相似文献   

18.
W F Beyer  Y Wang  I Fridovich 《Biochemistry》1986,25(20):6084-6088
Phosphate was reported to be an inhibitor of copper- and zinc-containing superoxide dismutase (SOD) [de Freitas, D.M., & Valentine, J.S. (1984) Biochemistry 23, 2079-2082]. Thus SOD activity, in 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.4), was decreased by approximately 50% when the assay was made 10 mM in phosphate, and the ionic strength was adjusted with sodium fluoride. The inhibitory effect of phosphate was attributed to the neutralization of the positive charge on the guanidino residue of Arg-141. We have reexamined the effects of phosphate inhibition of SOD and found that the enzyme has identical activity in phosphate or HEPES buffer when the ionic strength is adjusted with NaBr. The putative inhibitory effect of phosphate appears to have been due to fluoride inhibition of the superoxide generating system of xanthine/xanthine oxidase. We have confirmed this result by using a photochemical generation of O2- in addition to the enzymatic generation of O2-. Chemical modification of the lysine residues to homoarginines does not affect the activity of the enzyme and does not impart a phosphate sensitivity. Chemical modification with phenylglyoxal caused approximately 80% inactivation of the native enzyme and 90% inactivation of the O-methylisourea-modified enzyme. Our results suggest that phosphate does not inhibit the copper- and zinc-containing superoxide dismutase (Cu,Zn-SOD) beyond the expectations of its effect on ionic strength.  相似文献   

19.
Ischaemia-reperfusion (I/R) injury is a model system of oxidative stress and a potential anti-cancer therapy. Tumour cytotoxicity follows oxygen radical damage to the vasculature which is modulated by tumour production of the vasoactive agent, nitric oxide (NO*). in vivo hydroxylation of salicylate, to 2,3- and 2,5-dihydroxybenzoate (DHBs), was used to measure the generation of hydroxyl radicals (OH*) following temporary vascular occlusion in two murine tumours (with widely differing capacity to produce NO*) and normal skin. Significantly greater OH* generation followed I/R of murine adenocarcinoma CaNT tumours (low NO* production) compared to round cell sarcoma SaS tumours (high NO* production) and normal skin. These data suggest that tumour production of NO* confers resistance to I/R injury, in part by reducing production of oxygen radicals and oxidative stress to the vasculature. Inhibition of NO synthase (NOS), during vascular reperfusion, significantly increased OH* generation in both tumour types, but not skin. This increase in cytotoxicity suggests oxidative injury may be attenuation by tumour production of NO*. Hydroxyl radical generation following I/R injury correlated with vascular damage and response of tumours in vivo, but not skin, which indicates a potential therapeutic benefit from this approach.  相似文献   

20.
Membrane lipid peroxidation (LPO) induced by hydroxyl (*OH) and ascorbyl (*Asc) radicals and by peroxynitrite (ONOO-) was investigated in asolectin (ASO), egg phosphatidylcholine (PC) and PC/phosphatidic acid mixtures (PC:PA) liposomes and rat liver microsomes (MC). Enthalpy variation (DeltaH) of PC:PA at different molar ratios were obtained by differential scanning calorimetry. It was also evaluated the LPO inhibition by quercetin, melatonin and Vitamin B6. The oxidant effect power follows the order *OH approximately *Asc > ONOO- on PC and MC; whilst on ASO liposomes, it follows *Asc > *OH approximately ONOO-. Increasing amounts of PA in PC liposomes resulted in lower levels of LPO. The DeltaH values indicate a more ordered membrane arrangement as a function of PA amount. The results were discussed in order to provide a complete view involving the influence of membranes, oxidants and antioxidants intrinsic behavior on the LPO dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号