首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Ahrén 《Peptides》1985,6(4):585-589
The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone section were investigated in vivo in mice. The mice were pretreated with 125I and thyroxine; the subsequent release of 125I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.  相似文献   

2.
Hormonally stimulated secretion of ACTH from AtT-20 mouse pituitary tumor cells is a cyclic AMP-mediated process. The presence of inhibitory cholinergic muscarinic receptors on these cells was recently reported, and in this study, the relationship between the activation of these receptors and the consequent inhibition of cyclic AMP formation and ACTH secretion was investigated. The muscarinic agent, oxotremorine, antagonized both cyclic AMP synthesis and ACTH secretion in response to corticotropin-releasing factor (CRF), vasoactive intestinal peptide, a 27-amino acid peptide with an N-terminal histidine and a C-terminal isoleucine amide, and forskolin. Other muscarinic agents, carbachol and bethanechol, had similar inhibitory effects. The cholinomimetics reduced basal (unstimulated) ACTH secretion without decreasing basal cyclic AMP levels, and also antagonized hormone release in response to cyclic AMP-independent agonists such as K+, A-23187, and phorbol ester. Scopolamine reversed the inhibitory effects of the muscarinic agents on basal and stimulated ACTH secretion and cyclic AMP formation. Increasing the extracellular calcium concentration reversed the muscarinic antagonism of basal and CRF-stimulated hormone release without affecting the cyclic AMP response. Pertussis toxin pretreatment attenuated the inhibitory effects of the muscarinic agents on forskolin-stimulated cyclic AMP synthesis and ACTH secretion as well as the inhibitory effect of carbachol on basal ACTH release. The data suggest that cyclic AMP is an essential mediator in the ACTH secretory pathway, but that an alternate cyclic AMP-independent ACTH pathway also exists in the clonal cells, and that both pathways may be modulated by a common postcholinergic receptor mechanism.  相似文献   

3.
GRP is a pancreatic neuropeptide and may be of importance for the neural control of insulin and glucagon secretion. In this study, we investigated the effects of GRP on basal and stimulated insulin and glucagon secretion in the mouse. Intravenous injections of GRP at dose levels exceeding 2.12 nmol/kg were found to rapidly increase basal plasma levels of both insulin and glucagon. Furthermore, at a low dose level without effect on basal plasma insulin levels, GRP was found to potentiate the insulin response to both glucose (by 40%; p less than 0.05) and to the cholinergic agonist carbachol (by 57%; p less than 0.01). Also, GRP was at this dose level found to potentiate the glucagon response to carbachol (p less than 0.01). Glucose abolished GRP-induced glucagon secretion. Moreover, methylatropine given at a dose level that totally abolishes carbachol-induced insulin secretion inhibited GRP-induced insulin secretion by 39% (p less than 0.05) and GRP-induced glucagon secretion by 25% (p less than 0.01). L-Propranolol at a dose level that totally abolishes beta-adrenergically-induced insulin secretion inhibited GRP-induced insulin secretion by 52% (p less than 0.01) and GRP-induced glucagon secretion by 15% (p less than 0.05). In summary, we have shown that GRP stimulates basal and potentiates stimulated insulin and glucagon secretion in mice, and that the stimulatory effects of GRP on insulin and glucagon secretion are partially inhibited by muscarinic blockade by methylatropine or by beta-adrenoceptor blockade by propranolol. We conclude that GRP activates potently both insulin and glucagon secretion in the mouse by mechanisms that are partially related to the muscarinic and the beta-adrenergic receptors.  相似文献   

4.
The phosphodiesterase inhibitors RO-201724/1 and 1-methyl-3-isobutylxanthine (MIX) stimulate a rapid increase in cyclic GMP content in rat pancreas; the latter agent also potentiates the stimulatory effect of carbachol on cyclic GMP synthesis. However, neither RO-201724/1 nor MIX alter basal secretion of 3H-labeled protein, nor do they affect the secretory response to carbachol used in either suboptimal or optimal concentrations. MIX as well does not alter the rate at which carbachol stimulates pancreatic enzyme release. The ability of carbachol to increase cyclic GMP synthesis is lost if extracellular calcium concentration is lowered to 0.05 mM; at this calcium concentration, however, the muscarinic agent still elicits a marked secretory effect. The dissociation between cyclic GMP synthesis and the secretory response suggests that the cyclic nucleotide does not play a major role in the stimulus--enzyme secretion coupling phenomenon of the exocrine pancreas.  相似文献   

5.
The effect on gastrin and somatostatin release in sheep of stimulatory and inhibitory peptides and pharmacological agents was investigated using an in vitro preparation of ovine antral mucosa. Carbachol stimulated gastrin release in a dose-dependent manner but had no effect on somatostatin release. As atropine blocked the effect of carbachol, cholinergic agonists appear to stimulate gastrin secretion directly through muscarinic receptors on the G-cell and not by inhibition of somatostatin secretion. Both vasoactive-intestinal peptide (VIP) and gastric-inhibitory peptide (GIP) increased somatostatin release but did not inhibit basal gastrin secretion, although VIP was effective in reducing the gastrin response to Gastrin-releasing peptide (GRP). Porcine and human GRP were stimulatory to gastrin secretion in high doses but bombesin was without effect. The relative insensitivity to GRP (not of ovine origin) previously reported from intact sheep may be caused either by a high basal release of somatostatin or by the ovine GRP receptor or peptide differing from those of other mammalian species.  相似文献   

6.
Increased colonic Cl(-) secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl(-) secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba(2+) to emphasize Cl(-) secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba(2+) were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.  相似文献   

7.
S Heisler 《Life sciences》1976,19(2):233-242
The ionophore, A-23187, was an effective pancreatic secretagogue. The response to A-23187 was Ca2+-dependent; Mg2+ reduced the secretory response to the ionophore. A-23187-stimulated enzyme release was potentiated by dibutyryl cyclic AMP; in the presence of carbachol, output of pancreatic protein paralleled the response to A-23187 alone. The time-course for secretion with A-23187 was similar to that observed with carbachol. The ionophore did not affect basal cyclic AMP levels but did stimulate a rapid Ca2+-dependent production of pancreatic cyclic GMP which preceded the onset of the secretory response. A-23187 did not significantly alter basal or carbachol-stimulated 45Ca efflux from isotope preloaded glands; yet in Ca2+-lowered media, it inhibited (reversed) the secretory response to carbachol, an effect which may have been due to an outward transport by the ionophore of cholinergic-mobilized intracellular Ca2+. Like carbachol, A-23187, inhibits the incorporation of amino acid into new protein, the effect being partially dependent on extracellular Ca2+. The data suggest that the pancreatic cholinergic receptor acts as a Ca2+-ionophore and that extracellular Ca2+ is utilized in the synthesis of cyclic GMP.  相似文献   

8.
The aim of the present study was to determine the effect of social crowding stress and significance of nitric oxide (NO) and prostaglandins (PG) generated by constitutive and inducible nitric oxide synthase (NOS) and cyclooxygenase (COX) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic muscarinic receptor agonist carbachol. Inhibitors of neuronal NOS (nNOS) L-NNA, general NOS L-NAME and inducible NOS (iNOS) aminoguanidine, as well as inhibitors of COX-1, piroxicam, and COX-2, compound NS-398 were administered 15 min prior to carbachol to control or crowded rats (24 rats in cage for 7, during 3 and 7 days). In stressed rats L-NAME, L-NNA and aminoguanidine significantly intensified the carbachol-induced ACTH and corticosterone secretion, like in control rats. Piroxicam, markedly decreased the carbachol-induced ACTH and corticosterone response under either basal or stress conditions. Compound NS-398 did not markedly alter the carbachol-induced HPA response in control and stressed rats. Crowding stress (3 days) significantly impaired the i.c.v. prostaglandin E(2)-induced ACTH response. Corticotropin releasing hormone (CRH) receptor antagonists, alpha-helical CRH [9-14], given i.c.v. did not alter the PGE(2)-evoked corticosterone response in either control or stressed rats, indicating that hypothalamic CRH is not involved in the PGE(2)-induced central stimulation of HPA axis. In control rats L-NAME considerably enhanced, while L-arginine, a physiological NOS substrate, abolished the PGE(2)-induced ACTH and corticosterone response. In stressed rats this NOS blocker significantly increased and L-Arg reduced the stimulatory effect of PGE(2) on ACTH and corticosterone secretion. The carbachol-induced corticosterone response was significantly increased by pretreatment with nNOS inhibitor L-NNA and was considerably reduced by indomethacin, a general COX inhibitor. Pretreatment with both antagonists left the carbachol-induced corticosterone level unchanged, suggesting an independent and reciprocal effect of NO and PG in the cholinergic stimulation of pituitary-adrenocortical response. These results indicate that in the stimulatory action of muscarinic agonist, carbachol, NO is an inhibitory transmitter under basal and crowding stress conditions. This psychosocial stress does not functionally affect the NOS/NO systems. Prostaglandins are involved in the cholinergic muscarinic-induced stimulation of HPA response to a significant extent in non-stressed rats. PGE(2) may be involved in the carbachol-elicited HPA response under basal and stress conditions. Prostaglandins released in response to muscarinic stimulation did not evoke the hypothalamic CRH mediation. NO significantly impairs and PG stimulates the carbachol-induced HPA response in rats under basal and social stress conditions.  相似文献   

9.
Human gastric mucosal cells were isolated from the resected fundic mucosa of peptic ulcer patients. The intracellular content and secretion of intrinsic factor were estimated by binding to cyano[57Co]cobalamin. The content was maximal in the enriched parietal cell fraction which also displayed the highest H+ production as measured by amino[14C]pyrine uptake. Secretagogues evoked full response after 15 min of incubation: pentagastrin (181% of basal secretion), carbachol (208%), histamine (250%) and dibutyryl cyclic adenosine monophosphate (304%). The phosphodiesterase inhibitor isobutylmethylxanthine was slightly more effective even than dibutyryl cAMP. The response to histamine was abolished by ranitidine, indicating activation of adenylate cyclase via histamine H2 receptors, but remained unaffected by atropine, which in turn blocked the carbachol effect, whereas ranitidine was ineffective. The mean formation rate was 8.4 fmol intrinsic factor/106 cells per h under basal conditions and 14.3 fmol in response to histamine.  相似文献   

10.
We compared gastric acid secretion in response to various stimuli in normal and streptozotocin (STZ)-induced diabetic rats, in an attempt to characterize the alteration of acid secretory response in diabetic conditions. Animals were injected STZ (70 mg x kg(-1), i.p.) and used after 5 weeks of diabetes with blood glucose > 350 mg x dL(-1). Under urethane anesthesia, a rat stomach was mounted on an ex vivo chamber, perfused with saline and acid secretion was measured at pH 7.0 using a pH-stat method and by adding 100 mM NaOH. The acid secretion was stimulated by i.v. infusion of either histamine (4 mg x kg(-1) x h(-1)), pentagastrin (60 microg x kg(-1) x h(-1)) or carbachol (20 microg x kg(-1) x h(-1)) or i.v. injection of YM-14673 (0.3 mg x kg(-1)), an analog of thyrotropin-releasing hormone, or vagal electrical stimulation (2 ms, 3 Hz, 0.5 mA). In normal rats, gastric acid secretion was increased in response to either histamine, pentagastrin, carbachol, YM-14673 or electrical vagal stimulation. In STZ diabetic rats, however, changes in acid secretion varied depending on the stimuli; the acid secretory responses to histamine remained unchanged, those to YM-14673 and vagal electrical stimulation significantly decreased, but the responses to both pentagastrin and carbachol were significantly enhanced as compared to normal rats. Luminal release of histamine in response to both pentagastrin and carbachol was increased in STZ-diabetic rats as compared to normal animals. The altered acid secretory responses in STZ diabetic rats were partially reversed by daily injection of insulin with amelioration of high blood glucose levels. These results suggest that STZ-diabetic rats showed different changes in gastric acid secretory responses to various stimuli; no change in response to histamine, a decrease to both YM-14673 and vagal electrical stimulation and an increase to both pentagastrin and carbachol. The increased acid secretory response may be associated with an enhanced release of mucosal histamine, while the decreased response may be due to vagal neuropathy.  相似文献   

11.
Glucagon secretion is known to be stimulated by activation of the alpha-adrenoceptors. In this study, we investigated whether alpha-adrenoceptor blockade by phentolamine affects basal and stimulated glucagon secretion in the mouse. Phentolamine was injected intraperitoneally to mice at dose levels varying from 2.6 to 260 mumol/kg. It was found that, while decreasing plasma glucose levels, phentolamine did not over this wide dose range affect basal glucagon concentrations indicating an inhibition of the hypoglycaemia-induced glucagon secretion. Further, phentolamine clearly inhibited the glucagon secretory response to beta-adrenergic or cholinergic stimulation. Thus, phentolamine (2.6 mumol/kg), impaired the glucagon secretory response to the beta 2-adrenoceptor agonist terbutaline by 51% (P less than 0.01), and to the cholinergic agonist carbachol by 44% (P less than 0.02). We conclude that alpha-adrenoceptor blockade by phentolamine inhibits the glucagon secretion following hypoglycaemia or stimulation by beta-adrenergic and cholinergic agonists. Thus, the alpha-adrenoceptors seem to be of great importance for glucagon secretion in the mouse.  相似文献   

12.
The effects of the alpha,beta-methylene analogue of ATP (Ap(CH2)pp), described as a competitive inhibitor of adenylate cyclase (EC 4.6.1.1), were studied in the rat pancreas in vitro. The analogue did not alter basal cyclic AMP production and basal or carbachol-stimulated efflux of 45Ca from isotope-preloaded glands. On the other hand, Ap(CH2)pp reduced the secretory responses to carbachol, carbachol in the presence of dibutyryl cyclic AMP, pancreozymin (PZ), and the calcium ionophore, A-23187. Release of pancreatic protein in response to dibutyryl cyclic AMP itself was unaffected by the ATP analogue, suggesting that the other secretagogues tested share a common, Ap(CH2)pp-inhibitable pathway in their respective stimulatory actions. Though carbachol, PZ, and A-23187 all stimulated a rapid production (30 s) of pancreatic cyclic GMP, these responses were not affected by Ap(CH2)pp. Additional studies with the analogue indicated that it has a slow onset of action (30-45 min), i.e., its effect on secretion is preceded by secretagogue-induced changes in nucleotide levels and calcium efflux. Nonetheless, the analogue may affect cellular calcium homeostasis, if not during the initial events triggering secretion then during those events which maintain continued secretory output in the presence of a stimulus.  相似文献   

13.
It was the aim of the present study to investigate chloride secretion across the proximal colon of Cftr TgH(neoim)1Hgu congenic mice. Stripped epithelia were incubated in Ussing chambers and the electrophysiological data were compared between cystic fibrosis (CF) animals and wild type (WT) animals. In comparison with the control animals, all Cftr TgH(neoim)1Hgu congenic mice had a distinctly reduced basal chloride secretion and a reduced chloride secretion after stimulation with carbachol and forskolin. When comparing chloride secretion across the proximal colon between WT animals, all mice showed a comparable pattern of response to carbachol and forskolin but quantitative differences, BALB/c exhibiting the highest and HsdOla:MF1 exhibiting the lowest increase in Cl current. Likewise, all CF animals showed the same reaction pattern to carbachol and forskolin, but there was no distinct difference that lasted for the whole measurement. To investigate interferences between Ca- and cyclic adenosine monophosphate-activated pathways of Cl secretion in CF animals, we studied epithelia from CF/3CF/1F1 animals with a mixed background. In these animals, the levels of the carbachol or forskolin-induced chloride currents did not depend on the prestimulation with the respective other secretagogue. 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, which blocks calcium-activated chloride channels, reduced the current response to carbachol by about 23%. This result, obtained in BALB/c-Cftr TgH(neoim)1Hgu mice, indicates that alternative chloride channels might be present in the proximal colon of these mice. In contrast, there was no evidence for alternative chloride conductances in BALB/c WT animals, but we cannot exclude that in WT mice a higher chloride secretion via Cftr-channels may have masked an alternative chloride secretion.  相似文献   

14.
When dispersed chief cells from guinea pig stomach were first incubated with carbachol, washed, and then reincubated with carbachol in fresh incubation solution, the stimulation of pepsinogen secretion and the rise in intracellular calcium concentration during the second incubation were reduced. Carbachol did not cause residual enzyme secretion, but the same range of concentrations that causes enzyme secretion caused desensitization that was rapid, temperature dependent, and reversible with time. Preincubation with carbachol caused approximately a 65% reduction in enzyme secretion stimulated during a subsequent incubation with this agonist, but the potency of carbachol was unaffected. Prior exposure to carbachol also reduced subsequent stimulation caused by cholecystokinin (CCK-8), gastrin I, ionophore A23187, or 12-O-tetradecanoylphorbol 13-acetate but did not alter stimulation by any agonist that increases cellular cAMP. Carbachol pretreatment of Fura-loaded chief cells caused a threefold increase in the EC50 for carbachol-stimulated [Ca2+]i and approximately a 30% reduction in the maximal rise in [Ca2+]i in response to carbachol or CCK-8. Inhibition of [N-methyl-3H] scopolamine binding by carbachol following carbachol pretreatment indicated that modulation of receptor affinity or number did not account for functional desensitization. These data indicate that carbachol causes heterologous desensitization of pepsinogen secretion stimulated by agonists that mobilize cellular Ca2+ or activate protein kinase C through a postreceptor action and suggest that an attenuated rise in chief cell calcium is one mechanism mediating the desensitization of enzyme secretion.  相似文献   

15.
Acid secretory activity and respiration in rabbit gastric glands are stimulated by cAMP-dependent and -independent agonists. Potentiation between agonists suggests interaction of the activation pathways. Regulation of secretory response by protein kinase C was investigated with 12-0-tetradecanoyl phorbol-13-acetate (TPA). TPA elevated basal respiration, pepsin release, and acid secretion but inhibited histamine and carbachol stimulation of acid secretion by gastric glands, as measured by [dimethylamino-14C]aminopyrine accumulation. The inhibition of histamine response was specific for protein kinase C activators, occurred after a 20-min lag, and was not reversed by removal of TPA after 3 min of preincubation. TPA pretreatment inhibited acid secretory responses to cholera toxin and forskolin but enhanced the response to cAMP analogues. Cholera toxin and pertussis toxin simulated ADP-ribosylation of 45 and 41 kDa proteins, respectively, in parietal cell membranes. Therefore, both stimulatory (Gs) and inhibitory (Gi) GTP binding proteins of adenylyl cyclase appear to be present in parietal cells. Pretreatment with pertussis toxin attenuated PGE2 but not TPA inhibition of histamine stimulation of aminopyrine accumulation. Thus, the inhibitory effect of TPA does not appear to be associated with an action on Gi. The results with histamine and carbachol suggest that protein kinase C may regulate both cAMP-dependent and -independent stimulation of parietal cell acid secretion.  相似文献   

16.
The effects of two hormones, vasopressin and somatostatin (SOM), on ion secretion in rat colon descendens were compared. Three modes for induction of epithelial secretion were used: neuronally mediated secretion due to electric field stimulation (EFS), Ca2+-dependent secretion elicited by carbachol, and cAMP-dependent secretion evoked either by a receptor-mediated mechanism elicited by vasoactive intestinal peptide (VIP) or by a direct activation of the adenylate cyclase by means of forskolin. Somatostatin inhibited ion secretion evoked by EFS (55-65%), carbachol (80%) and VIP (95%) in a dose-dependent manner. Maximal inhibition by SOM was observed at 10(-7) M. Somatostatin had, however, no effect on the secretory response to forskolin. The inhibition of the VIP effect could be attenuated by pretreatment with pertussis toxin. In contrast, vasopressin in concentrations as low as 0.025-0.25 U/liter decreased the secretory effects of EFS (55-75%) and carbachol (85%), but had no effect on cAMP-dependent secretion elicited either by VIP or forskolin. The results suggest that the antisecretory effect of vasopressin is mediated only by a block in the Ca2+ pathway, whereas SOM inhibits Ca2+-dependent secretion as well as receptor-mediated cAMP-dependent secretion. The interaction with the cAMP pathway is located at the step between stimulation of the receptor and activation of the adenylate cyclase and probably involves an Ni-protein.  相似文献   

17.
The purpose of this study is to investigate if the cholinergic stimulation by carbachol on tear secretion is a direct process or if it is also mediated by purinergic mechanisms. Experiments were performed in New Zealand male rabbits. The amount of tear secretion was measured with Schirmer’s test and then analyzed by a HPLC protocol in order to study the nucleotide levels. Animal eyes were instilled with carbachol (a cholinergic agonist), pirenzepine, gallamine and 4-DAMP (muscarinic antagonists), PPADS, suramin and reactive blue 2 (purinergic antagonists), and a P2Y2 receptor small interfering RNA (siRNA). Tear secretion increased with the instillation of carbachol, approximately 84 % over control values 20 min after the instillation and so did Ap4A and ATP release. When we applied carbachol in the presence of muscarinic antagonists, tear volume only increased to 4 % with atropine, 12 % in the case of pirenzepine, 3 % with gallamine, and 8 % with 4-DAMP. In the presence of carbachol and purinergic antagonists, tear secretion was increased to 12 % (all values compared to basal tear secretion). By analyzing tear secretion induced with carbachol in presence of a P2Y2 receptor siRNA, we found that tear secretion was diminished to 60 %. The inhibition of tear secretion in the presence of carbachol and purinergic antagonists or P2Y2 siRNA occurred with no apparent change in the tear amount of Ap4A. These experiments demonstrated the participation of Ap4A in lacrimal secretion process.  相似文献   

18.
The pancreatic acinar cell has several phenotypic responses to cAMP agonists. At physiological concentrations of the muscarinic agonist carbachol (1 microM) or the CCK analog caerulein (100 pM), ligands that increase cytosolic Ca(2+), cAMP acts synergistically to enhance secretion. Supraphysiological concentrations of carbachol (1 mM) or caerulein (100 nM) suppress secretion and cause intracellular zymogen activation; cAMP enhances both zymogen activation and reverses the suppression of secretion. In addition to stimulating cAMP-dependent protein kinase (PKA), recent studies using cAMP analogs that lack a PKA response have shown that cAMP can also act through the cAMP-binding protein, Epac (exchange protein directly activated by cyclic AMP). The roles of PKA and Epac in cAMP responses were examined in isolated pancreatic acini. The activation of both cAMP-dependent pathways or the selective activation of Epac was found to enhance amylase secretion induced by physiological and supraphysiological concentrations of the muscarinic agonist carbachol. Similarly, activation of both PKA or the specific activation of Epac enhanced carbachol-induced activation of trypsinogen and chymotrypsinogen. Disorganization of the apical actin cytoskeleton has been linked to the decreased secretion observed with supraphysiological concentrations of carbachol and caerulein. Although stimulation of PKA and Epac or Epac alone could largely overcome the decreased secretion observed with either supraphysiological carbachol or caerulein, stimulation of cAMP pathways did not reduce the disorganization of the apical cytoskeleton. These studies demonstrate that PKA and Epac pathways are coupled to both secretion and zymogen activation in the pancreatic acinar cell.  相似文献   

19.
The role of calcium in control of HCl secretion by the gastric parietal cell was examined using a recently available intracellular calcium-releasing agent, thapsigargin, which has been shown, in some cell types, to induce sustained elevation of intracellular calcium ([Ca2+]i), an action that appears to be independent of inositol lipid breakdown and protein kinase C activation and to be mediated, at least partially, by selective inhibition of endoplasmic reticulum Ca2(+)-ATPase. Using the calcium-sensitive fluorescent probe, fura-2, in combination with digitized video image analysis of single cells as well as standard fluorimetric techniques, we found that thapsigargin induced sustained elevation of [Ca2+]i in single parietal cells and in parietal cells populations. Chelation of medium calcium led to a transient rise and fall in [Ca2+]i, indicating that the sustained elevation in [Ca2+]i in response to thapsigargin was due to both intracellular calcium release and influx. Although thapsigargin appeared to affect the same calcium pool(s) regulated by the cholinergic agonist, carbachol, and the pattern of thapsigargin-induced increases in [Ca2+]i were similar to the plateau phase of the cholinergic response, thapsigargin did not induce acid secretory responses of the same magnitude as those initiated by carbachol (28 vs 600% of basal). The protein kinase C activator, 12-O-tetradecanoyl phorbol-13-acetate (TPA) potentiated the secretory response to thapsigargin but this combined response also did not attain the same magnitude as the maximal cholinergic response. In the presence but not the absence of medium calcium, thapsigargin potentiated acid secretory responses to histamine, which elevate both cyclic AMP (cAMP) and [Ca2+]i in parietal cells, as well as forskolin and cAMP analogues but had no effect on submaximal and an inhibitory effect on maximal cholinergic stimulation. Furthermore, thapsigargin did not fully mimic potentiating interactions between histamine and carbachol, either in magnitude or in the pattern of temporal response. Assuming that the action of thapsigargin is specific for intracellular calcium release mechanisms, these data suggest that 1) sustained influx of calcium is necessary but not sufficient for cholinergic activation of parietal cell HCl secretion and for potentiating interactions between cAMP-dependent agonists and carbachol; 2) mechanisms in addition to elevated [Ca2+]i and protein kinase C activation may be involved in cholinergic regulation; and 3) increases in [Ca2+]i in response to histamine are not directly involved in the mechanism of histamine-stimulated secretion.  相似文献   

20.
Cholinergic muscarinic receptors were identified in AtT-20/D16-16 (AtT-20) cell membranes by receptor binding techniques and the effect of carbachol on basal and stimulated cyclic AMP formation and ACTH release was investigated. Carbachol markedly decreased the stimulatory effect of the adenylate cyclase activator, forskolin, on both cyclic AMP formation and ACTH secretion. Carbachol also reduced forskolin-stimulated adenylate cyclase activity. The stimulatory effects of (-) isoproterenol on cyclic nucleotide formation and ACTH secretion were also blocked by carbachol. The inhibitory effects of carbachol on (-) isoproterenol-stimulated cyclic AMP synthesis and ACTH secretion were reversed by the muscarinic antagonist, atropine, and not by the nicotinic antagonist, gallamine. These data suggest that in AtT-20 cells, inhibition of ACTH secretion may be regulated by activation of muscarinic receptors coupled negatively to adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号