首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
It is well established that hemopoietic cells arising from the yolk sac invade the avian embryo. To study the fate and role of these cells during the first 2.5-4.5 days of incubation, we constructed yolk sac chimeras (a chick embryo grafted on a quail yolk sac and vice versa) and immunostained them with antibodies specific to cells of quail hemangioblastic lineage (MB1 and QH1). This approach revealed that endothelial cells of the embryonic vessels are of intraembryonic origin. In contrast, numerous hemopoietic cells of yolk sac origin were seen in embryos ranging from 2.5 to 4.5 days of incubation. These cells were already present within the vessels and in the mesenchyme at the earliest developmental stages analyzed. Two hemopoietic cell types of yolk sac origin were distinguishable, undifferentiated cells and macrophage-like cells. The number of the latter cells increased progressively as development proceeded, and they showed marked acid phosphatase activity and phagocytic capacity, as revealed by the presence of numerous phagocytic inclusions in their cytoplasm. The macrophage-like cells were mostly distributed in the mesenchyme and also appeared within some organ primordia such as the neural tube, the liver anlage and the nephric rudiment. Comparison of the results in the two types of chimeras and the findings obtained with acid phosphatase/MB1 double labelling showed that some hemopoietic macrophage-like cells of intraembryonic origin were also present at the stages considered. These results support the existence in the early avian embryo of a phagocytic cell system of blood cell lineage, derived chiefly from the yolk sac. Cells belonging to this system perform phagocytosis in cell death and may also be involved in other morphogenetic processes.  相似文献   

2.
3.
Summary An area of cell death is apparent in the lens vesicle margin and the lens stalk during closure and detachment of the lens anlage from the cephalic ectoderm. Free phagocytic cells closely associated with this area of cell death have been interpreted as cells migrating from the lens epithelium. Scanning and transmission electron microscopy, light-microscopic histochemical staining for acid phosphatase and immunostaining using MB1 (a monoclonal antibody specific for quail endothelial and hemopoietic cells) of chimeras of chick embryo and quail yolk sac were used to analyze these lens vesicle-associated free phagocytic cells. The cells have morphological features identical to those of macrophages in other embryonic tissues. In contrast to epithelial cells phagocytosing cell debris, they exhibit strong acid phosphatase activity, a feature typical of macrophages. In addition, free phagocytic cells are MB1 positive in chick embryo-quail yolk sac chimeras, hence they proceed from cells of hemangioblastic lineage originating in the yolk sac. These results indicate that the lens vesicle-associated free phagocytic cells are macrophages. Observations of MB1 positive amoeboid cells in the juxta-retinal mesenchyme and on the borders of the optic cup suggest that these macrophages migrate through the mesenchyme surrounding the eye primordium. Macrophages are seen in both the interspace between lens vesicle and ectoderm and in the lumen of the lens as well as within both the ectoderm and the lens epithelium. In these locations they remove cell debris, and thereby contribute to the complete disappearance of the area of cell death. Macrophages remain in the lens vesicle-ectoderm interspace until developmental stages at which it is invaded by corneal endothelial cells.  相似文献   

4.
The anterior part of the area pellucida from quail blastoderms extending to the 10th or the 17th somite level was substituted for the corresponding region of chick blastoderms in ovo. Reciprocal grafts were also carried out. In external appearance the resulting chimeras had a composite body, one species contributing the head and neck or the head, neck, and wing regions while the other species provided the remainder. The chimeras were always grafted on a chick yolk sac. The cellular composition of hemopoietic organs according to species was analyzed by means of the quail-chick nuclear difference, in 39 viable chimeras at 11–13 days of incubation. The thymus composition depended on the level of the boundary between the two species. In chimeras in which the quail contributed head and neck, the thymic epithelial stroma was made of quail cells while the lymphoid population was of chick origin. In contrast, when the quail contribution also extended to the wings, both thymic stroma and lymphoid cells were of quail origin. In reciprocal combinations, in which head and neck were of chicken origin on a quail body, a different result was obtained: no lymphoid cells were present in the thymus which was reduced to its epithelial component and this was of chick origin. On the other hand, if the chick contribution extended to the wings, as in the reciprocal combination, all thymus components were of chick origin. The spleen and the bursa of Fabricius in most instances did not differ in their cellular composition from the surrounding tissues; however in some chimeras a minor admixture of cells of the other species was also found. Overall these results suggest that hemopoietic stem cells destined to colonize intraembryonic organs arise in territories derived from the whole area pellucida excluding the prospective head-neck region. Furthermore, each hemopoietic organ rudiment appears to be colonized by precursors derived from adjacent territories.  相似文献   

5.
We have previously demonstrated in quail embryos grafted on chick yolk sacs the existence of intraembryonic stem cells responsible for definitive hemopoiesis. In order to determine the origin of these cells, we now examine the diffuse hemopoietic processes within the avian embryo's mesoderm. At 4–5 days of incubation in the two species, basophilic cells were found throughout the dorsal mesentery. At 6–8 days these cells became very numerous and built up dense foci at the level of branching of the anterior and posterior cardinal veins. These cells often infiltrated the wall of lymph spaces and channels and were also present in the lumen of blood vessels. Such locations support the interpretation that these basophilic cells represent early stages of hemopoietic differentiation. At 8–10 days, erythropoiesis or granulopoiesis was seen in the foci, which then regressed rapidly. The foci maximal development coincided with the period of colonization of the intraembryonic organ rudiments. In “yolk sac chimeras,” the foci were always constituted by quail cells, indicating their intraembryonic origin. The primordial origin of the intramesodermal cells remains to be determined. A likely source might be the ventral wall of the aorta which appeared to shed cells into the lumen and into the mesentery in the 3-day embryo.  相似文献   

6.
7.
Flow regulates arterial-venous differentiation in the chick embryo yolk sac   总被引:9,自引:0,他引:9  
Formation of the yolk sac vascular system and its connection to the embryonic circulation is crucial for embryo survival in both mammals and birds. Most mice with mutations in genes involved in vascular development die because of a failure to establish this circulatory loop. Surprisingly, formation of yolk sac arteries and veins has not been well described in the recent literature. Using time-lapse video-microscopy, we have studied arterial-venous differentiation in the yolk sac of chick embryos. Immediately after the onset of perfusion, the yolk sac exhibits a posterior arterial and an anterior venous pole, which are connected to each other by cis-cis endothelial interactions. To form the paired and interlaced arterial-venous pattern characteristic of mature yolk sac vessels, small caliber vessels of the arterial domain are selectively disconnected from the growing arterial tree and subsequently reconnected to the venous system, implying that endothelial plasticity is needed to fashion normal growth of veins. Arterial-venous differentiation and patterning are controlled by hemodynamic forces, as shown by flow manipulation and in situ hybridization with arterial markers ephrinB2 and neuropilin 1, which show that expression of both mRNAs is not genetically determined but plastic and regulated by flow. In vivo application of ephrinB2 or EphB4 in the developing yolk sac failed to produce any morphological effects. By contrast, ephrinB2 and EphB4 application in the allantois of older embryos resulted in the rapid formation of arterial-venous shunts. In conclusion, we show that flow shapes the global patterning of the arterial tree and regulates the activation of the arterial markers ephrinB2 and neuropilin 1.  相似文献   

8.
Using quail/chick chimeras, we have previously shown that different embryonic territories are vascularized through two distinct mecanisms, angiogenesis and vasculogenesis. Angiogenesis occurs in tissues of somatopleural origin, vasculogenesis occurs in territories of splanchnopleural origin. The aim of this work was to establish if these modes of vascularization were conserved in the mammalian embryo. Since in vivo manipulations with mammalian embryos are difficult to perform, we used a quail/mouse chimera approach. Mouse limb buds of somatopleural origin, and visceral organ rudiments of splanchnopleural origin, were grafted into the coelomic cavity of 2.5 day-old quail embryos. After four to seven days, the hosts were killed and the origin of the endothelial cells in the mouse tissues was determined by double staining with the quail endothelial and hematopoietic cell-specific marker, QH1 and mouse-specific VEGFR2 and VEGFR3 probes. Our findings show that the great majority of vessels which developed in the mouse limbs was QH1+, indicating that these tissues were vascularized by angiogenesis. Conversely, visceral organs were vascularized through the vasculogenesis process by mouse endothelial cells which differentiated in situ. These results demonstrate for the first time that in the mouse embryo, as previously shown in avian species, the tissues from somatopleural origin are vascularized by angiogenesis, while rudiments of a splanchnopleural origin are vascularized by vasculogenesis, both at vascular and lymphatic levels.  相似文献   

9.
During ontogeny, hematopoietic stem cells (HSC) become committed outside of hematopoietic organs. Once held to emerge from the yolk sac, they are currently thought to originate from the early aorta. However we now show that the allantois in the avian embryo and the placenta in the mouse embryo produce HSC in very large numbers. These sites thus appear to have a central role in the process of HSC emergence.  相似文献   

10.
Topological and histological analyses of Mabuya mabouya embryos at different developmental stages showed an extraembryonic membrane sequence as follows: a bilaminar omphalopleure and progressive mesodermal expansion around the whole yolk sac at gastrula stages; mesodermal split and formation of an exocoelom in the entire embryonic chamber at neurula stages; beginning of the expansion of the allantois into the exocoelom to form a chorioallantoic membrane at pharyngula stages; complete extension of the allantois into the exocoelom between limb-bud to preparturition stages. Thus, a placental sequence could be enumerated: bilaminar yolk sac placenta; chorioplacenta; allantoplacenta. All placentas are highly specialized for nutrient absorption from early developmental stages. The bistratified extraembryonic ectoderm possesses an external layer with cuboidal cells and a microvillar surface around the whole yolk sac, which absorbs uterine secretions during development of the bilaminar yolk sac placenta and chorioplacenta. During gastrulation, with mesodermal expansion a dorsal absorptive plaque forms above the embryo and several smaller absorptive plaques develop antimesometrially. Both structures are similar histologically and are active in histotrophic transfer from gastrula stages until the end of development. The dorsal absorptive plaque will constitute the placentome and paraplacentome during allantoplacental development. At late gastrula-early neurula stages some absorptive plaques form chorionic concavities or chorionic bags that are penetrated by a long uterine fold and seem to have a specialized histotrophic and/or metabolic role. The extraembryonic mesoderm does not ingress into the yolk sac and neither an isolated yolk mass nor a yolk cleft are formed. This derived pattern of development may be related to the drastic reduction of the egg size and obligatory placentotrophy from early developmental stages. Our results show new specialized placentotrophic structures and a novel arrangement of extraembryonic membrane morphogenesis for Squamata.  相似文献   

11.
Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies   总被引:48,自引:0,他引:48  
Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture, they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands, a process which we call vasculogenesis, was induced by injecting ESC into the peritoneal cavity of syngeneic mice. In the peritoneum, fusion of blood islands and formation of an in vivo-like primary capillary plexus occurred. Transplantation of ESC and ESC-derived complex and cystic embryoid bodies (ESC-CEB) onto the quail chorioallantoic membrane (CAM) induced an angiogenic response, which was directed by nonyolk sac endoderm structures. Neither yolk sac endoderm from ESC-CEB nor normal mouse yolk sac tissue induced angiogenesis on the quail CAM. Extracts from ESC-CEB stimulated the proliferation of capillary endothelial cells in vitro. Mitogenic activity increase during in vitro culture and differentiation of ESC. Almost all growth factor activity was associated with the cells. The ESC-CEB derived endothelial cell growth factor bound to heparin-sepharose. The identification of acidic fibroblast growth factor (FGF)in heparin-sepharose-purified material was accomplished by immunoblot experiments involving antibodies against acidic and basic FGF. We conclude that vasculogenesis, the development of blood vessels from in situ differentiating endothelial cells, and angiogenesis, the sprouting of capillaries from preexisting vessels are very early events during embryogenesis which can be studied using ESC differentiating in vitro. Our results suggest that vasculogenesis and angiogenesis are differently regulated.  相似文献   

12.
It is known that the adhesion molecule ALCAM (CD166) mediates metastasis of malignant cells and organogenesis in embryos. We show here that embryonic day 8.5 (E8.5) murine yolk sac cells express ALCAM protein and that ALCAM expression can be used to define endothelial and cardiac precursors from hematopoietic precursors in E8.5 yolk sacs. ALCAM high+ cells exclusively give rise to endothelial and cardiac cells in matrigel assays but generate no hematopoietic colonies in methylcellulose assays. ALCAM low+ and ALCAM- populations predominantly give rise to hematopoietic cells in methylcellulose, but do not generate any cell clusters in matrigel. The ALCAM high+ population contains both Flk-1+ and Flk-1- cells. The former population exclusively contains endothelial cells whereas the latter give rise to cardiac cells when cultured on OP9 stromal cells. We also show that cardiac lineage marker genes such as Nkx-2.5, and the endothelial marker VE-cadherin are expressed in the ALCAM high+ fraction, whereas the hematopoietic marker GATA1 and Runx1 are expressed in the ALCAM low+/- fraction. However, we did not detect expression of the cardiac structural protein cTn-T in cells from yolk sac cells until these had had been differentiated on OP9 for 5 days. Altogether, these results indicate that cells retaining a potential to differentiate to the cardiac lineage are present in E8.5 yolk sacs and can be isolated as ALCAM high+, Flk-1- cells. Our report provides novel insights into the origin and differentiation process of cardiac cells in the formation of the circulatory system.  相似文献   

13.
Here we have investigated the role of sphingosine-1-phosphate (S1P) signaling in the process of vasculogenesis in the mouse embryo. At stages preceding the formation of blood vessels (7.5-8 dpc) in the embryo proper, yolk sac, and allantois, the S1P receptor S1P(2) is expressed in conjunction with S1P(1) and/or S1P(3). Additionally, sphingosine kinase-2 (SK2), an enzyme that catalyzes the formation of S1P, is expressed in these tissues throughout periods of vasculogenesis. Using the cultured mouse allantois explant model of blood vessel formation, we found that vasculogenesis was dependent on S1P signaling. We showed that S1P could replace the ability of serum to promote vasculogenesis in cultured allantois explants. Instead of small poorly reticulated clusters of rounded endothelial cells that formed under serum-free conditions, S1P promoted the formation of elongated endothelial cells that arranged into expansive branched networks of capillary-like vessels. These effects could not be reproduced by vascular endothelial growth factor or basic fibroblast growth factor administration. The ability of S1P to promote blood vessel formation was not due to effects on cell survival or on changes in numbers of endothelial cells (Flk1(+)/PECAM(+)), angioblasts (Flk1(+)/PECAM(-)), or undifferentiated mesodermal cells (Flk1(-)/PECAM(-)). The S1P effect on blood vessel formation was attributed to it promoting migratory activities of angioblasts and early endothelial cells required for the expansion of vascular networks. Together, our findings suggest that migratory events critical to the de novo formation of blood vessels are under the influence of S1P, possibly synthesized via the action of SK2, with signaling mediated by S1P receptors that include S1P(1), S1P(2), and S1P(3).  相似文献   

14.
Extraembryonal degradation of yolk protein is necessary to provide the avian embryo with required free amino acids during early embryogenesis. Screening of proteolytic activity in different compartments of quail eggs revealed an increasing activity in the yolk sac membrane during the first week of embryogenesis. In this tissue, the occurrence of cathepsin B, a lysosomal cysteine proteinase, and cathepsin D, a lysosomal aspartic proteinase, has been described recently (Gerhartz et al., Comp Biochem Physiol, 118B:159-166, 1997). Determination of cathepsin B-like and cathepsin D-like proteolytic activity in the yolk sac membrane indicated a significant correlation between growth of the yolk sac membrane and proteolytic activity, shown by an almost constant specific activity. Both proteinases could be localized in the endodermal cells, which are in direct contact to the yolk. The concentration of proteinases in the endodermal cells appears to be almost unaltered in the investigated early stage of quail development, whereas the amount of endodermal cells increases rapidly, seen by a complicated folding of the yolk sac membrane. In the same cells quail cystatin, a potent inhibitor of quail cathepsin B (Ki 0.6 nM), has been localized at day 8 of embryonic development. Approximately at this stage of development, the quail embryo stops metabolizing yolk. In conclusion, it is strongly indicated that the amount of available free amino acids, produced by proteolytic degradation and supporting embryonic growth, is regulated by the growth of the yolk sac membrane.  相似文献   

15.
Embryonic stem cells alone are able to support fetal development in the mouse   总被引:48,自引:0,他引:48  
The developmental potential of embryonic stem (ES) cells versus 3.5 day inner cell mass (ICM) was compared after aggregation with normal diploid embryos and with developmentally compromised tetraploid embryos. ES cells were capable of colonizing somatic tissues in diploid aggregation chimeras but less efficiently than ICMs of the same genotype. When ICM in equilibrium with tetraploid and ES in equilibrium with tetraploid chimeras were made, the newborns were almost all completely ICM- or ES-derived, as judged by GPI isozyme analysis, but tetraploid cells were found in the yolk sac endoderm and trophectoderm lineage. Investigation of ES contribution in 13.5 day ES in equilibrium with tetraploid chimeras by DNA in situ hybridization confirmed the complete tetraploid origin of the placenta (except the fetal blood and blood vessels) and the yolk sac endoderm. However, the yolk sac mesoderm, amnion and fetus contained only ES-derived cells. ES-derived newborns failed to survive after birth, although they had normal birthweight and anatomically they appeared normal. This phenomenon remains unexplained at the moment. The present results prove that ES cells are able to support complete fetal development, resulting in ES-derived newborns, and suggest a useful route for studying the development of genetically manipulated ES cells in all fetal lineages.  相似文献   

16.
The structure, physiology, and endocrinology of the yolk sac placenta of different marsupial groups is compared and phylogenetically analyzed to provide information on placental characters in the marsupial stem species. We conclude that the marsupial stem species possessed a functional yolk sac placenta. Histotrophic nutrition by uterine secretion decreased during late pregnancy and at least half of the yolk sac was vascularized at the time of shell coat rupture. Due to yolk sac fusion, the larger part of the avascular, bilaminar yolk sac could not serve as a placenta at late gestation in the polyovular marsupial stem species. The bilaminar yolk sac gained a relatively greater importance for nutrition in monovular australidelphians. In macropodids a greater proportion of the yolk sac remained bilaminar at the time of shell coat rupture than in the stem species. Another derived feature of macropodids is the sustained plasma progesterone synthesis that is in turn responsible for an extended secretory phase of the uterus and a lengthened gestation. The placenta of the marsupial stem species was probably capable of metabolising histo- and hemotrophes. Recognition of pregnancy during early stages of development is a derived character of macropodids that we suggest did not occur in the marsupial stem species. However, birth and birth behaviour were apparently induced by prostaglandins in the marsupial stem species. Although the yolk sac formed the definitive placenta, it is likely that the allantois provided a supplementary placental function in the marsupial stem species, but that the role of the allantois became progressively less important during the evolution of marsupial placentation.  相似文献   

17.
18.
Role of vascular endothelial-cadherin in vascular morphogenesis   总被引:24,自引:0,他引:24  
Vascular endothelial (VE)-cadherin is an adhesive transmembrane protein specifically expressed at interendothelial junctions. Its extracellular domain exhibits Ca2+-dependent homophilic reactivity, promoting cell-cell recognition. Mice deficient in VE-cadherin die at mid-gestation resulting from severe vascular defects. At the early phases of vascular development (E8.5) of VE-cadherin-deficient embryos, in situ differentiation of endothelial cells was delayed although their differentiation program appeared normal. Vascularization was defective in the anterior part of the embryo, while dorsal aortae and vitelline and umbilical arteries formed normally in the caudal part. At E9.25, organization of endothelial cells into large vessels was incomplete and angiogenesis was impaired in mutant embryos. Defects were more severe in extraembryonic vasculature. Blood islands of the yolk sac and clusters of angioblasts in allantois failed to establish a capillary plexus and remained isolated. This was not due to defective cell-cell recognition as endothelial cells formed intercellular junctions, as shown by electron microscopy. These data indicate that VE-cadherin is dispensable for endothelial homophilic adhesion but is required for vascular morphogenesis.  相似文献   

19.
Furin, the mammalian prototype of a family of serine proteases, is required for ventral closure and axial rotation, and formation of the yolk sac vasculature. Here we show additionally that left-sided expression of pitx2 and lefty-2 are also perturbed in Furin-deficient embryos. These tissue abnormalities are preceded by a marked delay in the expansion of the definitive endoderm during gastrulation. Using a chimera approach, we show that Furin activity is required in epiblast derivatives, including the primitive heart, gut and extraembryonic mesoderm, whereas it is nonessential in the visceral endoderm. Thus, chimeric embryos, derived by injecting wild-type embryonic stem (ES) cells into fur(-/-) blastocysts, develop normally until at least 9.5 d.p.c. In contrast, Furin-deficient chimeras developing in the context of wild-type visceral endoderm fail to undergo ventral closure, axial rotation and yolk sac vascularization. Fur(-/-) cells are recruited into all tissues examined, including the yolk sac vasculature and the midgut, even though these structures fail to form in fur mutants. The presence of wild-type cells in the gut strikingly correlates with the ability of chimeric embryos to undergo turning. Overall, we conclude that Furin activity is essential in both extraembryonic and precardiac mesoderm, and in definitive endoderm derivatives.  相似文献   

20.
Distinct origins of adult and embryonic blood in Xenopus   总被引:9,自引:0,他引:9  
Ciau-Uitz A  Walmsley M  Patient R 《Cell》2000,102(6):787-796
Whether embryonic and adult blood derive from a single (yolk sac) or dual (yolk sac plus intraembryonic) origin is controversial. Here, we show, in Xenopus, that the yolk sac (VBI) and intraembryonic (DLP) blood compartments derive from distinct blastomeres in the 32-cell embryo. The first adult hematopoietic stem cells (HSCs) are thought to form in association with the floor of the dorsal aorta, and we have detected such aortic clusters in Xenopus using hematopoietic markers. Lineage tracing shows that the aortic clusters derive from the blastomere that gives rise to the DLP. These observations indicate that the first adult HSCs arise independently of the embryonic lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号