首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Fry AJ  Palmer MR  Rand DM 《Heredity》2004,93(4):379-389
Maternally inherited Wolbachia bacteria are extremely widespread among insects and their presence is usually associated with parasitic modifications of host fitness. Wolbachia pipientis infects Drosophila melanogaster populations from all continents, but their persistence in this species occurs despite any strong parasitic effects. Here, we have investigated the symbiosis between Wolbachia and D. melanogaster and found that Wolbachia infection can have significant survival and fecundity effects. Relative to uninfected flies, infected females from three fly strains showed enhanced survival or fecundity associated with Wolbachia infection, one strain showed both and one strain responded positively to Wolbachia removal. We found no difference in egg hatch rates (cytoplasmic incompatibility) for crosses between infected males and uninfected females, although there were fecundity differences. Females from this cross consistently produced fewer eggs than infected females and these fecundity differences could promote the spread of infection just like cytoplasmic incompatibility. More surprising, we found that infected females often had the greatest fecundity when mated to uninfected males. This could also promote the spread of Wolbachia infection, though here the fitness benefits would also help to spread infection when Wolbachia are rare. We suggest that variable fitness effects, in both sexes, and which interact strongly with the genetic background of the host, could increase cytoplasmic drive rates in some genotypes and help explain the widespread persistence of Wolbachia bacteria in D. melanogaster populations. These interactions may further explain why many D. melanogaster populations are polymorphic for Wolbachia infection. We discuss our results in the context of host-symbiont co-evolution.  相似文献   

2.
Wolbachia popcorn ( w MelPop), a life-shortening strain of Wolbachia, has been proposed as an agent for suppressing transmission of dengue fever following infection of the vectoring mosquito Aedes aegypti . However, evolutionary changes in the host and Wolbachia genomes might attenuate any life span effects mediated by w MelPop. Here we test for attenuation by selecting strains of Drosophila melanogaster infected with w MelPop for early and late reproduction in three independent outcrossed populations. Selection caused divergence among the lines in longevity. This divergence was mostly associated with the host genetic background rather than the Wolbachia infection, although there were also interactions between the host and Wolbachia genomes. Development time, viability, and productivity were not altered by selection. The implications of these results are discussed in light of the intended use of w MelPop for suppressing disease transmission.  相似文献   

3.
Merçot H  Charlat S 《Genetica》2004,120(1-3):51-59
Wolbachia are endosymbiotic bacteria, widespread in terrestrial Arthropods. They are mainly transmitted vertically, from mothers to offspring and induce various alterations of their hosts' sexuality and reproduction, the most commonly reported phenomenon being Cytoplasmic Incompatibility (CI), observed in Drosophila melanogaster and D. simulans. Basically, CI results in a more or less intense embryonic mortality, occurring in crosses between males infected by Wolbachia and uninfected females. In D. simulans, Wolbachia and CI were observed in 1986. Since then, this host species has become a model system for investigating the polymorphism of Wolbachia infections and CI. In this review we describe the different Wolbachia infections currently known to occur in D. melanogaster and D. simulans. The two species are highly contrasting with regard to symbiotic diversity: while five Wolbachia variants have been described in D. simulans natural populations, D. melanogaster seems to harbor one Wolbachia variant only. Another marked difference between these two Drosophila species is their permissiveness with regard to CI, which seems to be fully expressed in D. simulans but partially or totally repressed in D. melanogaster, demonstrating the involvement of host factors in the control of CI levels. The potential of the two host species regarding the understanding of CI and its evolution is also discussed.  相似文献   

4.
In this study, we report data about the presence of Wolbachia in Drosophila yakuba, D. teissieri, and D. santomea. Wolbachia strains were characterized using their wsp gene sequence and cytoplasmic incompatibility assays. All three species were found infected with Wolbachia bacteria closely related to the wAu strain, found so far in D. simulans natural populations, and were unable to induce cytoplasmic incompatibility. We injected wRi, a CI-inducing strain naturally infecting D. simulans, into the three species and the established transinfected lines exhibited high levels of CI, suggesting that absence of CI expression is a property of the Wolbachia strain naturally present or that CI is specifically repressed by the host. We also tested the relationship between the natural infection and wRi and found that it fully rescues the wRi modification. This result was unexpected, considering the significant evolutionary divergence between the two Wolbachia strains.  相似文献   

5.
Allelic frequencies at five polymorphic loci were determined in seven European and six Afrotropical populations of Drosophila melanogaster. African populations, which may be considered as ancestral for the species, showed a greater genetic diversity as measured by the number of alleles found. Within each geographic group (Europe or tropical Africa) genetic distances between local populations were very small (D = 0.027). By contrast, the average distance between European and African populations (D = 0.389) was more than 12 times bigger. It was previously known that various morphological or physiological differences, which probably reflect genetic adaptations to different environments, exist between these temperate and tropical populations. Data presented here suggest that the divergence in allozyme frequencies also reflects some selective mechanisms.  相似文献   

6.
Pool JE  Aquadro CF 《Genetics》2006,174(2):915-929
Drosophila melanogaster is an important model organism in evolutionary genetics, yet little is known about the population structure and the demographic history of this species within sub-Saharan Africa, which is thought to contain its ancestral range. We surveyed nucleotide variation at four 1-kb fragments in 240 individual lines representing 21 sub-Saharan and 4 Palearctic population samples of D. melanogaster. In agreement with recent studies, we find a small but significant level of genetic differentiation within sub-Saharan Africa. A clear geographic pattern is observed, with eastern and western African populations composing two genetically distinct groups. This pattern may have resulted from a relatively recent establishment of D. melanogaster in western Africa. Eastern populations show greater evidence for long-term stability, consistent with the hypothesis that eastern Africa contains the ancestral range of the species. Three sub-Saharan populations show evidence for cosmopolitan introgression. Apart from those cases, the closest relationships between Palearctic and sub-Saharan populations involve a sample from the rift zone (Uganda), suggesting that the progenitors of Palearctic D. melanogaster might have come from this region. Finally, we find a large excess of singleton polymorphisms in the full data set, which is best explained by a combination of population growth and purifying selection.  相似文献   

7.
ABSTRACT: BACKGROUND: During the evolutionary history of transposable elements, some processes, such as ancestral polymorphisms and horizontal transfer of sequences between species, can produce incongruences in phylogenies. We investigated the evolutionary history of the transposable elements Bari and 412 in the sequenced genomes of the Drosophila melanogaster group and in the sibling species D. melanogaster and D. simulans using traditional phylogenetic and network approaches. RESULTS: The maximum likelihood (ML) phylogenetic analyses revealed incongruences and unresolved relationships for both the Bari and 412 elements. The DNA transposon Bari within the D. ananassae genome is more closely related to the element of the melanogaster complex than to the sequence in D. erecta, which is inconsistent with the species phylogeny. Divergence analysis and the comparison of the rate of synonymous substitutions per synonymous site of the Bari and host gene sequences explain the incongruence as an ancestral polymorphism inherited stochastically by the derived species. Unresolved relationships were observed in the ML phylogeny of both elements involving D. melanogaster, D. simulans and D. sechellia. A network approach was used to attempt to resolve these relationships. The resulting tree suggests recent transfers of both elements between D. melanogaster and D. simulans. The divergence values of the elements between these species support this conclusion. CONCLUSIONS: We showed that an ancestral polymorphism and recent invasion of genomes due to introgression or horizontal transfer between species occurred during the evolutionary history of the Bari and 412 elements in the melanogaster group. These invasions likely occurred in Africa during the Pleistocene, before the worldwide expansion of D. melanogaster and D. simulans.  相似文献   

8.
Tropical sub-Saharan regions are considered to be the geographical origin of Drosophila melanogaster. Starting from there, the species colonized the rest of the world after the last glaciation about 10 000 years ago. Consistent with this demographic scenario, African populations have been shown to harbour higher levels of microsatellite and sequence variation than cosmopolitan populations. Nevertheless, limited information is available on the genetic structure of African populations. We used X chromosomal microsatellite variation to study the population structure of D. melanogaster populations using 13 sampling sites in North, West and East Africa. These populations were compared to six European and one North American population. Significant population structure was found among African D. melanogaster populations. Using a Bayesian method for inferring population structure we detected two distinct groups of populations among African D. melanogaster. Interestingly, the comparison to cosmopolitan D. melanogaster populations indicated that one of the divergent African groups is closely related to cosmopolitan flies. Low, but significant levels of differentiation were observed for sub-Saharan D. melanogaster populations from West and East Africa.  相似文献   

9.
As a result of an intense host-parasite evolutionary arms race, parasitic wasps frequently display high levels of specialization on very few host species. For instance, in braconid wasps very few generalist species have been described. However, within this family, Cotesia sesamiae is a generalist species that is widespread in sub-Saharan Africa and develops on several lepidopteran hosts. In this study, we tested the hypothesis that C.?sesamiae may be a cryptic specialist when examined at the intraspecific level. We sequenced exon 2 of CrV1, a gene of the symbiotic polyDNAvirus that is integrated into the wasp genome and is associated with host immune suppression. We found that CrV1 genotype was more closely associated with the host in which the parasitoid developed than any abiotic environmental factor tested. We also tested a correlation between CrV1 genotype and an infection with Wolbachia bacteria, which are known for their ability to induce reproductive isolation. The Wolbachia bacteria infection polymorphism was also found as a major factor explaining the genetic structure of CrV1, and, in addition, the best model explaining CrV1 genetic structure involved an interaction between Wolbachia infection and host species. We suggest that Wolbachia could act as an agent capable of maintaining advantageous alleles for host specialization in different populations of C.?sesamiae. This mechanism could be applicable to other insect models because of the high prevalence of Wolbachia in insects.  相似文献   

10.
Effects of Wolbachia on mtDNA variation in two fire ant species   总被引:1,自引:0,他引:1  
Wolbachia are endosymbiotic bacteria that infect arthropods. As they are maternally transmitted, the spread of Wolbachia variants within host populations may affect host mtDNA evolution. We sequenced a portion of the mitochondrial cytochrome oxidase I gene from numerous individuals of two Wolbachia-infected fire ant species, Solenopsis invicta and S. richteri, to determine how these bacteria influence patterns of mtDNA variation. As predicted, there was a strong association between Wolbachia strain and host mtDNA lineage within and between these fire ant species. However, there was no consistent association between the presence of Wolbachia and a reduction in mtDNA diversity. Moreover, patterns of mtDNA variation within Wolbachia-infected populations did not differ consistently from neutral expectations, despite our prediction that strong positive selection acting on Wolbachia influences the evolutionary dynamics of other cytoplasmic genomes. Specifically, while values of Tajima's D consistently were less than zero for all six samples of fire ants harbouring Wolbachia, MacDonald-Kreitman tests suggested that the patterns of variation were different from those expected under neutrality in only two of the samples. We conclude that these neutrality tests do not unambiguously reveal a clear effect of Wolbachia infection on patterns of mtDNA variation and substitution in fire ants. Finally, consistent with an earlier study, our data revealed the presence of two divergent mtDNA haplotype lineages and Wolbachia strains within S. invicta. Recognition of these two lineages has important consequences for interpreting patterns of mtDNA evolution and genetic differentiation between conspecific social forms of this species.  相似文献   

11.
Dean MD  Ballard KJ  Glass A  Ballard JW 《Genetics》2003,165(4):1959-1969
Drosophila simulans is hypothesized to have originated in continental East Africa or Madagascar. In this study, we investigated evolutionary forces operating on mitochondrial DNA (mtDNA) in populations of D. simulans from Zimbabwe, Malawi, Tanzania, and Kenya. Variation in mtDNA may be affected by positive selection, background selection, demographic history, and/or any maternally inherited factor such as the bacterial symbiont Wolbachia. In East Africa, the wRi and wMa Wolbachia strains associate with the siII or siIII mitochondrial haplogroups, respectively. To ask how polymorphism relates to Wolbachia infection status, we sequenced 1776 bp of mitochondrial DNA and 1029 bp of the X-linked per locus from 79 lines. The two southern populations were infected with wRi and exhibited significantly reduced mtDNA variation, while Wolbachia-uninfected siII flies from Tanzania and Kenya showed high levels of mtDNA polymorphism. These are the first known populations of D. simulans that do not exhibit reduced mtDNA variation. We observed no mitochondrial variation in the siIII haplogroup regardless of Wolbachia infection status, suggesting positive or background selection. These populations offer a unique opportunity to monitor evolutionary dynamics in ancestral populations that harbor multiple strains of Wolbachia.  相似文献   

12.
Body size and thermal tolerance clines in Drosophila melanogaster occur along the east coast of Australia. However the extent to which temperature affects the genetic architecture underlying the observed clinal divergence remains unknown. Clinal variation in these traits is associated with cosmopolitan chromosome inversions that cline in D. melanogaster. Whether this association influences the genetic architecture for these traits in D. melanogaster is unclear. Drosophila simulans shows linear clines in body size, but nonlinear clines in cold resistance. Clinally varying inversions are absent in D. simulans. Line-cross and clinal analyses were performed between tropical and temperate populations of D. melanogaster and D. simulans from the east coast of Australia to investigate whether clinal patterns and genetic effects contributing to clinal divergence in wing centroid size, thorax length, wing-to-thorax ratio, cold and heat resistance differed under different developmental temperatures (18 °C, 25 °C, and 29 °C). Developmental temperature influenced the genetic architecture in both species. Similarities between D. melanogaster and D. simulans suggest clinally varying inversion polymorphisms have little influence on the genetic architecture underlying clinal divergence in size in D. melanogaster. Differing genetic architectures across different temperatures highlight the need to consider different environments in future evolutionary and molecular studies of phenotypic divergence.  相似文献   

13.
Species invasions and exotic species introductions can be considered as ??unplanned experiments??, which help us to understand the evolution of organisms. In this study, we investigated whether an exotic bird species, the dunnock (Prunella modularis), has diverged genetically and morphologically from its native source population (Cambridge, England) after introduction into a new environment (Dunedin, South Island of New Zealand; exotic population). We used a set of microsatellite markers and three morphological traits to quantify the divergence between these two populations. We quantified neutral genotypic differentiation between the populations, and also used an individual-based Bayesian clustering method to assess genetic structure. We compared morphological divergence using univariate and principal components analyses. We found that individuals from the Dunedin population are genetically distinct from the Cambridge population, but levels of differentiation are very low. Overall within-population levels of genetic diversity are low compared to other bird species, and effective population sizes are small; indicating that the native population probably has a historically low level of genetic diversity, and that the introduced population retained most of that diversity after its introduction into New Zealand. We found little evidence of morphological divergence, and the evolutionary rate of change in these traits is below the average for other taxa. Our study adds support to the growing literature showing that invasive species maintain most of their initial genetic diversity after multiple founder events, even when population size is severely reduced. Moreover, our morphological data indicate slow evolutionary rates in species introduced to similar habitats.  相似文献   

14.
Andolfatto P  Kreitman M 《Genetics》2000,154(4):1681-1691
A previous study of nucleotide polymorphism in a Costa Rican population of Drosophila melanogaster found evidence for a nonneutral deficiency in the number of haplotypes near the proximal breakpoint of In(2L)t, a common inversion polymorphism in this species. Another striking feature of the data was a window of unusually high nucleotide diversity spanning the breakpoint site. To distinguish between selective and neutral demographic explanations for the observed patterns in the data, we sample alleles from three additional populations of D. melanogaster and one population of D. simulans. We find that the strength of associations among sites found at the breakpoint varies between populations of D. melanogaster. In D. simulans, analysis of the homologous region reveals unusually elevated levels of nucleotide polymorphism spanning the breakpoint site. As with American populations of D. melanogaster, our D. simulans sample shows a marked reduction in the number of haplotypes but not in nucleotide diversity. Haplotype tests reveal a significant deficiency in the number of haplotypes relative to the neutral expectation in the D. simulans sample and some populations of D. melanogaster. At the breakpoint site, the level of divergence between haplotype classes is comparable to interspecific divergence. The observation of interspecific polymorphisms that differentiate major haplotype classes in both species suggests that haplotype classes at this locus are considerably old. When considered in the context of other studies on patterns of variation within and between populations of D. melanogaster and D. simulans, our data appear more consistent with the operation of selection than with simple demographic explanations.  相似文献   

15.
The mode and tempo of host-parasite evolution depend on population structure and history and the strength of selection that the species exert on each other. Here we genetically and epidemiologically characterize populations of the mycophagous fly Drosophila innubila and its male-killing Wolbachia endosymbiont, with the aim of integrating the local through global nature of this association. Drosophila innubila inhabit the forested "sky island" regions of the of the southwestern United States and northern Mexico, where its distribution is highly fragmented. We examine geographically isolated sky island populations of D. innubila, surveying the frequency and expression of Wolbachia infection as well as the distribution of genetic variation within and among populations of the host and parasite. In all populations, Wolbachia infection is associated with virtually complete male-killing, thus providing no evidence for the evolution of population-specific interaction phenotypes or local resistance. Although Wolbachia infection occurs in each of the main populations, there is variation among populations in the prevalence of infection and the resulting population-level sex ratio of D. innubila. Among these populations, the nuclear genes of D. innubila show moderate, though significant, differentiation. In contrast, the host mitochondrial DNA (mtDNA), which shares transmission with Wolbachia, exhibits substantially greater geographic differentiation, even after accounting for differences in transmission between nuclear and mitochondrial genes. We suggest that this pattern is caused by local Wolbachia--but not D. innubila--fluctuations in prevalence that increase the severity of drift experienced only by the mtDNA. Overall, our data suggest that the association between D. innubila and male-killing Wolbachia is ecologically dynamic within local populations, but evolutionarily coherent across the species as a whole.  相似文献   

16.
The endosymbiotic [alpha]-proteobacteria Wolbachia is widely spread among arthropods and Filariidae nematodes. This bacterium is transmitted vertically via a transovarian route. Wolbachia is a cause of several reproductive abnormalities in the host species. We analyzed the isofemale lines created using flies collected from Drosophila melanogaster natural populations for infection with the endosymbiont Wolbachia. Wolbachia were genotyped according to five variable markers: the presence of insertion sequence IS5 in two loci, the copy number of two minisatellite repeats, and an inversion. Overall, 665 isofemale lines isolated from the populations of D. melanogaster from Ukraine, Belarus, Moldova, Caucasus, Central Asia, Ural, Udmurtia, Altai, West and East Siberia, and Far East in 1974 through 2005 were used in the work. The samples from Ukrainian, Altaian, and Middle Asian populations were largest. The infection rate of D. melanogaster populations from Middle Asia, Altaian, and Eastern Europe (Ukraine, Moldavia, and Belarus) with Wolbachia amounted to 64, 56, and 39%, respectively. The D. melanogaster population from the Caucasus displayed heterogeneity in the genotypes of this cytoplasmic infection. The Wolbachia genotype wMel, detected in all the populations studied, was the most abundant. The genotype wMelCS2 was always present in the populations from Middle Asia and Altai and was among the rare variants in the D. melanogaster populations from the Eastern Europe. Single instances of the Wolbachia genotype wMelCS occurred in a few flies from the Central Asian and Altai populations, but was not found this genotype in the other regions.  相似文献   

17.
DuMont VB  Fay JC  Calabrese PP  Aquadro CF 《Genetics》2004,167(1):171-185
DNA diversity in two segments of the Notch locus was surveyed in four populations of Drosophila melanogaster and two of D. simulans. In both species we observed evidence of non-steady-state evolution. In D. simulans we observed a significant excess of intermediate frequency variants in a non-African population. In D. melanogaster we observed a disparity between levels of sequence polymorphism and divergence between one of the Notch regions sequenced and other neutral X chromosome loci. The striking feature of the data is the high level of synonymous site divergence at Notch, which is the highest reported to date. To more thoroughly investigate the pattern of synonymous site evolution between these species, we developed a method for calibrating preferred, unpreferred, and equal synonymous substitutions by the effective (potential) number of such changes. In D. simulans, we find that preferred changes per "site" are evolving significantly faster than unpreferred changes at Notch. In contrast we observe a significantly faster per site substitution rate of unpreferred changes in D. melanogaster at this locus. These results suggest that positive selection, and not simply relaxation of constraint on codon bias, has contributed to the higher levels of unpreferred divergence along the D. melanogaster lineage at Notch.  相似文献   

18.
The genetic material, deoxyribonucleic acid (DNA), contains information about the evolutionary history of life. Both the relationships amongst organisms and the times of their divergence can be inferred from DNA sequences. Anthropological geneticists use DNA sequences to infer the evolutionary history of humans and their primate relatives. We review the basic methodology used to infer these relationships. We then review the anthropological genetic evidence for modern human origins. We conclude that modern humans evolved recently in Africa and then left to colonize the rest of the world within the last 50,000 years, largely replacing the other human groups that they encountered. Modern humans likely exchanged genes with Neanderthals prior to or early during their expansion out of Africa.  相似文献   

19.
[目的]双斑长跗萤叶甲Monolepta hieroglyphica为多食性害虫,可取食为害多种农作物.本研究旨在探究中国南方地区分布的双斑长跗萤叶甲地理种群的遗传多样性、遗传结构及种群间的遗传分化程度与基因流水平,探究共生菌Wolbachia 在中国南方双斑长跗萤叶甲地理种群中的多样性和感染情况.[方法]以线粒体CO...  相似文献   

20.
Wolbachia are maternally inherited intracellular alpha-Proteobacteria found in numerous arthropod and filarial nematode species. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel, we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号