首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voltage clamp technique is frequently used to examine the strength and composition of synaptic input to neurons. Even accounting for imperfect voltage control of the entire cell membrane ("space clamp"), it is often assumed that currents measured at the soma are a proportional indicator of the postsynaptic conductance. Here, using NEURON simulation software to model somatic recordings from morphologically realistic neurons, we show that excitatory conductances recorded in voltage clamp mode are distorted significantly by neighboring inhibitory conductances, even when the postsynaptic membrane potential starts at the reversal potential of the inhibitory conductance. Analogous effects are observed when inhibitory postsynaptic currents are recorded at the reversal potential of the excitatory conductance. Escape potentials in poorly clamped dendrites reduce the amplitude of excitatory or inhibitory postsynaptic currents recorded at the reversal potential of the other conductance. In addition, unclamped postsynaptic inhibitory conductances linearize the recorded current-voltage relationship of excitatory inputs comprising AMPAR and NMDAR-mediated components, leading to significant underestimation of the relative contribution by NMDARs, which are particularly sensitive to small perturbations in membrane potential. Voltage clamp accuracy varies substantially between neurons and dendritic arbors of different morphology; as expected, more reliable recordings are obtained from dendrites near the soma, but up to 80% of the synaptic signal on thin, distant dendrites may be lost when postsynaptic interactions are present. These limitations of the voltage clamp technique may explain how postsynaptic effects on synaptic transmission could, in some cases, be attributed incorrectly to presynaptic mechanisms.  相似文献   

2.
The efficacy of synaptic transmission depends on the availability of ionotropic and metabotropic neurotransmitter receptors at the plasma membrane, but the contribution of the endocytic and recycling pathways in the regulation of gamma-aminobutyric acid type B (GABA(B)) receptors remains controversial. To understand the mechanisms that regulate the abundance of GABA(B) receptors, we have studied their turnover combining surface biotin labeling and a microscopic immunoendocytosis assay in hippocampal and cortical neurons. We report that internalization of GABA(B) receptors is agonist-independent. We also demonstrate that receptors endocytose in the cell body and dendrites but not in axons. Additionally, we show that GABA(B) receptors endocytose as heterodimers via clathrin- and dynamin-1-dependent mechanisms and that they recycle to the plasma membrane after endocytosis. More importantly, we show that glutamate decreases the levels of cell surface receptors in a manner dependent on an intact proteasome pathway. These observations indicate that glutamate and not GABA controls the abundance of surface GABA(B) receptors in central neurons, consistent with their enrichment at glutamatergic synapses.  相似文献   

3.
Drosophila neurons have identifiable axons and dendrites based on cell shape, but it is only just starting to become clear how Drosophila neurons are polarized at the molecular level. Dendrite-specific components including the Golgi complex, GABA receptors, neurotransmitter receptor scaffolding proteins, and cell adhesion molecules have been described. Proteins involved in constructing presynaptic specializations are concentrated in axons of some neurons. A very simple model for how these components are distributed to axons and dendrites can be constructed based on the opposite polarity of microtubules in axons and dendrites: dynein carries cargo into dendrites, and kinesins carry cargo into axons. The simple model works well for multipolar neurons, but will likely need refinement for unipolar neurons, which are common in Drosophila.  相似文献   

4.
Gonadotropin-releasing-hormone (GnRH) neurons form part of a central neural oscillator that controls sexual reproduction through intermittent release of the GnRH peptide. Activity of GnRH neurons, and by extension release of GnRH, has been proposed to reflect intrinsic properties and synaptic input of GnRH neurons. To study GnRH neurons, we used traditional electrophysiology and computational methods. These emerging methodologies enhance the elucidation of processing in GnRH neurons. We used dynamic current-clamping to understand how living GnRH somata process input from glutamate and GABA, two key neurotransmitters in the neuroendocrine hypothalamus. In order to study the impact of synaptic integration in dendrites and neuronal morphology, we have developed full-morphology models of GnRH neurons. Using dynamic clamping, we have demonstrated that small-amplitude glutamatergic currents can drive repetitive firing in GnRH neurons. Furthermore, application of simulated GABAergic synapses with a depolarized reversal potential have revealed two functional subpopulations of GnRH neurons: one population in which GABA chronically depolarizes membrane potential (without inducing action potentials) and a second population in which GABAergic excitation results in slow spiking. Finally, when AMPA-type and GABA-type simulated inputs are applied together, action potentials occur when the AMPA-type conductance occurs during the descending phase of GABAergic excitation and at the nadir of GABAergic inhibition. Compartmental computer models have shown that excitatory synapses at >300 microns from somtata are unable to drive spiking with purely passive dendrites. In models with active dendrites, distal synapses are more efficient at driving spiking than somatic inputs. We then used our models to extend the results from dynamic current clamping at GnRH somata to distribute synaptic inputs along the dendrite. We show that propagation delays for dendritic synapses alter synaptic integration in GnRH neurons by widening the temporal window of interaction for the generation of action potentials. Finally, we have shown that changes in dendrite morphology can modulate the output of GnRH neurons by altering the efficacy of action potential generation in response to after-depolarization potentials (ADPs). Taken together, the methodologies of dynamic current clamping and multi-compartmental modeling can make major contributions to the study of synaptic integration and structure-function relationships in hypothalamic GnRH neurons. Use of these methodological approaches will continue to provide keen insights leading to conceptual advances in our understanding of reproductive hormone secretion in normal and pathological physiology and open the door to understanding whether the mechanisms of pulsatile GnRH release are conserved across species.  相似文献   

5.
Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity.  相似文献   

6.
Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.  相似文献   

7.
Odorants evoke an outward current in cultured lobster olfactory receptor neurons voltage clamped at -60 mV. The reversal potential of the outward current is independent of the reversal potential of potassium, but shifts with imposed changes in the reversal potential of chloride. The slope of the current-voltage relationship is negative, suggesting that the current is mediated by the odorant suppressing a steady-state conductance. Anthracene-9-carboxylic acid, a specific chloride channel blocker, reversibly inhibits the steady-state conductance. Local application of odorants to the outer dendrites evokes a hyperpolarizing receptor potential in lobster olfactory receptor neurons current-clamped at -70 mV in situ. Consistent with the current characterized in the cultured cells, hyperpolarizing receptor potentials in some cells are voltage sensitive, blocked by anthracene-9-carboxylic acid and associated with a decrease in membrane conductance. These results support the hypothesis that odorants suppress a steady-state chloride conductance in lobster olfactory receptor neurons. Evidence that the chloride conductance can coexist with a 4-aminopyridine-blockable potassium conductance reported earlier in these cells suggests that two distinct mechanisms can mediate odorant-evoked inhibition in lobster olfactory receptor neurons.  相似文献   

8.
We investigated the spread of membrane voltage changes from the soma into the dendrites of cerebellar Purkinje cells by using voltage-imaging techniques in combination with intracellular recordings and by performing computer simulations using a detailed compartmental model of a cerebellar Purkinje cell. Fluorescence signals from single Purkinje cells in cerebellar cultures stained with the styryl dye di-4-ANEPPS were detected with a 10 × 10 photodiode array and a charge coupled device (CCD). Fluorescence intensity decreased and increased with membrane depolarization and hyperpolarization, respectively. The relation between fractional fluorescence change (F/F) and membrane potential could be described by a linear function with a slope of up to – 3%/100 mV. Hyperpolarizing and depolarizing voltage jumps applied to Purkinje cells voltage-clamped with an intrasomatic recording electrode induced dendritic dye signals, demonstrating that these voltage transients invaded the dendrites. Dye signals induced by depolarizing somatic voltage jumps were weaker in the dendrites, when compared with those induced by hyperpolarizing voltage jumps. Dendritic responses to hyperpolarizing voltage steps applied at the soma were attenuated when membrane conductance was increased by muscimol, an agonist for GABAAreceptors.Corresponding experimental protocols were applied to a previously developed detailed compartmental model of a Purkinje cell. In the model, as in the electrophysiological recordings, voltage attenuation from soma to dendrites increased under conditions where membrane conductance is increased by depolarization or by activation of GABAA receptors, respectively.We discuss how these results affect voltage clamp studies of synaptic currents and synaptic integration in Purkinje cells.  相似文献   

9.
This paper describes the results of intracellular injections of radiolabelled neurotransmitters and transmitter precursor substances, including glutamate, GABA, aspartate, octopamine, tyramine, tryptophan, and choline, into cell bodies of identified excitatory and inhibitory neurons innervating lobster extensor musculature. The distributions and identities of radioactive substances appearing in axons were examined at various times following injection and in vitro incubation. Injected GABA and glutamate were found in appreciable quantities in both excitatory and inhibitory axons and migrated down axons at an estimated rate of between 16 and 22 mm/day at 12 degrees C, whereas the other substances tested were present in substantially smaller quantities and migrated at an estimated rate of less than 7.5 mm/day at 12 degrees C. Injected GABA, D-glutamate and L-glutamate accumulated proximal to ligatures tied around nerves, whereas neither octopamine nor aspartate accumulated proximal to ligatures. Since GABA is the transmitter substance released by inhibitory neurons and L-glutamate is thought to be released from excitatory nerve terminals, these results are consistent with the suggestion that amino acids serving as neurotransmitters are axonally transported. The specificity of axonal transport does not appear to be restricted to the cognate neurotransmitter, as indicated by the movement of L-glutamate in inhibitory axons and GABA in excitatory axons and of D-glutamate in both excitatory and inhibitory axons, but rather may be relaxed to include substances closely related to the neurotransmitter. Some restrictions, however, are apparently placed on axonal transport of small charged molecules in these neurons in that other substances tested migrated down nerves at a considerably slower rate.  相似文献   

10.
Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS), comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA). Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%). By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET) mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P) imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs) recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks.  相似文献   

11.
Chlorine conductance gated by gamma-aminobutyric acid (GABA) and L-glutamate in the medial pleural neurons of aplysia was studied using voltage clamp technique and a continuous microperfusion system that allowed rapid agonist application. Both GABA and glutamate elicited current responses that rapidly activated and then decayed. Glutamate response could be blocked by perfusion of aspartate or taurine and the GABA current showed voltage dependence. Thus the currents exhibited cross desensitization. It has been found that very low concentrations of acetylcholine (10(-8) to 10(-14) M) which have no electrophysiologic responses of their own, modulate the response to a constant application of GABA. During cooling the preparation blocked this effect, it is possible to suggest that the small doses of acetylcholine effect the membrane chemosensitivity through the cell biochemical mechanism.  相似文献   

12.
Summary The localization of -aminobutyric acid (GABA) neurons in the goldfish and the rabbit retina has been studied by immunocytochemical localization of the GABA-synthesizing enzyme L-glutamate decarboxylase (GAD, L-glutamate 1-carboxy-lase, EC 4.1.1.15) and by [3H] GABA uptake autoradiography. In the goldfish retina, GAD is localized in some horizontal cells (H1 type), a few amacrine cells and sublamina b of the inner plexiform layer. Results from immunocytochemical studies of GAD-containing neurons and autoradiographic studies of GABA uptake reveals a marked similarity in the labeling pattern suggesting that in goldfish retina, the neurons which possess a high-affinity system for GABA uptake also contain significant levels of GAD. In the rabbit retina, when Triton X-100 was included in immunocytochemical incubations with a modified protein A-peroxidase-antiperoxidase method, reaction product was found in four broad, evenly spaced laminae within the inner plexiform layer. In the absence of the detergent, these laminae were seen to be composed of small, punctate deposits. When colchicine was injected intravitreally before glutamate decarboxylase staining, cell bodies with the characteristic shape and location of amacrine cells were found to be immunochemically labeled. Electron microscopic examination showed that these processes were presynaptic to ganglion cell dendrites (infrequently), amacrine cell telodendrons, and bipolar cell terminals. Often, bipolar cell terminals were found which were densely innervated by several GAD-positive processes. No definite synapses were observed in which a GAD-positive process represented the postsynaptic element. In autoradiographic studies by intravitreal injection of [3H] GABA a diffuse labeling of the inner plexiform layer and a dense labeling of certain amacrine cell bodies in the inner nuclear layer was observed. Both immunocytochemical and autoradiographic results support the notion that certain, if not all, amacrine cells use GABA as their neurotransmitter.  相似文献   

13.
The intracellular recording of CA1 neurons in mouse hippocampal slice preparation was used to study the properties of depolarizing responses to iontophoretically applied GABA to their apical dendrites. Reversal potential of depolarizing responses was dependent on parameters of injecting current. It was about -60 mV and - (45-55) mV when iontophoretic currents 40-60 nA and 8-20 nA were used respectively. Application of tetrodotoxin (0.1-0.5 microM) resulted in decrease in amplitude of depolarizing responses evoked by weak currents, increase in slope of plot, reflecting relationship between response amplitude and membrane potential, and hyperpolarizing shift of reversal potential. Blocking++ of synaptic transmission with low calcium solution did not produce such changes. These results suggest that GABA depolarizing responses have a potential-sensitive component due to activation of sodium channels.  相似文献   

14.
Muscle fibers from Drosophila larvae show an L-glutamate-sensitive membrane potential. Bath-applied L-glutamate depolarizes the muscle in the range from 0.5 to 20 microM. Greater concentrations of the agonist repolarize the fibers. The repolarizing effect disappears if chloride is replaced by sulfate in the external medium. Intracellular recordings show the occurrence of depolarizing and hyperpolarizing spontaneous miniature postsynaptic potentials (smpp). Patch-clamp studies indicate the presence of two types of receptor channels: (i) an anion-selective channel activated by both L-glutamate and GABA. In outside out-patches, bathed in symmetrical 140 mM Cl- and 200 microM GABA, the channel displays conductance substates of 40, 80 and 110 pS. In the presence of 200 microM L-glutamate only the 40 and 80 pS substates are observed; (ii) a cation-selective channel activated only by L-glutamate that has a conductance of 104 pS in cell-attached patches (128 mM Na+ outside). The presence of these two types of receptor channels in Drosophila muscle may explain the effect of bath-applied L-glutamate on membrane potential and the presence of inhibitory and excitatory smpp.  相似文献   

15.
It is not clear how different spatial compartments in the neuron are affected during epileptiform activity. In the present study we have examined the spatial and temporal profiles of depolarization induced changes in the intracellular Ca(2+) concentration in the dendrites of cultured autaptic hippocampal pyramidal neurons rendered epileptic experimentally by treatment with kynurenate (2 mM) and Mg(2+) (11.3 mM) in culture (treated neurons). This was examined with simultaneous somatic patch-pipette recording and Ca(2+) imaging experiments using the Ca(2+) indicator Oregon Green 488 BAPTA-1. Neurons stimulated by depolarization under whole-cell voltage clamp conditions revealed Ca(2+) entry at localized sites in the dendrites. Ca(2+) transients were observed even in the presence of NMDA and AMPA receptor antagonists suggesting that the opening of voltage gated calcium channels primarily triggered the local Ca(2+) changes. Peak Ca(2+) transients in the dendrites of treated neurons were larger compared to the signals recorded from the control neurons. Dendritic Ca(2+) transients in treated neurons showed a distance dependent scaling. Estimation of dendritic local Ca(2+) diffusion coefficients indicated higher values in the treated neurons and a higher availability of free Ca(2+). Simulation studies of Ca(2+) dynamics in these localized dendritic compartments indicate that local Ca(2+) buffering and removal mechanisms may be affected in treated neurons. Our studies indicate that small dendritic compartments are rendered more vulnerable to changes in intracellular Ca(2+) following induction of epileptiform activity. This can have important cellular consequences including local membrane excitability through mechanisms that remain to be elucidated.  相似文献   

16.
Sutton MA  Taylor AM  Ito HT  Pham A  Schuman EM 《Neuron》2007,55(4):648-661
Activity-dependent regulation of dendritic protein synthesis is critical for enduring changes in synaptic function, but how the unique features of distinct activity patterns are decoded by the dendritic translation machinery remains poorly understood. Here, we identify eukaryotic elongation factor-2 (eEF2), which catalyzes ribosomal translocation during protein synthesis, as a biochemical sensor in dendrites that is specifically and locally tuned to the quality of neurotransmission. We show that intrinsic action potential (AP)-mediated network activity in cultured hippocampal neurons maintains eEF2 in a relatively dephosphorylated (active) state, whereas spontaneous neurotransmitter release (i.e., miniature neurotransmission) strongly promotes the phosphorylation (and inactivation) of eEF2. The regulation of eEF2 phosphorylation is responsive to bidirectional changes in miniature neurotransmission and is controlled locally in dendrites. Finally, direct spatially controlled inhibition of eEF2 phosphorylation induces local translational activation, suggesting that eEF2 is a biochemical sensor that couples miniature synaptic events to local translational suppression in neuronal dendrites.  相似文献   

17.
18.
Neuronal plasticity is achieved by regulation of the expression of genes for neurotransmitter receptors such as the type A receptor (GABA(A)R) for gamma-aminobutyric acid. We now show that two different rat neuronal populations in culture manifest distinct patterns of GABA(A)R plasticity in response to identical stimuli. Whereas prolonged exposure to ethanol had no effect on expression of the delta subunit of GABA(A)Rs at the mRNA or protein level in cerebellar granule neurons, it increased the abundance of delta subunit mRNA and protein in hippocampal neurons. Subsequent ethanol withdrawal transiently down-regulated delta subunit expression in cerebellar granule neurons and gradually normalized that in hippocampal neurons. These effects of ethanol exposure and withdrawal were accompanied by corresponding functional changes in GABA(A)Rs. GABA(A)Rs containing the delta subunit were also distributed differentially in the cerebellar and hippocampal neurons. These findings reveal complex and distinct mechanisms of regulation of the expression of GABA(A)Rs that contain the delta subunit in different neuronal types.  相似文献   

19.
Intracellular microelectrodes, fluorescence imaging, and radiotracer flux techniques were used to investigate the physiological response of the retinal pigment epithelium (RPE) to the major retinal inhibitory neurotransmitter, gamma-aminobutyric acid (GABA). GABA is released tonically in the dark by amphibian horizontal cells, but is not taken up by the nearby Muller cells. Addition of GABA to the apical bath produced voltage responses in the bullfrog RPE that were not blocked nor mimicked by any of the major GABA-receptor antagonists or agonists. Nipecotic acid, a substrate for GABA transport, inhibited the voltage effects of GABA. GABA and nipecotic acid also inhibited the voltage effects of taurine, suggesting that the previously characterized beta- alanine sensitive taurine carrier also takes up GABA. The voltage responses of GABA, taurine, nipecotic acid, and beta-alanine all showed first-order saturable kinetics with the following Km's: GABA (Km = 160 microM), beta-alanine (Km = 250 microM), nipecotic acid (Km = 420 microM), and taurine (Km = 850 microM). This low affinity GABA transporter is dependent on external Na, partially dependent on external Cl, and is stimulated in low [K]o, which approximates subretinal space [K]o during light onset. Apical GABA also produced a significant conductance increase at the basolateral membrane. These GABA-induced conductance changes were blocked by basal Ba2+, suggesting that GABA decreased basolateral membrane K conductance. In addition, the apical membrane Na/K ATPase was stimulated in the presence of GABA. A model for the interaction between the GABA transporter, the Na/K ATPase, and the basolateral membrane K conductance accounts for the electrical effects of GABA. Net apical-to-basal flux of [3H]-GABA was also observed in radioactive flux experiments. The present study shows that a high capacity GABA uptake mechanism with unique pharmacological properties is located at the RPE apical membrane and could play an important role in the removal of GABA from the subretinal space (SRS). This transporter could also coordinate the activities of GABA and taurine in the SRS after transitions between light and dark.  相似文献   

20.
γ-Aminobutyric acid (GABA), a known inhibitory neurotransmitter in mammals, can elicit two different types of excitatory response in the nervous system of the marine mollusc, Aplysia. These responses are depolarizing when GABA is applied ionophoretically, and result from either an increase in membrane conductance to Na+ or a decrease in conductance to K+. In addition, GABA on other neurons causes an inhibitory response similar to that commonly found in other preparations. Although not all neurons have GABA receptors, identified single cells consistently have the same type of response. These observations suggest the possibility that GABA may function in at least some preparations as an excitatory neurotransmitter in addition to its documented inhibitory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号