共查询到20条相似文献,搜索用时 8 毫秒
1.
After chronic administration of Phencyclidine (PCP) to rats, a high test dose (15 mg/kg) of PCP produced increases in stereotypic and ataxic behaviors, and a lower test dose of PCP (5 mg/kg) produced decreases in these behaviors, compared to behavioral responses of control rats. Rearing behavior in rats chronically administered PCP was increased at all test doses of the drug. Rats treated chronically with 15 mg/kg PCP for 9 days showed marked increases in most of these behaviors, whereas, rats receiving 5 mg/kg PCP for 9 days showed less change in several stereotypic and ataxic behaviors. Rats receiving 10 mg/kg PCP on a once-weekly schedule also exhibited more rearing and ataxic behavioral responses after the 3rd or 4th weekly PCP injection. Chronic PCP rats did not show more stereotypic or ataxic behavior after administration of apomorphine or amphetamine than control rats. These results suggest that chronic administration of PCP augments sensitivity to the stereotypic inducing effects of high doses, and decreases sensitivity to low doses of PCP. 相似文献
2.
Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT2A receptor activity is altered in autism, while recent work indicates that systemic 5HT2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. 相似文献
3.
There is considerable evidence that the activity of the neuronal dopamine transporter (DAT) is dynamically regulated and a putative implication of its phosphorylation in this process has been proposed. However, there is little information available regarding the nature of physiological stimuli that contribute to the endogenous control of the DAT function. Based on the close relationship between glutamatergic and dopaminergic systems in the striatum, we investigated the modulation of the DAT activity by metabotropic glutamate receptors (mGluRs). Short-term incubations of rat striatal synaptosomes with micromolar concentrations of the group I mGluR selective agonist (S)-3,5-dihydroxyphenylglycine were found to significantly decrease the DAT capacity and efficiency. This alteration was completely prevented by a highly selective mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). The effect of (S)-3,5-dihydroxyphenylglycine was also inhibited by staurosporine and by selective inhibitors of protein kinase C and calcium calmodulin-dependent protein kinase II. Co-application of okadaic acid prolonged the transient effect of the agonist, supporting a critical role for phosphorylation in the modulation of the DAT activity by mGluRs. In conclusion, we propose that striatal mGluR5 contribute to the control of the DAT activity through concomitant activation of both protein kinase C and calcium calmodulin-dependent protein kinase II. 相似文献
4.
Kelleher RJ Geigenmüller U Hovhannisyan H Trautman E Pinard R Rathmell B Carpenter R Margulies D 《PloS one》2012,7(4):e35003
Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism. 相似文献
5.
Voltage-gated sodium channels (VGSCs) play an important role in the control of membrane excitability. We previously reported that the excitability of nociceptor was increased by hypotonic stimulation. The present study tested the effect of hypotonicity on tetrodotoxin-sensitive sodium current (TTX-S current) in cultured trigeminal ganglion (TG) neurons. Our data show that after hypotonic treatment, TTX-S current was increased. In the presence of hypotonicity, voltage-dependent activation curve shifted to the hyperpolarizing direction, while the voltage-dependent inactivation curve was not affected. Transient Receptor Potential Vanilloid 4 receptor (TRPV4) activator increased TTX-S current and hypotonicity-induced increase was markedly attenuated by TRPV4 receptor blockers. We also demonstrate that inhibition of PKC attenuated hypotonicity-induced inhibition, whereas PKA system was not involved in hypotonic-response. We conclude that hypotonic stimulation enhances TTX-S current, which contributes to hypotonicity-induced nociception. TRPV4 receptor and PKC intracellular pathway are involved in the increase of TTX-S current by hypotonicity. 相似文献
6.
The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5. 相似文献
7.
Hair follicles (HFs) are renewed via multipotent stem cells located in a reservoir (the bulge); however, little is known about how they generate multi-tissue HFs from a proliferative zone (the matrix). To address this issue, we temporally induced clonal labeling during HF growth. Challenging the prevailing hypothesis, we found that the matrix contains restricted self-renewing stem cells for each inner structure. These cells are located around the dermal papilla forming a germinative layer. They occupy different proximodistal sectors and produce differentiated cells along the matrix radial axis via stereotyped lineages and cell behavior. By contrast, the outer layer of HFs displays a mode of growth involving apoptosis that coordinates the development of outer and inner structures. HF morphology is therefore determined by the organization of cell fates along the proximodistal axis and by cell behavior along the radial (lateral) axis in the matrix. Thus, our studies suggest that fate and behavior are organized by two systems (uncoupled), and this uncoupling may represent a fundamental way to simplify morphogenesis. 相似文献
8.
Eung Chang Kim Jaimin Patel Jiaren Zhang Heun Soh Justin S. Rhodes Anastasios V. Tzingounis Hee Jung Chung 《Genes, Brain & Behavior》2020,19(1)
KCNQ/Kv7 channels conduct voltage‐dependent outward potassium currents that potently decrease neuronal excitability. Heterozygous inherited mutations in their principle subunits Kv7.2/KCNQ2 and Kv7.3/KCNQ3 cause benign familial neonatal epilepsy whereas patients with de novo heterozygous Kv7.2 mutations are associated with early‐onset epileptic encephalopathy and neurodevelopmental disorders characterized by intellectual disability, developmental delay and autism. However, the role of Kv7.2‐containing Kv7 channels in behaviors especially autism‐associated behaviors has not been described. Because pathogenic Kv7.2 mutations in patients are typically heterozygous loss‐of‐function mutations, we investigated the contributions of Kv7.2 to exploratory, social, repetitive and compulsive‐like behaviors by behavioral phenotyping of both male and female KCNQ2+/? mice that were heterozygous null for the KCNQ2 gene. Compared with their wild‐type littermates, male and female KCNQ2+/? mice displayed increased locomotor activity in their home cage during the light phase but not the dark phase and showed no difference in motor coordination, suggesting hyperactivity during the inactive light phase. In the dark phase, KCNQ2+/? group showed enhanced exploratory behaviors, and repetitive grooming but decreased sociability with sex differences in the degree of these behaviors. While male KCNQ2+/? mice displayed enhanced compulsive‐like behavior and social dominance, female KCNQ2+/? mice did not. In addition to elevated seizure susceptibility, our findings together indicate that heterozygous loss of Kv7.2 induces behavioral abnormalities including autism‐associated behaviors such as reduced sociability and enhanced repetitive behaviors. Therefore, our study is the first to provide a tangible link between loss‐of‐function Kv7.2 mutations and the behavioral comorbidities of Kv7.2‐associated epilepsy. 相似文献
9.
抑郁症,又称抑郁障碍,是一种常见的心理疾病。其属于高发疾病之一,严重影响着患者的生活质量,也给家庭及社会带来巨大负担。目前对于抑郁症的治疗,虽有多种手段,但基于传统的抗抑郁药物及一般的非药物治疗手段,都不能令人满意,治疗办法仍需创新。因此迫切需要作用更加突出,效果更加明显的新一代治疗策略。目前越来越多的证据表明:谷氨酸调节可迅速缓解难治性患者的抑郁症状,其中代谢型谷氨酸受体5(metabotropic glutamate receptor 5,mGluR5)是谷氨酸能系统的关键组成部分,在抑郁症病理生理过程中发挥着重要作用,同时它也参与了睡眠调节系统对抑郁症的调控。本文就mGluR5参与睡眠剥夺快速抗抑郁效果的研究进展做一综述。 相似文献
10.
Zhao Z Wisnoski DD O'Brien JA Lemaire W Williams DL Jacobson MA Wittman M Ha SN Schaffhauser H Sur C Pettibone DJ Duggan ME Conn PJ Hartman GD Lindsley CW 《Bioorganic & medicinal chemistry letters》2007,17(5):1386-1391
This Letter describes, for the first time, the synthesis and SAR, developed through an iterative analog library approach, that led to the discovery of the positive allosteric modulator (PAM) of the metabotropic glutamate receptor mGluR5 CPPHA. Binding to a unique allosteric binding site distinct from other mGluR5 PAMs, CPPHA has been the focus of numerous pharmacology studies by several laboratories. 相似文献
11.
Gray NW Fourgeaud L Huang B Chen J Cao H Oswald BJ Hémar A McNiven MA 《Current biology : CB》2003,13(6):510-515
The dynamins comprise a large family of mechanoenzymes known to participate in membrane modeling events. All three conventional dynamin genes (Dyn1, Dyn2, Dyn3) are expressed in mammalian brain and produce more than 27 different dynamin proteins as a result of alternative splicing. Past studies have suggested that Dyn1 participates in specialized neuronal functions such as rapid synaptic vesicle recycling, while Dyn2 may mediate the conventional clathrin-mediated uptake of surface receptors. Currently, the distribution, expression, and function of Dyn3 in neurons, or in any other cell type, are completely undefined. Here, we demonstrate that Dyn1 and Dyn3 localize differentially in the synapse. Dyn1 concentrates within the presynaptic compartment, while Dyn3 localizes to dendritic spine tips. Within the postsynaptic density (PSD), we found Dyn3, but not Dyn1, to be part of a biochemically isolated complex comprised of Homer and metabotropic glutamate receptors. Finally, although dominant-negative Dyn3 did not seem to inhibit receptor endocytosis, overexpression of a specific Dyn3 spliced variant in mature neurons caused a marked remodeling of dendritic spines. These data suggest that Dyn3 is a postsynaptic dynamin and, like its binding partner Homer, plays a significant role in dendritic spine morphogenesis and remodeling. 相似文献
12.
目的:探讨5-羟色胺(5-HT)能神经系统在经小脑顶核介导的运动行为中的作用。方法:采用大鼠离体脑片膜片钳及大鼠走步机的行为学测试方法。结果:阻断5-HT1B受体能够增强小脑顶核兴奋性突触传递,行为学试验中给予5-HT及5-HT1B受体阻断剂SB224289,发现注射5-HT到小脑顶核后,大鼠在Rota-rod走步机上的持续时间显著延长,而给予其阻断剂SB224289后,能够反转此作用。结论:5-HT很可能通过5-HT1B受体抑制顶核神经元的兴奋性突触传递从而调节小脑核团神经元环路的活动,继而影响小脑的最终输出,实现对小脑顶核介导的运动平衡和协调能力的调控。 相似文献
13.
Electrotransformation of the human pathogenic fungus Scedosporium prolificans mediated by repetitive rDNA sequences 总被引:1,自引:0,他引:1
Beatriz Ruiz-Díeza Joaquín V Martínez-Suáreza 《FEMS immunology and medical microbiology》1999,25(3):275-282
The regions encoding the 5.8S rRNA and the flanking internal transcribed spacers (ITSI and ITSII) from two isolates of the human pathogenic fungus Scedosporium prolificans and one isolate of the taxonomically related species Pseudallescheria boydii (S. apiospermum) were sequenced. The sequences of the two S. prolificans isolates were identical. However, there were minor differences between both species. Phylogenetic analysis of known fungal sequences confirmed a close relationship between S. prolificans and P. boydii. An attempt was made to transform S. prolificans by electroporation using a plasmid vector, pMLF2, bearing the Escherichia coli hygromycin B phosphotransferase gene (hph) under the control of Aspergillus nidulans promoter and terminator sequences. To increase transformation efficiency, the sequenced ribosomal cluster of S. prolificans was used to construct a new vector for homologous recombination. 相似文献
14.
Ya Zhou Alice L. Rodriguez Richard Williams C. David Weaver P. Jeffrey Conn Craig W. Lindsley 《Bioorganic & medicinal chemistry letters》2009,19(23):6502-6506
This Letter describes the discovery and SAR of three novel series of mGluR5 non-competitive antagonists/negative allosteric modulators (NAMs) not based on manipulation of an MPEP/MTEP chemotype identified by a functional HTS approach. This work demonstrates fundamentally new mGluR5 NAM chemotypes with submicromolar potencies, and further examples of a mode of pharmacology ‘switch’ to provide PAMs with a non-MPEP scaffold. 相似文献
15.
We have characterized the in vitro properties of 3-[3H]methoxy-5-(pyridin-2-ylethynyl)pyridine ([3H]MethoxyPyEP), an analogue of the mGluR(5) receptor subtype antagonist MPEP [2-methyl-6-(phenylethynyl)-pyridine], in rat tissue preparations using tissue homogenates and autoradiography. Binding of [3H]MethoxyPyEP to rat cortex, hippocampus, thalamus and cerebellum membrane preparations revealed saturable, high affinity binding (3.4 +/- 0.4 nM, n = 4 in rat cortex) to a single population of receptors in all regions studied except for cerebellum. Binding was found to be relatively insensitive to pH and insensitive to DTT. High concentrations of NEM both reduce receptor concentration and binding affinity for the radioligand. In time-course studies at room temperature k(on) and k(off) were determined as 2.9 x 10(7) M(-1) min(-1) and 0.11 min(-1) respectively. The rank order of affinities, as assessed by equilibrium competition studies, of a variety of ligands suggested binding of the radioligand selectively to mGluR5 (MPEP > trans-azetidine-2,4-dicarboxylic acid congruent with (S)-4-carboxyphenylglycine congruent with (+)MK801 congruent with CP-101,606 congruent with clozapine congruent with atropine congruent with ketanserin congruent with yohimbine congruent with benoxathian). Autoradiographic studies with [3H]MethoxyPyEP showed that binding was regioselective, with high density of binding in caudate and hippocampus, intermediate binding in thalamus and very low density in the cerebellum. These data show that [3H]MethoxyPyEP is a high affinity radioligand useful for the in vitro study of mGluR5 receptor distribution and pharmacologic properties in brain. 相似文献
16.
Stereotypic behaviors, indicating poor welfare and studied in a variety of species (especially carnivores), appear related to characteristics of current and past environments. Although North American river otters (Lontra canadensis) often develop abnormal, repetitive, possibly stereotypic behaviors, no published reports describe otter housing and management or characterize how these variables relate to abnormal repetitive behavior (ARB) occurrence. The first author developed surveys to gather data on housing, individual history, management, and the prevalence of ARBs in otters housed in facilities accredited by the Association of Zoos and Aquariums. Consistent with anecdotal evidence that otters are prone to ARBs, 46% of river otters in the study exhibit them. ARBs were mostly locomotor and often preceded feeding. Exhibits where otters were fed and trained housed a greater percentage of nonhuman animals with ARBs. This study supports the Tarou, Bloomsmith, and Maple (2005) report that more hands-on management is associated with higher levels of ARBs because management efforts are only for animals with ARBs. Escape motivation, breeding season, feeding cues, and ability to forage may affect ARBs in river otters and should be investigated. 相似文献
17.
18.
Bach P Nilsson K Wållberg A Bauer U Hammerland LG Peterson A Svensson T Osterlund K Karis D Boije M Wensbo D 《Bioorganic & medicinal chemistry letters》2006,16(18):4792-4795
Synthesis and some structure-activity relationships for a new series of propargyl ethers as mGluR5 antagonists are reported. 相似文献
19.
目的:研究选择性代谢性谷氨酸受体5激动剂2-氯-4羟苯基甘氨酸(CHPG)对创伤性神经元损伤的保护作用,并初步探讨其保护机制。方法:大鼠皮层神经元原代培养10天后,采用机械划伤的方法建立损伤模型,采用乳酸脱氢酶(LDH)测定和Hoechst 33342染色观察CHPG对神经元的保护作用。结果:①CHPG显著降低损伤后LDH的释放和神经元凋亡。②与对照组相比,CHPG增加了ERK与Akt的磷酸化水平。③使用ERK抑制剂PD98059或者Akt抑制剂LY294002都可以部分逆转CHPG的保护作用。结论:CHPG可以减轻创伤性神经元损伤,这种保护作用可能是由ERK和Akt信号通路介导的。 相似文献
20.
目的:研究选择性代谢性谷氨酸受体5激动剂2-氯-4羟苯基甘氨酸(CHPG)对创伤性神经元损伤的保护作用,并初步探讨其保护机制。方法:大鼠皮层神经元原代培养10天后,采用机械划伤的方法建立损伤模型,采用乳酸脱氢酶(LDH)测定和Hoechst 33342染色观察CHPG对神经元的保护作用。结果:①CHPG显著降低损伤后LDH的释放和神经元凋亡。②与对照组相比,CHPG增加了ERK与Akt的磷酸化水平。③使用ERK抑制剂PD98059或者Akt抑制剂LY294002都可以部分逆转CHPG的保护作用。结论:CHPG可以减轻创伤性神经元损伤,这种保护作用可能是由ERK和Akt信号通路介导的。 相似文献