首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) allows rapid and reliable identification of microorganisms, particularly clinically important pathogens.

Methodology/Principal Findings

We compared the identification efficiency of MALDI-TOF MS with that of Phoenix®, API® and 16S ribosomal DNA sequence analysis on 1,019 strains obtained from routine diagnostics. Further, we determined the agreement of MALDI-TOF MS identifications as compared to 16S gene sequencing for additional 545 strains belonging to species of Enterococcus, Gardnerella, Staphylococcus, and Streptococcus. For 94.7% of the isolates MALDI-TOF MS results were identical with those obtained with conventional systems. 16S sequencing confirmed MALDI-TOF MS identification in 63% of the discordant results. Agreement of identification of Gardnerella, Enterococcus, Streptococcus and Staphylococcus species between MALDI-TOF MS and traditional method was high (Crohn''s kappa values: 0.9 to 0.93).

Conclusions/Significance

MALDI-TOF MS represents a rapid, reliable and cost-effective identification technique for clinically relevant bacteria.  相似文献   

2.
A methodology based on matrix-assisted laser desorption ionization-time of flight mass spectrometry of intact bacterial cells was used for rapid discrimination of 24 bacterial species, and detailed analyses to identify Escherichia coli O157:H7 were carried out. Highly specific mass spectrometric profiles of pathogenic and nonpathogenic bacteria that are well-known major food contaminants were obtained, uploaded in a specific database, and made available on the Web. In order to standardize the analytical protocol, several experimental, sample preparation, and mass spectrometry parameters that can affect the reproducibility and accuracy of data were evaluated. Our results confirm the conclusion that this strategy is a powerful tool for rapid and accurate identification of bacterial species and that mass spectrometric methodologies could play an essential role in polyphasic approaches to the identification of pathogenic bacteria.  相似文献   

3.
基质辅助激光解吸电离飞行时间质谱对阪崎肠杆菌的鉴定   总被引:1,自引:0,他引:1  
目的 利用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)法对阪崎肠杆菌进行鉴定,建立一种高效检测阪崎肠杆菌的方法,并为该技术的推广使用及阪崎肠杆菌的进一步研究提供科学依据.方法 用MALDI-TOF-MS法检测38株野生阪崎肠杆菌、2株标准菌株和1株阴沟肠杆菌,结果与常规生化鉴定结果对比;同时对在不同培养基上培养的阪崎肠杆菌进行质谱分析比较,对比不同培养基对质谱结果是否有影响;对38株野生菌株质谱图进行聚类分析.结果 38株菌株鉴定结果均为阪崎肠杆菌,与生化鉴定结果一致,且质谱鉴定分值大多在2.0以上.通过MALDI-TOF-MS鉴定方法可以很明显地将阴沟肠杆菌与阪崎肠杆菌两种菌分开.4种培养基对MALDI-TOF-MS鉴定结果的影响不是很明显,TSA比较适合作为阪崎肠杆菌MALDI-TOF-MS鉴定的培养基.通过质谱图谱和离子峰值比较得出,所有菌株在5745 m/z附近均出现高的离子峰,在2871、4740、8288、6260和9488 m/z附近出现离子峰的实验菌株达95%以上;在差异水平在0.5时,MALDI-TOF-MS的聚类分析结果可将所有实验菌株分成5个类型,结合菌株对应的来源和种类分析表明本研究所用菌株与来源和种类之间并无明显关系.结论 MALDI-TOF-MS方法具有准确且精确鉴定阪崎肠杆菌的能力;离子峰5745m/z具有作为阪崎肠杆菌的标记性离子峰的可能;差异水平为0.5进行MALDI-TOF-MS聚类分析,未发现5个类型与来源等具有一定关系,需要进一步研究.  相似文献   

4.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to investigate whole and freeze-thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtained after the oocysts were lysed with a freeze-thaw procedure. Spectral-marker patterns for C. parvum were distinguishable from those obtained for Cryptosporidium muris. One spectral marker appears specific for the genus, while others appear specific at the species level. Three different C. parvum lots were investigated, and similar spectral markers were observed in each. Disinfection of the oocysts reduced and/or eliminated the patterns of spectral markers.  相似文献   

5.
6.
Class I bacteriocins (lantibiotics) and class II bacteriocins are antimicrobial peptides secreted by gram-positive bacteria. Using two lantibiotics, lacticin 481 and nisin, and the class II bacteriocin coagulin, we showed that bacteriocins can be detected without any purification from whole producer bacteria grown on plates by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). When we compared the results of MALDI-TOF-MS performed with samples of whole cells and with samples of crude supernatants of liquid cultures, the former samples led to more efficient bacteriocin detection and required less handling. Nisin and lacticin 481 were both detected from a mixture of their producer strains, but such a mixture can yield additional signals. We used this method to determine the masses of two lacticin 481 variants, which confirmed at the peptide level the effect of mutations in the corresponding structural gene.  相似文献   

7.
Carlson SM  Najmi A  Whitin JC  Cohen HJ 《Proteomics》2005,5(11):2778-2788
Discovering valid biological information from surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS) depends on clear experimental design, meticulous sample handling, and sophisticated data processing. Most published literature deals with the biological aspects of these experiments, or with computer-learning algorithms to locate sets of classifying biomarkers. The process of locating and measuring proteins across spectra has received less attention. This process should be tunable between sensitivity and false-discovery, and should guarantee that features are biologically meaningful in that they represent chemical species that can be identified and investigated. Existing feature detection in SELDI-TOF MS is not optimal for acquiring biologically relevant data. Most methods have so many user-defined settings that reproducibility and comparability among studies suffer considerably. To address these issues, we have developed an approach, called simultaneous spectrum analysis (SSA), which (i) locates proteins across spectra, (ii) measures their abundance, (iii) subtracts baseline, (iv) excludes irreproducible measurements, and (v) computes normalization factors for comparing spectra. SSA uses only two key parameters for feature detection and one parameter each for quality thresholds on spectra and peaks. The effectiveness of SSA is demonstrated by identifying proteins differentially expressed in SELDI-TOF spectra from plasma of wild-type and knockout mice for plasma glutathione peroxidase. Comparing analyses by SSA and CiphergenExpress Data Manager 2.1 finds similar results for large signal peaks, but SSA improves the number and quality of differences betweens groups among lower signal peaks. SSA is also less likely to introduce systematic bias when normalizing spectra.  相似文献   

8.
Infections caused by filamentous fungi have become a health concern, and require rapid and accurate identification in order for effective treatment of the pathogens. To compare the performance of two MALDI-TOF MS systems (Bruker Microflex LT and Xiamen Microtyper) in the identification of filamentous fungal species. A total of 374 clinical filamentous fungal isolates sequentially collected in the Clinical Laboratory at the Beijing Tongren Hospital between January 2014 and December 2015 were identified by traditional phenotypic methods, Bruker Microflex LT and Xiamen Microtyper MALDI-TOF MS, respectively. The discrepancy between these methods was resolved by sequencing for definitive identification. Bruker Microflex LT and Xiamen Microtyper had similar correct species ID (98.9 vs. 99.2%), genus ID (99.7 vs. 100%), mis-ID (0.3 vs. 0%) and no ID (0 vs. 0). The rate of correct species identification by both MALDI-TOF MS (98.9 and 99.2%, respectively) was much higher compared with phenotypic approach (91.9%). Both MALDI-TOF MS systems provide accurate identification of clinical filamentous fungi compared with conventional phenotypic method, and have the potential to replace identification for routine identification of these fungi in clinical mycology laboratories. Both systems have similar performance in the identification of clinical filamentous fungi.  相似文献   

9.
Normal sera contain a large number of naturally occurring autoantibodies which can mask important disease-associated ones. Western blotting has evolved as the most important tool to demonstrate autoantibodies in autoimmune diseases, because of its ability to simultaneous screening for a wide spectrum of different antigens. In previous studies we have shown the diagnostic potential of the analysis of autoantibodies in autoimmune diseases by means of multivariate statistics and artificial neural networks. However, the Western blotting procedure remains very time-consuming and is also limited in sensitivity. Therefore, we used an on-chip approach for the analysis of autoantibodies. This ProteinChip system uses ProteinChip arrays and SELDI-TOF MS (surface-enhanced laser desorption/ionization-time of flight mass spectrometry) technology for capturing, detection, and analysis of proteins without labelling or without the need of chemical modification. The microscale design of the arrays allows the analysis of very small quantities of proteins. In the present study, we used arrays with biologically activated surfaces that permit antibody capture studies. Protein-A-Chips were incubated with sera of patients (n = 12). After washing, the chips were incubated with a complex solution of autoantigens and subsequently washed again. If the Protein-A bound autoantibodies recognized their antigens, these proteins could be separated by their molecular masses and were to be detected by mass spectrometry. Previous studies using monoclonal antibodies have demonstrated that the detection limit is in the attomole level. Furthermore, all sera were analyzed by conventional Western blotting for direct comparison. In the present study, we have shown complex on-chip antibody-antigen reactions. At higher molecular weights (> 30 kDa) the detection sensitivity of this on-chip method was comparable to conventional Western blotting. At lower molecular mass, the Western blot technique is easily exceeded by the on-chip method. Considering that this on-chip procedure is quite easy to use, is much less time-consuming than Western blotting, and is much more sensitive at least in the low molecular weight range, the SELDI-TOF technology is a very promising approach for the screening of autoantibodies in autoimmune diseases. Due to its versatility, this on-chip technology could allow the large-scale screening for complex autoantibody distributions for diagnostic purposes and early detection of autoimmune diseases might be possible.  相似文献   

10.
Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis.  相似文献   

11.
Ribonuclease (RNase) B incubated with purified enzymes, whole bacterial cultures, or their separated components-cells and supernates-have been directly analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF) to detect exomannosidases and to evaluate their specificities and location. Enzymatic cleavage was monitored by observing changes in RNase B glycoform population. Thus a nonspecific alpha-(1 --> 2)-mannosidase activity converts the glycoprotein to its Man(5) form, identifiable by its mass of 14,899 [M + H](+); this species subsequently is converted, by the actions of alpha-(1 --> 3) and alpha-(1 --> 6)-mannosidases, to the Man(1) form via Man(4), Man(3), and Man(2). The Man(1) glycoform (which is readily isolated) has then similarly been used for identifying beta-(1 --> 4)-mannosidase and the derived Man(0) form has served in turn as a natural substrate for beta-(1 --> 4) N-acetylglucosaminidase producing a species possessing a single asparagine-linked GlcNAc residue (mass 13,886). Mannose liberated from the actions of mannosidases can, if desired, be quantified by, for example, chromatography. The actions and specificities of endoglycosidases such as a peptide-N-glycosidase F (PNGase F) and of endo-N-acetlyglucosaminidases (e.g., endo-F and endo-H), which respectively cleave between the GlcNAc&bond;Asn and GlcNAc&bond;GlcNAc bonds of N-linked glycoproteins, are also demonstrable by MALDI-ToF analysis of RNase B (and derived products). From these digests the completely deglycosylated polypeptide corresponding to RNase A in which Asn has been converted to Asp (mass 13,684) and a species corresponding to RNase A + GlcNAc (mass 13,886) are produced, together with their corresponding free oligosaccharides which are amenable to analysis by both MALDI-ToF and by HPLC.  相似文献   

12.
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry has been used to obtain accurate molecular weight information for the integral membrane proteins bacteriorhodopsin and bovine rhodopsin desorbed from solubilized membrane preparations. Mass differences in the molecular weights measured for bleached and unbleached bacteriorhodopsin and rhodopsin indicate the removal of the retinal chromophores upon bleaching. The MALDI technique was also successful for determination of the major cleavage products obtained upon treatment of membrane bound rhodopsin with endoproteinase Asp-N and thermolysin. Our results indicate that the MALDI method is a useful means of obtaining accurate molecular weight information on hydrophobic proteins isolated in their native membranes.  相似文献   

13.
Staphylococcus aureus is an important human pathogen frequently resistant to a wide range of antibiotics. Methicillin-resistant S. aureus (MRSA) strains are common nosocomial pathogens that pose a world-wide problem. Rapid and accurate discrimination between methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus is essential for appropriate therapeutic management and timely intervention for infection control. We report here the application of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for monitoring the bacterial fingerprints expressed by two well characterized S. aureus strains ATCC 29213 (MSSA) and ATCC 43330 (MRSA). Consistent strain-specific data were obtained from subcultures analyzed over a period of three months as well as after changing the growth media from Mueller-Hinton to blood agar indicating the reliability of the method. The bacterial fingerprints of these two strains were compared to independent clinical isolates of S. aureus. A uniform signature profile for MRSA could not be identified. However, the bacterial fingerprints obtained proved to be specific for any given strain. This study demonstrates that MALDI-TOF MS is a powerful method for rapid identification of clonal strains of S. aureus, which might be useful for tracking nosocomial outbreaks of MRSA and for epidemiologic studies of infections diseases in general.  相似文献   

14.
Rapid detection of carbapenem-resistant Acinetobacter baumannii strains is critical and will benefit patient care by optimizing antibiotic therapies and preventing outbreaks. Herein we describe the development and successful application of a mass spectrometry profile generated by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) that utilized the imipenem antibiotic for the detection of carbapenem resistance in a large series of A. baumannii clinical isolates from France and Algeria. A total of 106 A. baumannii strains including 63 well-characterized carbapenemase-producing and 43 non-carbapenemase-producing strains, as well as 43 control strains (7 carbapenem-resistant and 36 carbapenem-sensitive strains) were studied. After an incubation of bacteria with imipenem for up to 4 h, the mixture was centrifuged and the supernatant analyzed by MALDI-TOF MS. The presence and absence of peaks representing imipenem and its natural metabolite was analyzed. The result was interpreted as positive for carbapenemase production if the specific peak for imipenem at 300.0 m/z disappeared during the incubation time and if the peak of the natural metabolite at 254.0 m/z increased as measured by the area under the curves leading to a ratio between the peak for imipenem and its metabolite being <0.5. This assay, which was applied to the large series of A. baumannii clinical isolates, showed a sensitivity of 100.0% and a specificity of 100.0%. Our study is the first to demonstrate that this quick and simple assay can be used as a routine tool as a point-of-care method for the identification of A. baumannii carbapenemase-producers in an effort to prevent outbreaks and the spread of uncontrollable superbugs.  相似文献   

15.
In addition to protein identification, characterization of post-translational modifications (PTMs) is an essential task in proteomics. PTMs represent the major reason for the variety of protein isoforms and they can influence protein structure and function. Upon matrix-assisted laser desorption/ionization (MALDI) most post-translationally modified peptides form a fraction of labile molecular ions, which lose PTM-specific residues only after acceleration. Compared to fully accelerated ions these fragment ions are defocused and show in reflector mass spectra reduced resolution. A short time Fourier transform using a Hanning window function now uses this difference in resolution to detect the metastable fragments. Its application over the whole mass range yields frequency distributions and amplitudes as a function of mass, where an increased low frequency proportion is highly indicative for metastable fragments. Applications on the detection of metastable losses originating from carboxamidomethylated cysteines, oxidized methionines, phosphorylated and glycosylated amino acid residues are presented. The metastable loss of mercaptoacetamide detected with this procedure represents a new feature and its integration in search algorithms will improve the specificity of MALDI peptide mass fingerprinting.  相似文献   

16.

Background

Non-tuberculous mycobacteria recovered from respiratory tract specimens are emerging confounder organisms for the laboratory diagnosis of tuberculosis worldwide. There is an urgent need for new techniques to rapidly identify mycobacteria isolated in clinical practice. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has previously been proven to effectively identify mycobacteria grown in high-concentration inocula from collections. However, a thorough evaluation of its use in routine laboratory practice has not been performed.

Methodology

We set up an original protocol for the MALDI-TOF MS identification of heat-inactivated mycobacteria after dissociation in Tween-20, mechanical breaking of the cell wall and protein extraction with formic acid and acetonitrile. By applying this protocol to as few as 105 colony-forming units of reference isolates of Mycobacterium tuberculosis, Mycobacterium avium, and 20 other Mycobacterium species, we obtained species-specific mass spectra for the creation of a local database. Using this database, our protocol enabled the identification by MALDI-TOF MS of 87 M. tuberculosis, 25 M. avium and 12 non-tuberculosis clinical isolates with identification scores ≥2 within 2.5 hours.

Conclusions

Our data indicate that MALDI-TOF MS can be used as a first-line method for the routine identification of heat-inactivated mycobacteria. MALDI-TOF MS is an attractive method for implementation in clinical microbiology laboratories in both developed and developing countries.  相似文献   

17.
孙伟  许杰  张薇  罗倩  台萃 《微生物学报》2023,63(12):4800-4813
【目的】糖丝菌属(Saccharothrix)是一类丝状稀有放线菌,在生物医药、工业酶制剂和环境修复等领域展现出应用价值。本研究尝试建立以核糖体蛋白质为标志物,利用基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization-time of flight mass spectrometry,MALDI-TOF MS)技术鉴定糖丝菌属放线菌的方法。【方法】检索基因组数据库,提取糖丝菌属测序菌株15种核糖体蛋白质的序列并计算理论分子量;通过分子量比对分析糖丝菌属不同菌种之间及其模式菌株与邻近属菌种模式菌株之间15种核糖体蛋白质的匹配度,提出鉴定至菌种及属的核糖体蛋白质匹配数标准;选取目标属和非目标属菌种进行MALDI-TOF MS测试和分析并修正鉴定标准。【结果】将待测菌株的MALDI-TOF质谱峰与糖丝菌属各菌种模式菌株的15种核糖体蛋白质分别匹配,通过最大匹配数、质谱峰强度模式及特征质谱峰鉴定至属或种。【结论】本研究建立了基于15种核糖体蛋白质标志物及MALDI-TOF MS技术鉴定糖丝菌属放线菌的方法,可用于定向筛选和快速鉴...  相似文献   

18.
Variations in the mass spectral profiles of multiple housekeeping proteins of 126 strains representing Salmonella enterica subsp. enterica (subspecies I), S. enterica subsp. salamae (subspecies II), S. enterica subsp. arizonae (subspecies IIIa), S. enterica subsp. diarizonae (subspecies IIIb), S. enterica subsp. houtenae (subspecies IV), and S. enterica subsp. indica (subspecies VI), and Salmonella bongori were analyzed to obtain a phylogenetic classification of salmonellae based on whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometric bacterial typing. Sinapinic acid produced highly informative spectra containing a large number of biomarkers and covering a wide molecular mass range (2,000 to 40,000 Da). Genus-, species-, and subspecies-identifying biomarker ions were assigned on the basis of available genome sequence data for Salmonella, and more than 200 biomarker peaks, which corresponded mainly to abundant and highly basic ribosomal or nucleic acid binding proteins, were selected. A detailed comparative analysis of the biomarker profiles of Salmonella strains revealed sequence variations corresponding to single or multiple amino acid changes in multiple housekeeping proteins. The resulting mass spectrometry-based bacterial classification was very comparable to the results of DNA sequence-based methods. A rapid protocol that allowed identification of Salmonella subspecies in minutes was established.  相似文献   

19.
The present study examined the potential of intact-cell matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS) for a rapid identification of Burkholderia cepacia complex (Bcc) bacteria using an Applied Biosystems 4700 Proteomics Analyser. Two software packages were used to analyse mass profiles based on densitometric curves and peak positions. The 75 strains examined, represented the nine established Bcc species and some commonly misidentified species, closely related or biochemically similar to Bcc and relevant in the context of cystic fibrosis microbiology. All Bcc strains clustered together, separated from non-Bcc strains. Within Bcc, most Bcc strains grouped in species specific clusters, except for Burkholderia anthina and Burkholderia pyrrocinia strains which constituted a single cluster. The present study demonstrates that MALDI-TOF MS is a powerful approach for the rapid identification of Bcc bacteria.  相似文献   

20.
The beginning of this millennium has seen dramatic advances in genomic research. Milestones such as the complete sequencing of the human genome and of many other species were achieved and complemented by the systematic discovery of variation at the single nucleotide (SNP) and whole segment (copy number polymorphism) level. Currently most genomics research efforts are concentrated on the production of whole genome functional annotations, as well as on mapping the epigenome by identifying the methylation status of CpGs, mainly in CpG islands, in different tissues. These recent advances have a major impact on the way genetic research is conducted and have accelerated the discovery of genetic factors contributing to disease. Technology was the critical driving force behind genomics projects: both the combination of Sanger sequencing with high-throughput capillary electrophoresis and the rapid advances in microarray technologies were keys to success. MALDI-TOF MS-based genome analysis represents a relative newcomer in this field. Can it establish itself as a long-term contributor to genetics research, or is it only suitable for niche areas and for laboratories with a passion for mass spectrometry? In this review, we will highlight the potential of MALDI-TOF MS-based tools for resequencing and for epigenetics research applications, as well as for classical complex genetic studies, allele quantification, and quantitative gene expression analysis. We will also identify the current limitations of this approach and attempt to place it in the context of other genome analysis technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号