首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We sequenced DNA fragments from four monogenean species of the genus Lamellodiscus and their three fish host species from the genus Pagellus in the North Mediterranean Sea, in order to estimate the molecular divergence and the coevolutionary interactions in this association. By comparing the ITS1 sequences of the parasites, we assessed their level of interspecific differences and tested the phylogenetic status of Lamellodiscus virgula and Lamellodiscus obeliae, formerly described as two different species. Moreover, we wanted to know if closely related parasites used closely related hosts, to investigate the coevolutionary interactions in this complex. Phylogenetic relationships among Lamellodiscus species were estimated with partial 18S ribosomal DNA sequences while mitochondrial cytochrome-b DNA sequences were used for their fish hosts. The ITS1 sequences appear to be highly variable among Lamellodiscus species, except L.virgula and L.obeliae, suggesting an old divergence time or a rapid molecular evolution within this genus. This fish-parasite association seems to exhibit coevolutionary interactions. L.virgula and L.obeliae are proposed to be a single species on the basis of their almost identical ITS1 sequences.  相似文献   

2.
Dendrophryniscus is an early diverging clade of bufonids represented by few small-bodied species distributed in Amazonia and the Atlantic Forest. We used mitochondrial (414 bp of 12S, 575 bp of 16S genes) and nuclear DNA (785 bp of RAG-1) to investigate phylogenetic relationships and the timing of diversification within the genus. These molecular data were gathered from 23 specimens from 19 populations, including eight out of the 10 nominal species of the genus as well as Rhinella boulengeri. Analyses also included sequences of representatives of 18 other bufonid genera that were publically available. We also examined morphological characters to analyze differences within Dendrophryniscus. We found deep genetic divergence between an Amazonian and an Atlantic Forest clade, dating back to Eocene. Morphological data corroborate this distinction. We thus propose to assign the Amazonian species to a new genus, Amazonella. The species currently named R. boulengeri, which has been previously assigned to the genus Rhamphophryne, is shown to be closely related to Dendrophryniscus species. Our findings illustrate cryptic trends in bufonid morphological evolution, and point to a deep history of persistence and diversification within the Amazonian and Atlantic rainforests. We discuss our results in light of available paleoecological data and the biogeographic patterns observed in other similarly distributed groups.  相似文献   

3.
The genus Furnestinia (Diplectanidae) contains only one species, Furnestinia echeneis. However, its close morphological similarity with the genus Lamellodiscus (Diplectanidae) raises doubt concerning its placement in a separate genus. These two genera differ only by their number of lamellodiscs: one for Furnestinia, two for Lamellodiscus. Here, the taxonomic position of F. echeneis is investigated via a phylogenetic reconstruction based on partial 18S rDNA for F. echeneis and several Lamellodiscus species. Furnestinia echeneis appears to be clearly nested into the Lamellodiscus genus, these two genera should then be synonymised. The hypertrophy of its unique lamellodisc is hypothesised to be a morphological adaptation for attachment to the host.  相似文献   

4.
The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential.  相似文献   

5.
The cosmopolitan genus Euplotes is remarkable among ciliates for its species richness. To understand the still tangled taxonomy and phylogenetic relationships within the genus, small subunit rRNA sequences of 11 morphologically defined species colonizing different habitats were determined. Euplotes 18S rRNA is unique among ciliates for its anomalous length and high evolutionary rate. Phylogenetic reconstruction pointed to a high divergence between this genus and the other Spirotrichea, together with a high variability within the genus. Some of the relationships within the Euplotes group were also resolved. Data from the literature, based on morphological features, habitat, and symbiotic relationships, have been compared with our results and are critically discussed. In many cases, the molecular phylogenetic analysis disagreed with species relatedness established on morphological and ecological grounds. The occurrence of a radiation phenomenon in the evolution of the genus is postulated.  相似文献   

6.
Endemic organisms of ancient lakes have been studied as models to understand processes of speciation and adaptive radiation. However, it remains unclear how ancient lakes play roles in genetic and phenotypic diversity of freshwater mollusks. In the present study, we focus on viviparid freshwater snails in the ancient lakes of East and Southeast Asia (Japan and China) to address this question. Using molecular phylogenetic analyses based on mitochondrial (COI, 16S) and nuclear genes (18S, 28S, H3), we show that patterns of species diversification in viviparid lineages. Colonization to ancient lakes occurred independently in China and Japan at least four times, with subsequent diversification into more than two species within each lake group. Morphological analyses of fossil related viviparids suggest parallel phenotypic evolution occurred in the different lakes and ages. Each lake contained a single lineage which was phenotypically diversified relative to those from other sites. Using genome‐wide SNPs obtained by MIG‐seq, we also examined the genetic structure of three Japanese viviparids, including two endemic species of ancient Lake Biwa. The results suggest that these two species diversified from the population of the third species living in wetlands surrounding the lake. These findings suggest that rapid diversification of lineages and phenotypic divergence can occur in ancient lakes compared to other habitats. Formation of large lakes probably promotes speciation and phenotypic divergence as a result of adaptation into different microhabitats. High numbers of ancient lakes could be a driver of species diversity in Asian viviparid snails.  相似文献   

7.
Interspecific morphological variation in animal genitalia has long attracted the attention of evolutionary biologists because of the role genital form may play in the generation and/or maintenance of species boundaries. Here we examine the origin and evolution of genital variation in rodents of the muroid genus Neotoma. We test the hypothesis that a relatively rare genital form has evolved only once in Neotoma. We use four mitochondrial and four nuclear markers to evaluate this hypothesis by establishing a phylogenetic framework in which to examine genital evolution. We find intron seven of the beta-fibrinogen gene to be a highly informative nuclear marker for the levels of differentiation that characterize Neotoma with this locus evolving at a rate slower than cytochrome b but faster than 12S. We estimate phylogenetic relationships within Neotoma using both maximum parsimony and maximum likelihood-based Bayesian methods. Our Bayesian and parsimony reconstructions differ in significant ways, but we show that our parsimony analysis may be influenced by long-branch attraction. Furthermore, our estimate of Neotoma phylogeny remains consistent across various data partitioning strategies in the Bayesian analyses. Using ancestral state reconstruction, we find support for the monophyly of taxa that possess the relatively rare genital form. However, we also find support for the independent evolution of the common genital form and discuss possible underlying developmental shifts that may have contributed to our observed patterns of morphological evolution.  相似文献   

8.
Notoriously slow rates of molecular evolution and convergent evolution among some morphological characters have limited phylogenetic resolution for the palm family (Arecaceae). This study adds nuclear DNA (18S SSU rRNA) and chloroplast DNA (cpDNA; atpB and rbcL) sequence data for 65 genera of palms and characterizes molecular variation for each molecule. Phylogenetic relationships were estimated with maximum likelihood and maximum parsimony techniques for the new data and for previously published molecular data for 45 palm genera. Maximum parsimony analysis was also used to compare molecular and morphological data for 33 palm genera. Incongruence among datasets was detected between cpDNA and 18S data and between molecular and morphological data. Most conflict between nuclear and cpDNA data was associated with the genus Nypa. Several taxa showed relatively long branches with 18S data, but phylogenetic resolution of these taxa was essentially the same for 18S and cpDNA data. Base composition bias for 18S that contributed to erroneous phylogenetic resolution in other taxa did not seem to be present in Palmae. Morphological data were incongruent with all molecular data due to apparent morphological homoplasy for Caryoteae, Ceroxyloideae, Iriarteae, and Thrinacinae. Both cpDNA and nuclear 18S data firmly resolved Caryoteae with Borasseae of Coryphoideae, suggesting that at least some morphological characters used to place Caryoteae in Arecoideae are homoplastic. In this study, increased character sampling seems to be more important than increased taxon sampling; a comparison of the full (65-taxon) and reduced (45- and 33-taxon) datasets suggests little difference in core topology but considerably more nodal support with the increased character sample sizes. These results indicate a general trend toward a stable estimate of phylogenetic relationships for the Palmae. Although the 33-taxon topologies are even better resolved, they lack several critical taxa and are affected by incongruence between molecular and morphological data. As such, a comparison of results from the 45- and 33-taxon trees offers the best available reference for phylogenetic inference on palms.  相似文献   

9.
SUMMARYWe investigated whether host specificity is linked to variability within species of Lamellodiscus monogeneans, which are gill ectoparasites of the Sparidae. We sampled fish parasites in the northeastern part of the Mediterranean Sea: 4 specialist species, using 1 single host species, and 3 generalist species, using 2 distinct host species. Intraspecific variability was assessed from 2 different datasets. Morphometric variability of the attachment organ, called the haptor, was estimated first from measurements of several sclerified haptoral parts on 102 individuals. Genetic variability was calculated based on comparisons of sequences derived from the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA of 62 individuals. Morphometric variances in the specialist versus generalist species were compared via principal component analysis and F-tests, and uncorrected genetic distances (p-distances) were estimated within each species. We showed that the inter-individual variance of morphometric characters, as well as p-distances, are clearly greater within generalist species than specialist ones. These findings suggest that a relative increase in morphological and molecular variability enhances the possibility to colonize new host species in monogeneans, and supports the hypothesis that intraspecific variability could be a potential determinant of host specificity.  相似文献   

10.
Aim  To investigate the phylogeny of the genus Cyphophthalmus in the Balkan Peninsula and to test the current recognition of 'phyletic lines' and phylogenetic groups proposed in previous studies in order to elucidate the biogeographical history of the region.
Location  Europe, Balkan Peninsula, Adria microplate.
Methods  Two mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and two nuclear (28S rRNA and 18S rRNA) markers were used to infer the phylogenetic history of the group. Molecular dating with relaxed molecular clocks was used to elucidate the relative time of diversification within the genus Cyphophthalmus and its constituent lineages.
Results  Our analyses confirm the monophyly of the genus Cyphophthalmus , and that of the Aegean and gjorgjevici lineages, whereas the 'Dinaric lineage' appears paraphyletic.
Main conclusions  We show that the genus Cyphophthalmus is an old endemic from the Balkan biogeographical region, which gave origin to at least three main lineages. Those lineages have diversified within overlapping ranges. According to our molecular dating, they have also diversified within the same timeframe. The Dinaric Alps, although presenting a large number of species, cannot be inferred as the centre of origin of the group. Instead, the biogeographical evolution of the genus could be related to the palaeogeographic history of the Adria microplate.  相似文献   

11.
Phylogenetic relationships among the 12 recognized fish species in the New World genus Centropomus (Pisces, Centropomidae) were analyzed using allozyme electrophoresis and 618 bp of the mitochondrial DNA 16S ribosomal RNA (rRNA) gene. Molecular phylogenetic trees were generally consistent with previously published partial hypotheses based on morphological evidence. However, previously undefined sister group relationships between major species groups were resolved using molecular data, and phylogenetic hypotheses for Centropomus based on 16S rRNA sequences were better supported than were allozyme-based hypotheses. The high level of congruence among the trees inferred from the nuclear and mitochondrial characters provided a firm phylogenetic basis for analysis of ecological diversification and molecular evolution in the genus. Compared to basal Centropomus species, members of the most nested species group were significantly larger in body size and occupied a marine niche only peripherally utilized by their congeners. We also observed substitution rate heterogeneity among 16S rRNA lineages; in contrast to expectations based on "metabolic rate" and "generation interval" models, relative substitution rates were faster than expected for the group of large-bodied snooks. Using the Pliocene rise of the Central American isthmian marine barrier to calibrate rates of 16S ribosomal gene evolution in Centropomus, we found that the rates for the genus were similar to those reported for higher vertebrates. Analysis of the three sets of transisthmian geminate taxa in Centropomus indicated that two of the pairs were probably formed during the Pliocene rise of the isthmus while the third pair diverged several million years earlier.  相似文献   

12.
13.
The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (~600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.  相似文献   

14.
We have conducted the first comprehensive molecular phylogeny of the tribe Cichlasomatini including all valid genera as well as important species of questionable generic status. To recover the relationships among cichlasomatine genera and to test their monophyly we analyzed sequences from two mitochondrial (16S rRNA, cytochrome b) and one nuclear marker (first intron of S7 ribosomal gene) totalling 2236 bp. Our data suggest that all genera except Aequidens are monophyletic, but we found important disagreements between the traditional morphological relationships and the phylogeny based on our molecular data. Our analyses support the following conclusions: (a) Aequidens sensu stricto is paraphyletic, including also Cichlasoma (CA clade); (b) Krobia is not closely related to Bujurquina and includes also the Guyanan Aequidens species A. potaroensis and probably A. paloemeuensis (KA clade). (c) Bujurquina and Tahuantinsuyoa are sister groups, closely related to an undescribed genus formed by the 'Aequidens'pulcher-'Aequidens'rivulatus groups (BTA clade). (d) Nannacara (plus Ivanacara) and Cleithracara are found as sister groups (NIC clade). Acaronia is most probably the sister group of the BTA clade, and Laetacara may be the sister group of this clade. Estimation of divergence times suggests that the divergence of Cichlasomatini started around 44Mya with the vicariance between coastal rivers of the Guyanas (KA and NIC clades) and remaining cis-andean South America, followed by evolution of the Acaronia-Laetacara-BTA clade in Western Amazon, and the CA clade in the Eastern Amazon. Vicariant divergence has played importantly in evolution of cichlasomatine genera, with dispersal limited to later range extension of species within genera.  相似文献   

15.
The plant genus Halenia (Gentianaceae) consists of herbs growing in temperate and tropical alpine habitats and most species possess flowers in which nectar is produced in spurs. This probably helps reward only specialized long-tongued pollinators, and a narrow pollinator/flower relationship is thought to accelerate diversification rates (a key innovation). To test the pattern of diversification of Halenia against the unspurred sister group we reconstructed phylogenetic relationships among 22 species plus outgroups using nuclear ITS and chloroplast rpl16 intron sequence data. We show that Halenia originated in East Asia and migrated via North America into Central America. From there, it colonized South America three times independently, probably within the last million years. Significant changes in diversification rates were found during the evolution of Halenia using a sister group method, a likelihood method, and a diversity-through-time plot. In contrast to other studies, we could not observe a direct speciation rate effect of the evolution of nectar spurs in comparison with the unspurred sister group of Halenia. Rather, increases in diversification occurred following the colonization of Central and South America by spurred progenitor taxa. This later switch in diversification may have resulted from the availability of new geographical and ecological opportunities, or from the availability of more and different pollinators in these regions. Following the latter hypothesis, the nectar spurs were a preadaption and functioned as a key innovation only in this new biotic environment. After an initial rapid increase, a reduction in diversification rate was observed in Central America, probably illustrating density dependence of speciation rates. Finally, we found preliminary evidence for the key innovation hypothesis in geologically young spurred and unspurred lineages of Halenia in South America.  相似文献   

16.
Klopfstein, S., Quicke, D. L. J., Kropf, C. & Frick, H. (2011) Molecular and morphological phylogeny of Diplazontinae (Hymenoptera, Ichneumonidae). —Zoologica Scripta, 40, 379–402. Parasitoid wasps are among the most species rich and at the same time most understudied of all metazoan taxa. To understand their diversification and test hypotheses about their evolution, we need robust phylogenetic hypotheses. Here, we reconstruct the phylogeny of the subfamily Diplazontinae using four genes and 66 morphological characters both in separate analyses and in a total evidence approach. The resulting phylogeny is highly resolved, with most clades supported by multiple independent data partitions. It contains three highly supported genus groups, for which we suggest morphological and behavioural synapomorphies. The placement of some of the genera, especially Xestopelta Dasch, is unexpected, but also supported by morphology. Most of the genera are retrieved as monophyletic, with the exception of the morphologically diverse genus Syrphoctonus Förster. We split this genus into three genera, including Fossatyloides gen. n., to restore the phylogeny–classification link. Conflict between the morphological and the molecular topology was mostly resolved in favour of the molecular partition in the total evidence approach. We discuss reasons for this finding, and suggest strategies for future taxon and character sampling in Diplazontinae.  相似文献   

17.
Checker mallows (Sidalcea, Malvaceae) constitute a western North American genus of annuals and perennials that have been regarded as taxonomically difficult because of complex patterns of morphological variation putatively stemming from hybridization and polyploidy. In recent molecular phylogenetic investigations extensive polymorphism was observed in the internal and external transcribed spacers (ITS and ETS) of 18S-26S nuclear ribosomal DNA for some Sidalcea samples. To resolve the evolutionary basis for this polymorphism and to readdress the evolutionary impact of hybridization in Sidalcea we cloned and sequenced the polymorphic DNAs and included the clones in phylogenetic analyses together with direct sequences of non-polymorphic samples. The positions of cloned spacer sequences in the phylogenetic trees suggest that S. reptans and two subspecies of S. malviflora may have been influenced by past hybridization with lineages of the "glaucescens" clade. Polymorphic sequence patterns in other taxa may be a result of extensive interbreeding within young clades, in keeping with the minimal sequence divergence, largely overlapping geographic distributions and morphology, and ploidy variation in these groups. Other possible explanations for polymorphic sequences in members of Sidalcea include slow concerted evolution relative to mutation rates, incomplete lineage sorting, and recent pseudogene formation.  相似文献   

18.
Adaptive radiations are known for rapid morphological and species diversification in response to ecological opportunity, but it remains unclear if distinct mechanisms drive this pattern. Here, we show that rapid rates of morphological diversification are linked to the evolution of novel ecological niches in two independent Cyprinodon radiations nested within a wide-ranging group repeatedly isolated in extreme environments. We constructed a molecular phylogeny for the Cyprinodontidae, measured 16 functional traits across this group, and compared the likelihoods of single or multiple rates of morphological diversification. We found that rates of morphological diversification within two sympatric Cyprinodon clades containing unique trophic specialists are not part of an adaptive continuum with other clades, but are instead extreme outliers with rates up to 131 times faster than other Cyprinodontidae. High rates were not explained by clade age, but were instead linked to unique trophic niches within Cyprinodon, including scale-eating, zooplanktivory, and piscivory. Furthermore, although both radiations occur in similar environments and have similar sister species, they each evolved unique trophic specialists and high rates of morphological diversification in different sets of traits. We propose that the invasion of novel ecological niches may be a key mechanism driving many classic examples of adaptive radiation.  相似文献   

19.
Phylogenetic relationships within Pectinidae (Bivalvia, Pteriomorphia) have been investigated primarily for Pacific and Western Atlantic or commercially valuable taxa. Most molecular phylogenetic studies have revealed monophyly of pectinid bivalves but interrelationships of the different clades are still inconsistent. However, non-commercial European Pectinidae has mostly been neglected in earlier investigations and therefore the evolution and radiation of the European Pectinidae is poorly understood. Since the fossil record of this group is well investigated, the evolutionary age of phylogenetic diversification and radiation events within this group can be dated. Thus, the connection of geological and climatic changes to radiation events within this group can be assessed. We investigated the phylogenetic relationships within European Pectinidae using mitochondrial (12S and 16S) and nuclear (18S, 28S and H3) gene markers and performed relaxed molecular clock approaches to gain information on the evolutionary age and the connection between Cenozoic climatic changes and diversification within this group. The results show concordance of radiation events with the Middle Miocene cooling event and the following climatic period with slowly decreasing temperatures. However, geological changes such as the uplift of the Gomphotherium Landbridge or the closure and re-opening of the Strait of Gibraltar also had great impact on diversification and distribution patterns within European Pectinidae.  相似文献   

20.
Much research and discussion have focused on the effects of key innovations on lineage diversification, whereas little has been done to investigate their role in morphological evolution using phylogenetic approaches. Here we present the first comprehensive molecular phylogeny of the Harpactorini (Insecta: Reduviidae), the largest assassin bug tribe, sampling 229 terminal taxa and using five gene segments (28S D2, D3–D5, 16S, COI, and Deformed). Employing comparative phylogenetic methods, we demonstrate the correlation of a putative key innovation, the sticky trap predation strategy, with accelerated rates of morphological evolution of the predatory fore leg in assassin bugs. We show that bugs exhibiting sticky trap predation have evolved more slender and longer fore femora than non‐sticky bugs. Using phylogenetically independent contrast analyses, we document correlated evolution between femoral thickness and length. We argue that the novel sticky trap predation strategy may allow sticky bugs to alleviate functional constraints on the fore femur and thus to attain a higher rate of evolution than other Harpactorini or Reduviidae. We discuss the possibility that sticky bugs represent a case of adaptive radiation. We also test historical supra‐generic groups within the Harpactorini, and show that most of them are not monophyletic. We confirm the paraphyly of Harpactorini with respect to Rhaphidosomini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号