首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MOTIVATION: The development of microarray-based high-throughput gene profiling has led to the hope that this technology could provide an efficient and accurate means of diagnosing and classifying tumors, as well as predicting prognoses and effective treatments. However, the large amount of data generated by microarrays requires effective reduction of discriminant gene features into reliable sets of tumor biomarkers for such multiclass tumor discrimination. The availability of reliable sets of biomarkers, especially serum biomarkers, should have a major impact on our understanding and treatment of cancer. RESULTS: We have combined genetic algorithm (GA) and all paired (AP) support vector machine (SVM) methods for multiclass cancer categorization. Predictive features can be automatically determined through iterative GA/SVM, leading to very compact sets of non-redundant cancer-relevant genes with the best classification performance reported to date. Interestingly, these different classifier sets harbor only modest overlapping gene features but have similar levels of accuracy in leave-one-out cross-validations (LOOCV). Further characterization of these optimal tumor discriminant features, including the use of nearest shrunken centroids (NSC), analysis of annotations and literature text mining, reveals previously unappreciated tumor subclasses and a series of genes that could be used as cancer biomarkers. With this approach, we believe that microarray-based multiclass molecular analysis can be an effective tool for cancer biomarker discovery and subsequent molecular cancer diagnosis.  相似文献   

2.
MOTIVATION: Surface-enhanced laser desorption and ionization (SELDI) time of flight (TOF) is a mass spectrometry technology. The key features in a mass spectrum are its peaks. In order to locate the peaks and quantify their intensities, several pre-processing steps are required. Though different approaches to perform pre-processing have been proposed, there is no systematic study that compares their performance. RESULTS: In this article, we present the results of a systematic comparison of various popular packages for pre-processing of SELDI-TOF data. We evaluate their performance in terms of two of their primary functions: peak detection and peak quantification. Regarding peak quantification, the performance of the algorithms is measured in terms of reproducibility. For peak detection, the comparison is based on sensitivity and false discovery rate. Our results show that for spectra generated with low laser intensity, the software developed by Ciphergen Biosystems (ProteinChip Software 3.1 with the additional tool Biomarker Wizard) produces relatively good results for both peak quantification and detection. On the other hand, for the data produced with either medium or high laser intensity, none of the methods show uniformly better performances under both criteria. Our analysis suggests that an advantageous combination is the use of the packages MassSpecWavelet and PROcess, the former for peak detection and the latter for peak quantification.  相似文献   

3.
4.
Spectrometric-based surface-enhanced laser desorption/ionization ProteinChip (SELDI-TOF) facilitates rapid and easy analysis of protein mixtures and is often exploited to define potential diagnostic markers from sera. However, SELDI- TOF is a relatively insensitive technique and unable to detect circulating proteins at low levels even if they are differentially expressed in cancer patients. Therefore, we applied this technology to study tissues from renal cell carcinomas (RCC) in comparison to healthy controls. We found that different biomarkers are identified from tissues than those previously identified in serum, and that serum markers are often not produced by the tumors themselves at detectable levels, reflecting the nonspecific nature of many circulating biomarkers. We detected and characterized áB-crystallin as an overexpressed protein in RCC tissues and showed differential expression by immunohistochemistry. We conclude that SELDI-TOF is more useful for the identification of biomarkers that are synthesized by diseased tissues than for the identification of serum biomarkers and identifies a separate set of markers. We suggest that SELDI-TOF should be used to screen human cancer tissues to identify potential tissue-specific proteins and simpler and more sensitive techniques can then be applied to determine their validity as biomarkers in biological fluids.  相似文献   

5.
The SELDI-TOF technique was used to profile serum proteins from Type 1 diabetes (T1D) patients and healthy autoantibody-negative (AbN) controls. Univariate and multivariate analyses were performed to identify putative biomarkers for T1D and to assess the reproducibility of the SELDI technique. We found 146 protein/peptide peaks (581 total peaks discovered) in human serum showing statistical differences in expression levels between T1D patients and controls, with 84% of these peaks showing technical replication. Because individual proteins did not offer great power for disease prediction, we used our model averaging approach that combines the information from multiple multivariate models to accurately classify T1D and control subjects (88.9% specificity and 90.0% sensitivity). Analyses of a test subset of the data showed less accuracy (82.8% specificity and 76.2% sensitivity), although the results are still positive. Unfortunately, no multivariate model could be replicated using the same samples. This first attempt of high throughput analyses of the human serum proteome in T1D patients suggests that model averaging is a viable method for developing biomarkers; however, the reproducibility of SELDI-TOF is currently not sufficient to be used for classification of complex diseases like T1D.  相似文献   

6.
Despite advances in molecular medicine, genomics, proteomics and translational research, prostate cancer remains the second most common cause of cancer-related mortality for men in the Western world. Clearly, early detection, targeted treatment and post-treatment monitoring are vital tools to combat this disease. Tumor markers can be useful for diagnosis and early detection of cancer, assessment of prognosis, prediction of therapeutic effect and treatment monitoring. Such tumor markers include prostate-specific antigen (prostate), cancer antigen (CA)15.3 (breast), CA125 (ovarian), CA19.9 (gastrointestinal) and serum α-fetoprotein (testicular cancer). However, all of these biomarkers lack sensitivity and specificity and, therefore, there is a large drive towards proteomic biomarker discovery. Current research efforts are directed towards discovering biosignatures from biological samples using novel proteomic technologies that provide high-throughput, in-depth analysis and quantification of the proteome. Several of these studies have revealed promising biomarkers for use in diagnosis, assessment of prognosis, and targeting treatment of prostate cancer. This review focuses on prostate cancer proteomic biomarker discovery and its future potential.  相似文献   

7.
Prostate cancer is the most common non-cutaneous cancer in men in the United States. For reasons largely unknown, the incidence of prostate cancer has increased in the last two decades, in spite or perhaps because of a concomitant increase in serum prostate-specific antigen (PSA) screening. While PSA is acknowledged not to be an ideal biomarker for prostate cancer detection, it is however widely used by physicians due to lack of an alternative. Thus, the identification of a biomarker(s) that can complement or replace PSA represents a major goal for prostate cancer research. Screening complex biological specimens such as blood, urine, and tissue to identify protein biomarkers has become increasingly popular over the last decade thanks to advances in proteomic discovery methods. The completion of human genome sequence together with new development in mass spectrometry instrumentation and bioinformatics has been a major driving force in biomarker discovery research. Here we review the current state of proteomic applications as applied to various sample sources including blood, urine, tissue, and “secretome” for the purpose of prostate cancer biomarker discovery. Additionally, we review recent developments in validation of putative markers, efforts at systems biology approach, and current challenges of proteomics in biomarker discovery.  相似文献   

8.

Background  

Serum is an ideal source of biomarker discovery and proteomic profiling studies are continuously pursued on serum samples. However, serum is featured by high level of protein glycosylations that often cause ionization suppression and confound accurate quantification analysis by mass spectrometry. Here we investigated the effect of N-glycan and sialic acid removal from serum proteins on the performance of label-free quantification results.  相似文献   

9.

Background

Proteomic profiling is a rapidly developing technology that may enable early disease screening and diagnosis. Surface-enhanced laser desorption ionization–time of flight mass spectrometry (SELDI-TOF MS) has demonstrated promising results in screening and early detection of many diseases. In particular, it has emerged as a high-throughput tool for detection and differentiation of several cancer types. This review aims to appraise published data on the impact of SELDI-TOF MS in breast cancer.

Methods

A systematic literature search between 1965 and 2009 was conducted using the PubMed, EMBASE, and Cochrane Library databases. Studies covering different aspects of breast cancer proteomic profiling using SELDI-TOF MS technology were critically reviewed by researchers and specialists in the field.

Results

Fourteen key studies involving breast cancer biomarker discovery using SELDI-TOF MS proteomic profiling were identified. The studies differed in their inclusion and exclusion criteria, biologic samples, preparation protocols, arrays used, and analytical settings. Taken together, the numerous studies suggest that SELDI-TOF MS methodology may be used as a fast and robust approach to study the breast cancer proteome and enable the analysis of the correlations between proteomic expression patterns and breast cancer.

Conclusion

SELDI-TOF MS is a promising high-throughput technology with potential applications in breast cancer screening, detection, and prognostication. Further studies are needed to resolve current limitations and facilitate clinical utility.  相似文献   

10.
目的检测不同培养基对细菌蛋白SELDI-TOF MS指纹图谱的影响。方法 3株参考菌株分别接种在不同培养基中,利用SELDI-TOF MS检测蛋白指纹图谱,分析其异同。结果在所有培养基中参考菌株ATCC 12600、ATCC 25922和ATCC 27853蛋白质谱图恒定表达的蛋白峰个数为11、11、9个,同时菌株在不同培养基中也表达少量其独特的蛋白峰。结论比较不同培养基上生长的同株菌蛋白指纹图谱,显示在不同培养基其细菌特征蛋白恒定表达。  相似文献   

11.
12.
Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

13.
Secreted proteins, collectively referred to as the secretome, were suggested as valuable biomarkers in disease diagnosis and prognosis. However, some secreted proteins from cell cultures are difficult to detect because of their intrinsically low abundance; they are frequently masked by the released proteins from lysed cells and the substantial amounts of serum proteins used in culture medium. The hollow fiber culture (HFC) system is a commercially available system composed of small fibers sealed in a cartridge shell; cells grow on the outside of the fiber. Recently, because this system can help cells grow at a high density, it has been developed and applied in a novel analytical platform for cell secretome collection in cancer biomarker discovery. This article focuses on the advantages of the HFC system, including the effectiveness of the system for collection of secretomes, and reviews the process of cell secretome collection by the HFC system and proteomic approaches to discover cancer biomarkers. The HFC system not only provides a high-density three-dimensional (3D) cell culture system to mimic tumor growth conditions in vivo but can also accommodate numerous cells in a small volume, allowing secreted proteins to be accumulated and concentrated. In addition, cell lysis rates can be greatly reduced, decreasing the amount of contamination by abundant cytosolic proteins from lysed cells. Therefore, the HFC system is useful for preparing a wide range of proteins from cell secretomes and provides an effective method for collecting higher amounts of secreted proteins from cancer cells. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

14.
15.
16.
17.
Innovative proteomic approaches for cancer biomarker discovery   总被引:1,自引:0,他引:1  
Faca V  Krasnoselsky A  Hanash S 《BioTechniques》2007,43(3):279, 281-273, 285
Substantial technological advances in proteomics and related computational science have been made in the past few years. These advances overcome in part the complexity and heterogeneity of the human proteome, permitting quantitative analysis and identification of protein changes associated with tumor development. Here, we discuss some of these advances that are uncovering new cancer biomarkers that have potential to detect cancer at early and curable stages and address remaining challenges.  相似文献   

18.
Glycosylation is estimated to be found in over 50% of human proteins. Aberrant protein glycosylation and alteration of glycans are closely related to many diseases. More than half of the cancer biomarkers are glycosylated-proteins, and specific glycoforms of glycosylated-proteins may serve as biomarkers for either the early detection of disease or the evaluation of therapeutic efficacy for treatment of diseases. Glycoproteomics, therefore, becomes an emerging field that can make unique contributions to the discovery of biomarkers of cancers. The recent advances in mass spectrometry (MS)-based glycoproteomics, which can analyze thousands of glycosylated-proteins in a single experiment, have shown great promise for this purpose. Herein, we described the MS-based strategies that are available for glycoproteomics, and discussed the sensitivity and high throughput in both qualitative and quantitative manners. The discovery of glycosylated-proteins as biomarkers in some representative diseases by employing glycoproteomics was also summarized.  相似文献   

19.
Proteomic technologies have experienced major improvements in recent years. Such advances have facilitated the discovery of potential tumor markers with improved sensitivities and specificities for the diagnosis, prognosis and treatment monitoring of cancer patients. This review will focus on four state-of-the-art proteomic technologies, namely 2D difference gel electrophoresis, MALDI imaging mass spectrometry, electron transfer dissociation mass spectrometry and reverse-phase protein array. The major advancements these techniques have brought about and examples of their applications in cancer biomarker discovery will be presented in this review, so that readers can appreciate the immense progress in proteomic technologies from 1997 to 2008. Finally, a summary will be presented that discusses current hurdles faced by proteomic researchers, such as the wide dynamic range of protein abundance, standardization of protocols and validation of cancer biomarkers, and a 5-year view of potential solutions to such problems will be provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号