首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were then further cultured with MDMD/MDMDF supplemented with steel factor (SLF) (keratinocyte depletion). SLF increased the number of melanoblasts and melanocytes as well as the proportion of differentiated melanocytes in the absence of keratinocytes. Flow cytometric analysis showed that melanoblasts and melanocytes in the S and G2/M phases of the cell cycle were increased by treatment with SLF. Moreover, an anti-SLF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts and melanocytes as well as the differentiation of melanocytes. These results suggest that SLF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

2.
In this study, we examined the potential of synthetic isoflavones for application in cosmeceuticals. Twenty‐five isoflavones were synthesized and their capacities of free‐radical‐scavenging and mushroom tyrosinase inhibition, as well as their impact on cell viability of B16F10 murine melanoma cells and HaCaT human keratinocytes were evaluated. Isoflavones that showed significant mushroom tyrosinase inhibitory activities were further studied on reduction of cellular melanin formation and antityrosinase activities in B16F10 melanocytes in vitro. Among the isoflavones tested, 6‐hydroxydaidzein ( 2 ) was the strongest scavenger of both ABTS . + and DPPH . radicals with SC50 values of 11.3±0.3 and 9.4±0.1 μM , respectively. Texasin ( 20 ) exhibited the most potent inhibition of mushroom tyrosinase (IC50 14.9±4.5 μM ), whereas retusin ( 17 ) showed the most efficient inhibition both of cellular melanin formation and antityrosinase activity in B16F10 melanocytes, respectively. In summary, both retusin ( 17 ) and texasin ( 20 ) exhibited potent free‐radical‐scavenging capacities as well as efficient inhibition of cellular melanogenesis, suggesting that they are valuable hit compounds with potential for advanced cosmeceutical development.  相似文献   

3.
4.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and a melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were further cultured with MDMD/MDMDF supplemented with granulocyte-macrophage colony-stimulating factor (GMCSF) from 14 days (keratinocyte depletion). GMCSF stimulated the number of melanoblasts/melanocytes as well as the percentage of differentiated melanocytes in keratinocyte-depleted cultures. Flow cytometry analysis showed that melanoblasts and melanocytes in the S and G(2)/M phases of the cell cycle were increased by the treatment with GMCSF. Moreover, anti-GMCSF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts/melanocytes as well as the differentiation of melanocytes. Enzyme-linked immunosorbent assay of culture media revealed that GMCSF was secreted from keratinocytes, but not from melanocytes. These results suggest that GMCSF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanoblasts/melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

5.
6.
Human epidermal keratinocytes differentiate in vitro into a stratified epithelium suitable for grafting on burned patients. In this paper, we show that differentiated melanocytes are present in the cultured epithelium. In particular, we have found that i) melanocytes proliferate in the same culture conditions that allow keratinocyte growth, ii) during the culture the ratio between keratinocytes and melanocytes tends to remain constant, iii) melanocytes organize into the basal layer of the cultured epithelium independently of the presence of dermis, develop dendritic arborizations with melanosome-containing processes and transfer melanosomes into keratinocyte cytoplasm.  相似文献   

7.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were further cultured with MDMD/MDMDF supplemented with hepatocyte growth factor (HGF) from 14 days (keratinocyte depletion). The HGF increased the number of melanoblasts and melanocytes, but not the percentage of differentiated melanocytes in the melanoblast-melanocyte population in the absence of keratinocytes. Flow cytometry analysis showed that melanoblasts and melanocytes in the S and/or G2/M phases of the cell cycle were increased by the treatment with HGF. Moreover, an anti-HGF antibody supplemented to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts and melanocytes, but not the differentiation of melanocytes. These results suggest that HGF is a keratinocyte-derived factor involved in regulating the proliferation of epidermal melanoblasts and melanocytes from newborn mice in cooperation with cAMP elevators and/or bFGF.  相似文献   

8.
Unlike most other matrix metalloproteinases (MMPs) MMP-19 is expressed in undifferentiated basal keratinocytes of healthy human skin. The human keratinocyte cell line HaCaT, which like basal keratinocytes constitutively expresses MMP-19, down-regulated the expression of MMP-19 at high calcium concentrations. Calcium-regulation occurred through E-cadherin mediated cell-cell contacts because neutralizing anti-E-cadherin antibodies restored MMP-19 expression in high calcium. Overexpression of MMP-19 in HaCaT cells (HaCaT-WT) increased cellular proliferation, as well as migration and adhesion on type I collagen. This was due to proteolysis of the insulin-like growth factor (IGF) binding protein-3 by MMP-19, which augmented signaling through the IGF-I receptor, as evidenced by its increased autophosphorylation. Conversely, these effects were not observed in cells transfected with MMP-2 or a catalytically inactive MMP-19 mutant. As further proof that increased IGF-signaling promoted adhesion and migration in HaCaT-WT cells, we reproduced these effects by treating parental HaCaT with IGF-I. We observed dephosphorylation of the focal adhesion kinase in HaCaT-WT as well as IGF-I-treated HaCaT cells, suggesting that inactivating focal adhesion kinase is a mechanism by which IGF-I enhances adhesion. Furthermore, IGF-I-triggered motility on type I collagen was mediated by MMP activity, which, however, was distinct from MMP-19. Considering the coexpression of IGFBP-3 and MMP-19 in the skin, we conclude that MMP-19 is a likely candidate to be the major IGFBP-3 degrading MMP in the quiescent epidermis. This activity might have widespread consequences for the behavior of epidermal keratinocytes.  相似文献   

9.
Ultraviolet A (UVA) radiations are responsible for deleterious effects, mainly due to reactive oxygen species (ROS) production. Alpha-melanocyte stimulating hormone (α-MSH) binds to melanocortin-1 receptor (MC1R) in melanocytes to stimulate pigmentation and modulate cutaneous inflammatory responses. MC1R may be induced in keratinocytes after UV exposure. To investigate the effect of MC1R signaling on UVA-induced ROS (UVA-ROS) production, we generated HaCaT cells that stably express human MC1R (HaCaT-MC1R) or the Arg151Cys (R(151)C) non-functional variant (HaCaT-R(151)C). We then assessed ROS production immediately after UVA exposure and found that: (1) UVA-ROS production was strongly reduced in HaCaT-MC1R but not in HaCaT-R(151)C cells compared to parental HaCaT cells; (2) this inhibitory effect was further amplified by incubation of HaCaT-MC1R cells with α-MSH before UVA exposure; (3) protein kinase A (PKA)-dependent NoxA1 phosphorylation was increased in HaCaT-MC1R compared to HaCaT and HaCaT-R(151)C cells. Inhibition of PKA in HaCaT-MC1R cells resulted in a marked increase of ROS production after UVA irradiation; (4) the ability of HaCaT-MC1R cells to produce UVA-ROS was restored by inhibiting epidermal growth factor receptor (EGFR) or extracellular signal-regulated kinases (ERK) activity before UVA exposure. Our findings suggest that constitutive activity of MC1R in keratinocytes may reduce UVA-induced oxidative stress via EGFR and cAMP-dependent mechanisms.  相似文献   

10.
X Zhu  Z Li  W Pan  L Qin  G Zhu  Y Ke  J Wu  P Bo  S Meng 《Molecular and cellular biochemistry》2012,369(1-2):255-266
Interleukin-22 (IL-22) is one of the key mediators of keratinocyte alterations in psoriasis. IL-22 inhibits keratinocyte differentiation and induces the migration of human keratinocytes. Grb2-associated binder 1 (Gab1) has been shown to mediate epidermal growth factor-induced epidermal growth and differentiation via interaction with the Src homology-2-containing protein-tyrosine phosphatase (Shp2). In this investigation, we explore the role of Gab1 and Gab2 in IL-22-mediated keratinocyte activities. We show that both Gab1 and Gab2 were tyrosine phosphorylated in IL-22-stimulated HaCaT cells and human primary epidermal keratinocytes and contributed to the activation of Extracellular signal regulated kinase 1/2 (Erk1/2) through interaction with Shp2. We further demonstrate that HaCaT cells infected with adenoviruses expressing Shp2-binding-defective Gab1/2 mutants exhibited decreased cell proliferation and migration, as well as increased differentiation. Moreover, similar results were observed in HaCaT cells infected with adenovirus-based small interfering RNAs targeting Gab1 and/or Gab2. Altogether, these data underscore the critical roles of Gab1 and Gab2 in IL-22-mediated HaCaT cell proliferation, migration, and differentiation.  相似文献   

11.
Our previous study found that Ganoderma lucidum polysaccharide (GLP), bioactive ingredients from Ganoderma lucidum, protected fibroblasts from photoaging. However, whether GLP can affect melanogenesis in melanocytes through regulating paracrine mediators that secreted by keratinocytes and fibroblasts is unclear. We aimed to investigate the efficacy and mechanisms of action of GLP in melanogenesis by regulating paracrine effects of keratinocytes and fibroblasts. The effect of GLP on cell viability affected by GLP was measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After an immortal keratinocyte line (HaCaT) and primary fibroblasts (FB) were treated with GLP, the supernatants of HaCaT and FB cells were collected and cocultured with an immortalized melanocyte line (PIG1). The expression levels of melanogenesis-associated genes in PIG1 cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. Furthermore, FRS-2, ERK, JNK, and p38 phosphorylation levels were measured. Then, major melanogenic paracrine mediators in HaCaT and FB cells treated with GLP were evaluated by qRT-PCR and enzyme-linked immunosorbent assay (ELISA). In addition, the expression of IL-6 and STAT3 was examined in HaCaT and FB cells. GLP was not cytotoxic to HaCaT and FB cells. The supernatants of GLP-treated HaCaT and FB cells downregulated the expression levels of MITF, TYR, TYRP1, TYRP2, RAB27A, and FSCN1 genes and inhibited the phosphorylation of FRS-2, ERK, JNK, and p38 in PIG1 cells. GLP also decreased FGF2 secretion in HaCaT and FB cells. Moreover, GLP reduced IL-6 expression and STAT3 phosphorylation in HaCaT and FB cells. GLP reduced melanogenesis in melanocytes by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL-6/STAT3/FGF2 pathway.  相似文献   

12.
Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.  相似文献   

13.
14.
Melanocytes are highly motile cells that play an integral role in basic skin physiological processes such as wound healing and proper skin pigmentation. It has been postulated that surrounding keratinocytes contribute to melanocyte migration, but underlying mechanisms remain rather vague so far. In this study, we set out to analyze the specific potential contribution of keratinocyte components to melanocytes and melanoma cell migration-related processes. Our studies revealed that A375 human melanoma cell attachment, spreading, and migration are interestingly better supported by HaCaT keratinocyte extracellular matrix (ECM) than by self-derived A375 ECM. Moreover, HaCaT ECM caused increased integrin α6 expression, adhesion-mediated focal adhesion kinase phosphorylation, and focal adhesion formations. Similar effects were confirmed in human melanocytes. Furthermore, we found that keratinocyte-derived soluble factors did not appear to significantly contribute to these processes. Specific extrinsic factors that promoted melanoma migration were attributed to keratinocyte-derived laminin-332, whereas alternative ECM component such as laminin-111 and fibronectin functions appeared to have insignificant contributions. Taken together, these studies implicate extrinsic laminin-332 in promoting the high mobility property and perhaps invasiveness inherently characteristic of, and that are the menace of, melanocytes and melanomas, respectively.  相似文献   

15.
The new steroidal 5,7-diene, 3β-hydroxyandrosta-5,7-diene-17β-carboxylic acid (17-COOH-7DA), was synthesized from 21-acetoxypregnenolone, with the oxidative cleavage of the side chain being dependent on the presence of oxygen. In human epidermal (HaCaT) keratinocytes, 17-COOH-7DA inhibited proliferation in a dose-dependent manner, starting at a dose as low as 10−11 M. This inhibition was accompanied by decreased expression of epidermal growth factor receptor, bcl2 and cyclin E2 mRNAs and by increased expression of involucrin mRNA. Inhibition of proliferation was associated with slowing of the cell cycle in G1/G0 phases but not with cell death. 17-COOH-7DA was significantly more potent than pregnenolone, 17-COOH-pregnenolone, 17-COOCH3-7DA and calcitriol. 17-COOH-7DA also inhibited proliferation of normal human epidermal melanocytes and human and hamster melanoma lines, however, with lower potency than for keratinocytes. In normal human dermal fibroblasts 17-COOH-7DA stimulated proliferation in serum-free media but inhibited it in the presence of 5% serum. 17-COOH-7DA inhibited cell colony formation of human and hamster melanoma cells, and induced monocyte-like differentiation of human HL60 leukemia cells. Thus, the new steroidal 5,7-diene, 17-COOH-7DA, can serve as an inhibitor of proliferation of normal keratinocytes and normal and malignant melanocytes, as a condition-dependent regulator of fibroblast proliferation and a stimulator of leukemia cell differentiation.  相似文献   

16.
Human keratinocytes immortalized by full-length or early-region simian virus 40 (SV40) DNA grow in agarose and form tumors in nude mice, in contrast to keratinocytes immortalized by the E6/E7 genes of human papillomaviruses. To determine the molecular basis for this biological difference in growth, we have used the individual SV40 oncogenes (large T antigen [LT] and small t antigen [st]) and human papillomavirus oncogenes (E6/E7) to study the progression of human epithelial cells from the nonimmortal to the immortal state as well as from the immortal to the anchorage-independent state. Transfection of primary human foreskin keratinocytes with LT did not immortalize cells but did extend the in vitro life span and produced cells that were resistant to calcium- and serum-induced terminal differentiation. Cells transfected with st alone did not passage beyond vector-transfected keratinocytes. The simultaneous expression of LT- and st-immortalized keratinocytes occurred without evidence of crisis and, as anticipated, these immortal cells were anchorage- independent for growth. Interestingly, we found that keratinocytes expressing both LT and st, but not keratinocytes with LT alone, exhibited increased phosphorylation of the protein kinase AKT. In addition, AKT activation was paralleled by an increase in telomerase activity. Addition of st to anchorage-dependent keratinocytes, expressing either LT (nonimmortal) or E6/E7 (immortal), converted the cells to anchorage independence, with similar accompanying increases in AKT phosphorylation and telomerase activity. However, it was not possible to induce keratinocyte growth in agarose with activated AKT and/or overexpressed hTERT, indicating that these newly defined st-induced activities are not sufficient for progression to the anchorage-independent state.  相似文献   

17.
We tested the expression of genes coding receptors of a cutaneous serotoninergic/melatoninergic system in whole human skin and in normal and pathologic cultured skin cells. Evaluation of serotonin (5HT), melatonin (MT), and melatonin-related receptors (MRR) showed expression of the isoforms 5HT2B, 5HT7, and MT1 genes in almost all the tested samples. Expression of other isoforms was less prevalent; 5HT2C, MRR, and MT2 were rarely detected. We also found novel isoforms for MT2, MRR, and 5HT2B and documented the process of RNA editing for 5HT2C. Testing for functional activity of these receptors with serotonin and melatonin (10(-14) to 10(-10) M) showed variable effects depending on cell type and culture conditions. Thus, serotonin stimulated proliferation of melanocytes in medium deprived of growth factors, while inhibiting cell growth in the presence of growth factors. Melatonin inhibited both apoptosis of HaCaT keratinocytes incubated in serum-free media, and proliferation of cells cultured in medium supplemented with serum. Melatonin also increased the numbers of viable fibroblasts incubated in serum free medium. N-acetylserotonin (NAS) and 5 methoxytryptamine (5MTT) were generally without effect on cell proliferation, with the exception of an inhibition of melanocyte proliferation at the higher 5MTT concentration of 10(-10) M. Thus, skin cells represent a true target for the products of the serotoninergic/melatoninergic cutaneous pathway with their actions modulating cell proliferation or viability.  相似文献   

18.
-Tocopherol is a lipophilic vitamin that exhibits an antioxidative activity. The purpose of this study was to clarify the roles of -tocopherol in the regulation of intracellular glutathione (GSH) levels in HaCaT keratinocytes. When HaCaT keratinocytes were cultivated with -tocopherol for 24 h, the intracellular GSH was increased at every concentration of -tocopherol tested. Furthermore, the HaCaT keratinocytes cultured with -tocopherol at 50 μM for 24 h exhibited resistance against H 2 O 2 . However, a short exposure of HaCaT keratinocytes to -tocopherol for 1 h did not influence either the GSH level or the resistance to H 2 O 2 . These findings suggest that GSH, which is inductively synthesized by -tocopherol, effectively reduces exogenous oxidative stress. To evaluate the effect of -tocopherol on the GSH level, BSO, which is a typical inhibitor of γ-glutamylcysteine synthetase ( γ-GCS), was used. When BSO was added to HaCaT keratinocytes, no action of -tocopherol on the GSH level was observed. On the other hand, -tocopherol resulted in the up-regulation of γ-GCS-HS (heavy subunit) mRNA. In addition, water soluble -tocopherol derivatives ( -tocopherol phosphate and trolox) caused no changes in GSH level. From these results, it was concluded that -tocopherol increases the intracellular GSH level of HaCaT keratinocytes through the up-regulation of γ-GCS-HS mRNA.  相似文献   

19.
Reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) are produced in the skin under the influence of UV radiation. These compounds are highly reactive and can induce DNA lesions in epidermal cells. Melanin is considered to protect human skin against DNA damage by absorbing UV radiation. We have investigated whether melanin can, in addition, offer protection against the effects of H(2)O(2) in human melanocytes and HaCaT keratinocytes. In the present study, it was shown that 40 and 100 microM H(2)O(2) increased the number of DNA strand breaks as measured using the comet assay, in melanocytes of Caucasian origin. In melanocytes of the same origin in which melanin levels were increased by culturing in presence of 10 mM NH(4)Cl and elevated l-tyrosine, H(2)O(2)-induced DNA damage was reduced compared to that in control melanocytes. Similarly, HaCaT cells that were loaded with melanin were better protected against H(2)O(2)-induced DNA strand breaks than control HaCaT cells. These protective effects of melanin were mimicked by the intracellular Ca(2+)-chelator BAPTA. Thus, BAPTA reduced the level of H(2)O(2)-induced DNA strand breaks in melanocytes. Like BAPTA, melanin is known to be a potent chelator of Ca(2+) and this was confirmed in the present study. It was shown that melanin levels in melanocytic cells correlated directly with intracellular Ca(2+) binding capacity and, in addition, correlated inversely with H(2)O(2)-induced increases in intracellular Ca(2+). Our results show that melanin may have an important role in regulating intracellular Ca(2+) homeostasis and it is suggested that melanin protects against H(2)O(2)-induced DNA strand breaks in both melanocytes and keratinocytes and through its ability to bind Ca(2+).  相似文献   

20.
beta-Arrestins can act as adapter molecules, coupling G-protein-coupled receptors to proteins involved in mitogenic as well as endocytic pathways. We have previously identified c-SRC as a molecule that is rapidly recruited to the beta2-adrenergic receptor in a beta-arrestin1-dependent manner. Recruitment of c-SRC to the receptor appears to be involved in pathways leading to receptor internalization and mitogen-activated protein kinase activation. This recruitment of c-SRC to the receptor involves an interaction between the amino-terminal proline-rich region of beta-arrestin1 and the Src homology 3 (SH3) domain of c-SRC, but deletion of the proline-rich domain does not totally ablate the interaction. We have found that a major interaction also exists between beta-arrestin1 and the catalytic or kinase domain (SH1) of c-SRC. We therefore hypothesized that a catalytically inactive mutant of the isolated catalytic subunit, SH1(kinase dead) (SH1(KD)), would specifically block those cellular actions of c-SRC that are mediated by beta-arrestin1 recruitment to the G-protein-coupled receptor. In contrast, the majority of cellular phosphorylations catalyzed by c-SRC, which do not involve interaction with the SH1 domain, would be predicted to be unaffected. The SH1(KD) mutant did indeed block beta2-adrenergic receptor internalization and receptor-stimulated tyrosine phosphorylation of dynamin, actions previously shown to be c-SRC-dependent. In contrast, SAM-68 and whole cell tyrosine phosphorylation by c-SRC was unaffected, indicating that the SH1(KD) mutant did not inhibit c-SRC tyrosine kinase activity in general. These results not only clarify the nature of the beta-arrestin1/c-SRC interaction but also implicate beta-arrestin1 as an important mediator of receptor internalization by recruiting tyrosine kinase activity to the cell surface to phosphorylate key endocytic intermediates, such as dynamin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号