首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hourly blood samples were collected from 10 mares during 24 h of each of the preluteolytic, luteolytic, and postluteolytic periods. The autocorrelation function of the R program was used to detect pulse rhythmicity, and the intra-assay CV was used to locate and characterize pulses of prolactin (PRL) and a metabolite of prostaglandin F2α (PGFM). Rhythmicity of PRL and PGFM concentrations was detected in 67% and 89% of mares, respectively. Combined for the three periods (no difference among periods), the PRL pulses were 5.2 ± 0.4 h (mean ± SEM) at the base, 7.5 ± 1.5 h between nadirs of adjacent pulses, and 12.3 ± 1.5 h from peak to peak. The peaks of PRL pulses were greater (P < 0.05) during the luteolytic period (46 ± 14 ng/mL) and postluteolytic period (52 ± 15 ng/mL) than during the preluteolytic period (17 ± 3 ng/mL). Concentrations of PRL during hours of a PGFM pulse were different (P < 0.003) within the luteolytic period and postluteolytic period and were greatest at the PGFM peak; PRL concentrations during a PGFM pulse were not different during the preluteolytic period. The frequency of the peak of PRL and PGFM pulses occurring at the same hour (synchrony) was greater for the luteolytic period (65%, P < 0.01) and postluteolytic period (50%, P < 0.001) than for the preluteolytic period (17%). This is the first report in mares on characterization and rhythmicity of PRL pulses, synchrony between PRL and PGFM pulses, and greater PRL activity during the luteolytic and postluteolytic periods than during the preluteolytic period.  相似文献   

2.
Novel characterization of the transition between preluteolysis and luteolysis was done in seven heifers. Blood samples were collected hourly and assayed for progesterone (P4), 13-14-dihydro-15-keto-PGF2α (PGFM), and estradiol (E2). The peaks of P4 oscillations were used to designate the transitional hour in each heifer. The interval from the peak of the last PGFM pulse of preluteolysis to the peak of the first pulse during luteolysis (transitional period) was longer (P < 0.0001) than the interval between the first and second pulses during luteolysis (13.4 ± 1.3 h vs. 7.0 ± 0.9 h). The long intervals from the last PGFM pulse of preluteolysis to the transitional hour (4.0 ± 0.9 h) and from the transitional hour to the first PGFM pulse of luteolysis (9.4 ± 1.3 h) resulted in the illusion that the beginning of luteolysis was not associated temporally with a PGFM pulse. The E2 and PGFM concentrations were less (P < 0.05) during the last PGFM pulse of preluteolysis than during the first pulse of luteolysis. Concentration of P4 was suppressed at the peak of the last PGFM pulse of preluteolysis and consistently rebounded at the transitional hour to the concentrations before the PGFM pulse. In four of seven heifers, one or two P4 rebounds occurred between the peak of the PGFM pulse and the rebound at the transitional hour. Results indicated that the prolonged transitional period may be related, at least in part, to increasing concentration of E2, intervening P4 rebounds between the peak of the last PGFM pulse of preluteolysis and the transitional hour, and the complete P4 rebound at the transitional hour.  相似文献   

3.
Flunixin meglumine (FM; 2.5 mg/kg) was given to heifers at three 8-h intervals, 16 d after ovulation (first treatment = Hour 0) to inhibit the synthesis of prostaglandin F (PGF), based on plasma concentrations of a PGF metabolite (PGFM). Blood samples were collected at 8-h intervals from 15 to 18 d in a vehicle (control) and FM group (n = 16/group). Hourly samples were collected from Hours −2 to 28 in 10 heifers in each group. Heifers that were in preluteolysis or luteolysis at Hour 0 based on plasma progesterone (P4) concentrations at 8-h intervals were partitioned into subgroups. Concentration of PGFM was reduced (P < 0.05) by FM treatment in each subgroup. For the preluteolytic subgroup, the first decrease (P < 0.05) in P4 concentration after Hour 0 occurred at Hours 24 and 40 in the vehicle and FM groups, respectively. Plasma P4 concentrations 32 and 40 h after the beginning of luteolysis in the luteolytic subgroup were greater (P < 0.05) in the FM group. Concentration at the peak of a PGFM pulse in the FM group was greater (P < 0.05) in the luteolytic than in the preluteolytic subgroup. The peak of a PGFM pulse occurred more frequently (P < 0.001) at the same hour as the peak of an LH fluctuation than at the ending nadir of an LH fluctuation. In conclusion, a reduction in prominence of PGFM pulses during luteolysis delayed completion of luteolysis, and treatment with FM inhibited PGFM production more during preluteolysis than during luteolysis.  相似文献   

4.
Pulses of the prostaglandin F (PGF) metabolite 13,14-dihydro-15-keto-PGF (PGFM) and the intrapulse concentrations of progesterone were characterized hourly during the preluteolytic, luteolytic, and postluteolytic periods in seven heifers. The common hour of the end of preluteolysis and the beginning of luteolysis was based on a progressive progesterone decrease when assessed only at the peaks of successive oscillations. The end of the luteolytic period was defined as a decrease in progesterone to 1 ng/mL. Blood samples were taken hourly from 15 d after ovulation until luteal regression as determined by color-Doppler ultrasonography. Between Hours −2 and 2 (Hour 0 = PGFM peak) of the last PGFM pulse of the preluteolytic period, progesterone decreased between Hours −1 and 0, and then returned to the prepulse concentration. Concentration did not change significantly thereafter until a PGFM pulse early in the luteolytic period; progesterone decreased by Hour 0 and transiently rebounded after Hour 0, but not to the prepulse concentration. In the later portion of the luteolytic period, progesterone also decreased between Hours −1 and 0 but did not rebound. After the defined end of luteolysis, progesterone decreased slightly throughout a PGFM pulse. Results demonstrated for the first time that the patterns of progesterone concentrations within a PGFM pulse differ considerably among the preluteolytic, luteolytic, and postluteolytic periods.  相似文献   

5.
Ginther OJ 《Theriogenology》2012,77(6):1042-1049
Recent findings on the luteolytic process in mares are reviewed and differences from other farm species are noted. It is well known that the luteolysin, PGF2α (PGF), is secreted from the endometrium in the absence of pregnancy in farm animal species. But PGF is a potent chemical and safeguards have evolved so that only the corpus luteum (CL) is affected. The safeguards include a short PGF half-life and secretion in two or three pulses per day. In mares, endogenous PGF travels from the uterus to the CL through the systemic circulation, but the luteal-cell membranes are highly efficient in capturing the PGF molecules. In ruminants, luteal affinity is lower, but an efficient pathway has evolved for local delivery of PGF from a uterine horn to the adjacent ovary. The beginning of transition from luteal control is manifested within 1 h in mares and heifers, as indicated by a dynamic change in systemic progesterone concentrations. In mares, the transition into luteolysis begins during a relatively small transitional pulse of PGFM (a PGF metabolite) and oxytocin increases with the PGFM pulse. During luteolysis, estradiol increases in stepwise fashion within the hours of each PGFM pulse, with a plateau between pulses. Progesterone decreases linearly within the hours of a PGFM pulse and continuing during the interval between pulses, whereas luteal blood flow decreases during the declining portion of the pulse. In contrast, in heifers, progesterone decreases and increases within the hours of a PGFM pulse, and luteal blood flow increases and decreases concomitantly with the pulse.  相似文献   

6.
Ginther OJ  Beg MA 《Theriogenology》2012,77(9):1731-1740
Hourly blood sampling in both horses and cattle indicate that the transition between the end of preluteolysis and the beginning of luteolysis occurs within 1 h, as manifested by a change in progesterone concentrations. Each species presents a separate temporality enigma on the relationship between pulses of a prostaglandin (PG) F2α metabolite (PGFM) and the hour of the progesterone transition. In horses, relatively small pulses of PGFM occur during preluteolysis (before transition) and at transition. Oxytocin, but not estradiol, increases and decreases concomitantly with the small PGFM pulse at transition but not with previous pulses and may account for the initiation of luteolysis during the small PGFM pulse. In cattle, the last PGFM pulse of preluteolysis occurs hours before transition (e.g., 4 h), and the next pulse occurs well after transition (e.g., 9 h); unlike in horses, a PGFM pulse does not occur at transition. During the last PGFM pulse before transition, progesterone concentration decreases during the ascending portion of the PGFM pulse. Concentration then rebounds in synchrony with an LH pulse. The rebound returns progesterone to the concentration before the PGFM pulse. During luteolysis, an LH-stimulated progesterone rebound may occur after the peak of a PGFM pulse, but progesterone does not return to the concentration before the PGFM pulse. A similar LH-stimulated progesterone rebound does not occur in horses, and therefore progesterone fluctuations are more shallow in horses than in cattle.  相似文献   

7.
Temporality among episodes of a prostaglandin F2alpha metabolite (PGFM), progesterone (P4), luteinizing hormone (LH), and estradiol (E2) were studied during preluteolysis and luteolysis. A vehicle group (n = 10) and a group with an E2-induced PGFM pulse (n = 10) were used. Blood sampling was done every 0.25 h for 8 h. An episode was identified by comparing its coefficient of variation (CV) with the intra-assay CV. Pulsatility of PGFM, P4, LH, and E2 in individual heifers was inferred if the autocorrelation functions were different (P < 0.05) from zero. About four nonrhythmic fluctuations of PGFM/8 h were superimposed on PGFM pulses. Pulsatility was detected for LH but not for P4 and E2. A transient increase in P4 was not detected during the ascending portion of a PGFM pulse. Progesterone decreased (P < 0.003) during Hours -1.25 to -0.50 of the PGFM pulse (Hour 0 = peak) and ceased to decrease temporally with an increase (P < 0.05) in LH. Maximum P4 concentration occurred 0.25 h after an LH pulse peak, and an increase (P < 0.005) in E2 began at the LH peak. Nadirs of LH pulses were greater (P < 0.05) and the nadir-to-nadir interval was shorter (P < 0.003) in the E2 group, which is consistent with reported characteristics during luteolysis. The results did not support the hypothesis of a transient P4 increase early in a PGFM pulse and indicated a balance between a luteolytic effect of PGF and a luteotropic effect of LH within the hours of a PGFM pulse.  相似文献   

8.
Luteolysis in the cow depends upon an interaction between prostaglandin F(2alpha) (PGF(2alpha)) and oxytocin. The objectives of our study were 1) to determine oxytocin concentrations in postpartum dairy cows and 2) to identify the temporal relationship between oxytocin and PGF(2alpha) release patterns during luteolysis in normal and abbreviated estrous cycles in the postpartum period. Serum oxytocin and PGF(2alpha) metabolite (PGFM) concentrations from nine cows which had short estrous cycles (< 17 d) were compared with those of six cows which had normal estrous cycles. Serum basal oxytocin concentrations in short estrous cycle cows (23.7 to 31.1 pg/ml) were higher (P<0.05) than those of normal estrous cycle cows (14.6 to 19.8 pg/ml). Oxytocin concentrations increased to peak values in both short and normal cycle cows, during luteolysis. Basal PGFM concentrations (112.2 to 137.4 pg/ml) were higher in cows with short cycle (P<0.05) than in cows with normal cycles (62.9 to 87.5 pg/ml). The increase in PGFM concentrations during luteolysis was significant in both normal cycle and short cycle cows (P<0.05). Increases in serum PGFM concentrations were always associated with increases in serum oxytocin concentrations in normal cycle and short cycle cows and the levels decreased simultaneously before the subsequent estrus. Results support the idea of a positive relationship between PGF(2alpha) and oxytocin concentration during the estrous cycle as well as a possible synergistic action of these hormones in the induction of luteolysis in dairy cattle.  相似文献   

9.
The effects of sequential induction of PGFM pulses by estradiol-17β (E2) on prominence of PGFM pulses and progesterone (P4) concentration were studied in heifers. Three treatments of vehicle (n = 12) or E2 (n = 12) at doses of 0.05 or 0.1 mg were given at 12-h intervals beginning on Day 15 postovulation. Blood samples were collected every 12 h from Days 13-24 and hourly for 12 h after the first and third treatments. On Day 15, all heifers were in preluteolysis and on Day 16 were in preluteolysis in the vehicle-treated heifers (n = 11) and either preluteolysis (n = 4) or luteolysis (n = 8) in the E2-treated heifers. Peak concentration of induced PGFM pulses during preluteolysis on Day 15 was greater (P < 0.04) than for pulses during preluteolysis on Day 16. The interval from ovulation to the beginning of luteolysis was shorter (P < 0.04) in the E2-treated heifers than in the vehicle-treated heifers. An E2-induced PGFM pulse was less prominent (P < 0.008) in heifers in temporal association with a transient resurgence in P4 than in heifers with a progressive P4 decrease. The hypothesis that repeated E2 exposure stimulates increasing prominence of PGFM pulses was not supported. Instead, repeated exposure reduced the prominence of PGFM pulses, in contrast to the stimulation from the first E2 treatment. Reduced prominence of a PGF pulse during luteolysis can lead to a transient resurgence in P4 concentration.  相似文献   

10.
The temporal relationship of several hormones to a metabolite of prostaglandin F2α (PGFM) was studied in mares and heifers from the beginning of the first PGFM pulse during luteolysis to the end of the second pulse. Mares (n=7) were selected with a 9-h interval between the peaks of the two pulses. In mares, estradiol-17β (estradiol) increased (P<0.05) within each PGFM pulse and plateaued for a mean of 6h between the pulses, resulting in a stepwise estradiol increase. Progesterone decreased linearly (P<0.0001) throughout the intra-pulse and inter-pulse intervals of PGFM. In heifers (n=6), inter-pulse intervals were variable, and therefore Hours 1-4 of the first pulse (Hour 0=PGFM peak) and Hours -4 to -1 of the second pulse were used to represent the mean 8-h interval between peaks of the two pulses. Estradiol increased (P<0.05) during the ascending portion of each PGFM pulse and then decreased (P<0.05) beginning at Hour -1 of the first PGFM pulse and Hour 0 of the second pulse. The 1-h delay during the second pulse was accompanied by an apparent increase in PRL. A transient decrease in estradiol occurred in individuals between PGFM pulses at a mean of 5h after the first PGFM peak, concomitant with a transient LH increase (P<0.05). Results indicated that estradiol plateaued in mares and fluctuated in heifers during the interval between PGFM pulses. Heifers also showed temporal relationships between estradiol and LH and apparently between estradiol and PRL.  相似文献   

11.
Pulses of prolactin (PRL) and a metabolite of prostaglandin F2α (PGFM) were determined from hourly blood samples collected before, during, and after luteolysis (n=7 heifers). Progesterone concentrations were used to partition the results into six 12-h sets from 12h before to 36h after luteolysis. Pulses of PRL with a nadir-to-nadir interval of 4.4±0.2h were detected in each 12-h set. Pulses were rhythmic (P<0.05) in six heifers, beginning 12h before the end of luteolysis. The peak of a PRL pulse was greater (P<0.05) for the 12h after the end of luteolysis than for other 12-h sets, except for the last set of luteolysis. Area under the curve of a pulse was greater (P<0.05) for the 24h that encompassed the end of luteolysis than for two previous 12-h sets. Synchrony between the peaks of PRL and PGFM pulses was greater (P<0.03) during and after luteolysis (same hour for 29/39 pairs) than before luteolysis (0/12). Concentration of PRL centralized to the peak (Hour 0) of PGFM pulses was greater (P<0.05) at Hours 0 and 1 than at Hours -2, -1, and 3. Results supported the hypothesis that PRL is secreted in pulses in heifers. The pulses were most prominent and rhythmic during the last 12h of luteolysis and thereafter. The pulse peaks of PRL and PGFM were synchronized for most PRL pulses during and after luteolysis.  相似文献   

12.
The effect of ICI 182,780, oestrogen antagonist, on the concentrations of oxytocin and uterine PGF2α was investigated in intact Border Leicester Merino cross ewes during the late oestrous cycle. Twelve cyclic ewes (n=6 per group) were randomly assigned to receive, at 6 h intervals, intra-muscular injection of either peanut oil or ICI 182,780 (1.5 mg kg−1 day−1) in oil for 2 days, starting at 1900 h on day 13 until 1300 h on day 15 post-oestrus. Hourly blood samples were collected via a jugular catheter from 0800 h on day 14 for 37 h and then daily over days 16, 17 and 18 post-oestrus. Peripheral plasma concentrations of oxytocin, the metabolite of prostaglandin F2α, 15-keto-13,14-dihydro-prostaglandin F2α, (PGFM) and progesterone were measured by radioimmunoassay. All ewes treated with ICI 182,780 exhibited functional luteal regression as indicated by a marked reduction in plasma progesterone concentrations to less than 1000 pg/ml over the period of 18–36 h during sampling period on days 14 and 15 of the oestrous cycle. In five of six vehicle-treated ewes, progesterone concentrations declined between day 16 and day 18 post-oestrus. In the remaining control ewe, progesterone concentrations reach less than 1000 pg/ml within 36 h of the commencement of the sampling period. During the frequent sampling period, the number of oxytocin pulses in the ICI 182,780 treated ewes was significantly higher compared to control ewes (2.7±0.3 vs. 0.8±0.3). The mean amplitude of oxytocin pulses observed was also greater (70.4±19.5 pg/ml) in ewes treated with ICI 182,780, but was not significantly different from control ewes (33.5±12.9 pg/ml). Oxytocin pulses may however have occurred following the initial two ICI 182,780 injections but before commencing blood sampling. The oxytocin pulses were detected at a mean of 3.2±0.2 h following each injection with ICI 182,780 during blood sampling. In the ICI 182,780-treated ewes, the pulsatile pattern of plasma PGFM in jugular blood samples over the 37 h sampling period on days 14 and 15 post-oestrus had a higher amplitude (512.9±158.9 vs. 121.7±78.7 pg/ml) and pulse area (618.1±183.3 vs. 151.5±102.9 (pg/ml)τ) compared to the vehicle-treated ewes (P<0.05) respectively. The average number of PGFM pulses observed per ewe was 3.0±0.7 in the ICI 182,780-treated group and was significantly (P<0.02) higher than the number of pulses (0.5±0.3) observed in ewes treated with vehicle alone. The PGFM pulses were detected at 4.2±0.6 h following each injection with ICI 182,780 during blood sampling. The percentage of PGFM pulses that occurred coincidently with a significant elevation of oxytocin concentrations was 44.4% in ICI 182,780-treated compared to 66.6% in control ewes. We conclude that administration of oestrogen antagonist ICI 182,780 accelerated development of the luteolytic mechanism by enhancing pulsatile secretion of oxytocin and PGFM which suggests that ICI 182,780 acts as an agonist for oxytocin and prostaglandin F2α release in intact ewes when administered at 1.5 mg/kg/day over Day 13 to 15 post-oestrus.  相似文献   

13.
Luteal blood flow was studied in heifers by transrectal color-Doppler ultrasound. Data were normalized to the decrease in plasma progesterone to <1 ng/ml (Day 0 or Hour 0). Blood flow in the corpus luteum (CL) was estimated by the percentage of CL area with color flow signals. Systemic prostaglandin F2alpha (PGF) treatment (25 mg; n=4) resulted in a transient increase in CL blood flow during the initial portion of the induced decrease in progesterone. Intrauterine treatment (1 or 2 mg) was done to preclude hypothetical secondary effects of systemic treatment. Heifers were grouped into responders (luteolysis; n=3) and nonresponders (n=5). Blood flow increased transiently in both groups; induction of increased blood flow did not assure the occurrence of luteolysis. A transient increase in CL blood flow was not detected in association with spontaneous luteolysis when examinations were done every 12 h (n=6) or 24 h (n=10). The role of PGF pulses was studied by examinations every hour during a 12-h window each day during expected spontaneous luteolysis. At least one pulse of 13,14-dihydro-15-keto-PGF2alpha (PGFM) was identified in each of six heifers during the luteolytic period (Hours -48 to -1). Blood flow increased (P<0.02) during the 3-h ascending portion of the PGFM pulse, remained elevated for 2 h after the PGFM peak, and then decreased (P<0.03) to baseline. Results supported the hypothesis that CL blood flow increased and decreased with individual PGFM pulses during spontaneous luteolysis.  相似文献   

14.
Concentrations of progesterone, oxytocin and PGFM (pulmonary metabolite of PGF-2 alpha) were measured in plasma from peripheral blood samples collected from 5 fallow does every hour or 2 h for 12-h periods on Days 15-20 inclusive of the oestrous cycle (i.e. luteolysis). For 3 does that exhibited oestrus on Day 21, plasma progesterone concentrations fluctuated between 3 and 10 ng/ml on Days 15-18 inclusive. Thereafter, values declined progressively to attain minimum concentrations of less than 0.05 ng/ml on Day 20. Basal concentrations of plasma oxytocin and PGFM fluctuated between 5 and 20 pg/ml and 10 and 100 pg/ml respectively. Episodic pulses of plasma oxytocin (greater than 300 pg/ml) occurred on Days 15 and 16, whereas pulses of plasma PGFM (greater than 400 pg/ml) occurred on Days 19 and 20. There was little apparent correlation between episodic pulses of the two hormones. For 2 does that exhibited oestrus on Day 22, plasma progesterone concentrations declined to minimum values of 1.0-1.5 ng/ml by Day 20. One of these does showed very high levels of oxytocin secretion throughout the sampling period while the other showed an apparent paucity of oxytocin secretory periods. Two does hysterectomized on Day 13 of their second oestrous cycle failed to exhibit further oestrous cycles. Continual elevation of plasma progesterone concentrations (2-6 ng/ml) for an 8-month period indicated persistence of the corpus luteum after hysterectomy. It is concluded that luteolysis in fallow deer involves episodic secretion of both oxytocin and PGF-2 alpha.  相似文献   

15.
A single physiologic dose (0.1 mg) of estradiol-17β in sesame-oil vehicle or vehicle alone (n = 8) was given to heifers on day 14 after ovulation to study the effect on circulating 13-14-dihydro-15-keto-PGF2α (PGFM), PGFM pulses, and changes in progesterone concentrations within a PGFM pulse. Blood samples were collected hourly for 16 h after treatment. The estradiol group had a greater mean concentration of PGFM, greater number of heifers with PGFM pulses and number of pulses/heifer, and greater prominence of the PGFM pulses. Changes in progesterone concentrations were not detected during the 16 h sampling session in the vehicle group, indicating that the heifers were in preluteolysis. Progesterone decreased after 12 h in the estradiol group, indicating a luteolytic effect of the estradiol-induced PGF secretion as represented by PGFM concentrations. Intrapulse changes in progesterone were detected during a PGFM pulse in the estradiol group (P < 0.006), but not in the vehicle group. Progesterone increased (P < 0.01) between Hours −2 and −1 of an estradiol-induced PGFM pulse (Hour 0 = peak of pulse), decreased (P < 0.004) between Hours −1 and 0, and increased (P < 0.01) or rebounded between Hours 0 and 1. Results were compatible with previous reports of a role for estradiol in the induction of PGFM pulses in cattle and demonstrated intrapulse changes in progesterone concentrations during an induced PGFM pulse.  相似文献   

16.
The objective of this study was to determine if the primary circulating metabolite of PGF2alpha, 13,14-dihydro-15-keto-PGF2alpha (PGFM), is biologically active and would induce luteolysis in nonpregnant mares. On Day 9 after ovulation, mares (n = 7/group) were randomly assigned to receive: 1) saline control, 2) 10 mg PGF2alpha or 3) 10 mg PGFM in 5 mL 0.9% sterile saline i.m. On Days 0 through 16, blood was collected for progesterone analysis. In addition, blood was collected immediately prior to treatment, hourly for 6 h, and then at 12 and 24 h after treatment for progesterone and PGFM analysis; PGFM was measured to verify that equivalent amounts of hormone were administered to PGF2alpha- and PGFM-treated mares. Mares were considered to have undergone luteolysis if progesterone decreased to < or = 1.0 ng/mL within 24 h following treatment. Luteolysis was induced in 0/7 control, 7/7 PGF2alpha-treated, and 0/7 PGFM-treated mares. There was no difference (P>0.1) in the occurrence of luteolysis in control and PGFM-treated mares. More (P<0.001) PGF2alpha-treated mares underwent luteolysis than control or PGFM-treated mares. There was no difference (P>0.1) in progesterone concentrations between control and PGFM-treated mares on Days 10 through 16. Progesterone concentrations were lower (P<0.01) on Days 10 through 14 in PGF2alpha-treated compared with control and PGFM-treated mares. There was no difference (P>0.05) in PGFM concentrations between PGF2alpha- and PGFM-treated mares; PGFM concentrations in both groups were higher (P<0.001) than in control mares. These results do not support the hypothesis that PGFM is biologically active in the mare, since there was no difference in corpora luteal function between PGFM-treated and control mares.  相似文献   

17.
The release of luteal oxytocin during spontaneous and prostaglandin-induced luteolysis was investigated in cows. A continuous-flow microdialysis system was used in 11 cows to collect dialysates of the luteal extracellular space between Days 12 and 24 postestrus. Seven cows were untreated and were expected to exhibit spontaneous luteolysis during sampling, whereas 4 cows received prostaglandin F(2alpha) (PGF(2alpha)) systemically between Days 13 and 15 to induce luteolysis during sampling. Oxytocin was detectable in the dialysate of all cows before Day 16 postestrus and occurred as 2 or 3 discrete pulses per 12-h sampling period. For non-PGF(2alpha)-treated cows, dialysate oxytocin content began to decline spontaneously on Day 15 postestrus and was undetectable by Day 17 postestrus. Oxytocin decay curves preceded onset of serum progesterone decline by at least 72 h and were not related temporally with onset of progesterone decline within cow. Exogenous PGF(2alpha) (25 mg, i.m.) produced a 10-fold increase in dialysate oxytocin within 1 h (1.9 +/- 0.3 pg/ml to 20.8 +/- 3.0 pg/ml; P < 0. 01). Dialysate oxytocin then declined to pretreatment concentrations within 2 h and was undetectable within 8 h posttreatment. A second PGF(2alpha) injection given 20 h after the first did not result in a measurable increase in dialysate oxytocin, probably because luteolysis was underway. Although robust luteal oxytocin release was observed after treatment with a pharmacological dose of PGF(2alpha), the lack of detectable oxytocin secretion during spontaneous luteolysis suggests that the contribution of luteal oxytocin in the cow may be less than that proposed for the ewe.  相似文献   

18.
A pulse of a PGF2α metabolite (PGFM) was induced by treatment with 0.1 mg of estradiol-17β on Day 15 (Day 0=ovulation; n=9 heifers). Blood samples were taken every 15 min for 9h beginning at treatment (Hour 0). For PGFM and LH, an intraassay-CV method was used to detect fluctuations in the 15-min samples and pulses in the hourly samples. A mean of 6.9 ± 0.4 PGFM fluctuations/9 h were superimposed on the hourly PGFM concentrations, compared to 2.1 ± 0.5 LH fluctuations/9 h (P<0.02). An increase (P<0.02) in oxytocin began 15 min before the beginning nadir of the PGFM pulse. A transient increase in progesterone did not occur at the beginning nadir of the PGFM pulse. Progesterone decreased (P<0.02) during the ascending portion and increased (P<0.03) as a rebound during the descending portion of the PGFM pulse. The peak of an LH pulse occurred 1.5 ± 0.4 h (range, 0.25-2.75 h) after the peak of the PGFM pulse. The wide range in the interval from a PGFM peak to an LH peak obscured the contribution of increasing LH to the rebound. The results did not support the hypothesis that oxytocin and PGFM increase concurrently. Results supported the hypothesis that the immediate transient progesterone increase that has been demonstrated with exogenous PGF2α does not occur during the ascending portion of an endogenous PGFM pulse. The hypothesis that the progesterone rebound after the peak of a PGFM pulse is temporally related to an LH pulse was supported.  相似文献   

19.
O.J. Ginther  M.A. Beg 《Theriogenology》2009,72(8):1111-1119
The temporal relationships between a pulse of 13,14-dihydro-15-keto-PGF (PGFM) and the concentrations of circulating hormones during the luteolytic period were studied for 11 pulses in 11 mares (Equus caballus) using samples collected hourly. Mean PGFM pulses encompassed 4 h before to 4 h after the peak, and hormone data were normalized to the PGFM peak (Hour 0). Concentration of progesterone decreased (P < 0.05) between Hours –4 and –3 and continued to decrease linearly throughout the PGFM pulse. The concentrations of cortisol and prolactin increased (P < 0.004) during Hours –4 to 0 and decreased (P < 0.002) during Hours 0 to 4. Estradiol concentration increased (P < 0.02) during Hours –4 to 0 but did not change significantly after Hour 0. Concentrations of follicle-stimulating hormone and luteinizing hormone did not change significantly during the PGFM pulse, and the oxytocin results were equivocal. Percentage of corpus luteum area with color-Doppler signals of blood flow did not change significantly between Hours –4 and 0 and first began to decrease (P < 0.004) between Hours 0 and 2. Results demonstrated that concentrations of progesterone decreased linearly during a PGFM pulse, and cortisol, prolactin, and estradiol increased during the ascending portion of the pulse. The progesterone and gonadotropin results supported the hypothesis that the initial progesterone and gonadotropin increases that have been reported to occur in response to a single bolus luteolytic treatment with prostaglandin F do not occur in response to the natural secretion of prostaglandin F.  相似文献   

20.
《Theriogenology》2013,79(9):1960-1968
During the luteolytic period in mares, the peak of 65% of pulses of a PGF2α metabolite (PGFM) and the peak of a pulse of PRL have been reported to occur at the same hour. It is unknown whether the synchrony reflects an effect of PGF2α on PRL or vice versa. Controls, a flunixin meglumine (FM)-treated group (to inhibit PGF2α), and a bromocriptine-treated group (to inhibit PRL), were used at 14 days postovulation in June and in September (n = 6 mares/group/mo). Blood samples were collected hourly from just before treatment (Hour 0) to Hour 10. Concentrations of PGFM in the FM group were lower (P < 0.05) at Hours 4 to 6 than in the controls in each month, but bromocriptine had no detected effects on PGFM. Concentrations of PGFM averaged over all groups and within each group did not differ between June and September. Compared to the controls, concentrations of PRL in June were lower (P < 0.05) in the FM group at Hours 4 to 8 and in the bromocriptine group at Hours 4 to 10. Concentration of PRL averaged over groups was lower (P < 0.0001) in September (0.9 ± 0.05 ng/mL, mean ± SEM) than in June (3.0 ± 0.3 ng/mL). Results supported the hypothesis that the positive association between PGFM and PRL concentrations in mares represents an effect of PGF2α on PRL rather than an effect of PRL on PGF2α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号