首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Background

Essentially all knowledge about adult hippocampal neurogenesis in humans still comes from one seminal study by Eriksson et al. in 1998, although several others have provided suggestive findings. But only little information has been available in how far the situation in animal models would reflect the conditions in the adult and aging human brain. We therefore here mapped numerous features associated with adult neurogenesis in rodents in samples from human hippocampus across the entire lifespan. Such data would not offer proof of adult neurogenesis in humans, because it is based on the assumption that humans and rodents share marker expression patterns in adult neurogenesis. Nevertheless, together the data provide valuable information at least about the presence of markers, for which a link to adult neurogenesis might more reasonably be assumed than for others, in the adult human brain and their change with increasing age.

Methods and Findings

In rodents, doublecortin (DCX) is transiently expressed during adult neurogenesis and within the neurogenic niche of the dentate gyrus can serve as a valuable marker. We validated DCX as marker of granule cell development in fetal human tissue and used DCX expression as seed to examine the dentate gyrus for additional neurogenesis-associated features across the lifespan. We studied 54 individuals and detected DCX expression between birth and 100 years of age. Caveats for post-mortem analyses of human tissues apply but all samples were free of signs of ischemia and activated caspase-3. Fourteen markers related to adult hippocampal neurogenesis in rodents were assessed in DCX-positive cells. Total numbers of DCX expressing cells declined exponentially with increasing age, and co-expression of DCX with the other markers decreased. This argued against a non-specific re-appearance of immature markers in specimen from old brains. Early postnatally all 14 markers were co-expressed in DCX-positive cells. Until 30 to 40 years of age, for example, an overlap of DCX with Ki67, Mcm2, Sox2, Nestin, Prox1, PSA-NCAM, Calretinin, NeuN, and others was detected, and some key markers (Nestin, Sox2, Prox1) remained co-expressed into oldest age.

Conclusions

Our data suggest that in the adult human hippocampus neurogenesis-associated features that have been identified in rodents show patterns, as well as qualitative and quantitative age-related changes, that are similar to the course of adult hippocampal neurogenesis in rodents. Consequently, although further validation as well as the application of independent methodology (e.g. electron microscopy and cell culture work) is desirable, our data will help to devise the framework for specific research on cellular plasticity in the aging human hippocampus.  相似文献   

2.
Ongoing neurogenesis in the adult mammalian dentate gyrus and olfactory bulb is generally accepted, but its existence in other adult brain regions is highly controversial. We labeled newly born cells in adult rats with the S-phase marker bromodeoxyuridine (BrdU) and used neuronal markers to characterize new cells at different time points after cell division. In the neocortex and striatum, we found BrdU-labeled cells that expressed each of the eight neuronal markers. Their size as well as staining for gamma-aminobutyric acid (GABA), glutamic acid decarboxylase 67, calretinin and/or calbindin, suggest that new neurons in both regions are GABAergic interneurons. BrdU and doublecortin-immunoreactive (BrdU+/DCX+) cells were seen within the striatum, suggesting migration of immature neurons from the subventricular zone. Surprisingly, no DCX+ cells were found within the neocortex. NG2 immunoreactivity in some new neocortical neurons suggested that they may instead be generated from the NG2+ precursors that reside within the cortex itself.  相似文献   

3.
Doublecortin (DCX), a microtubule-associated protein, specifically expresses in neuronal precursors. This protein has been used as a marker for neuronal precursors and neurogenesis. In the present study, we observed differences in DCX immunoreactivity and its protein levels in the hippocampal dentate gyrus between adult and aged dogs. In the adult dog, DCX immunoreactive cells with well-stained processes were detected in the subgranular zone of the dentate gyrus. Numbers of DCX immunoreactive cells in the dentate gyrus of the aged dog were significantly decreased compared to those in the adult dog. DCX immunoreactive cells in both adult and aged dog did not show NeuN (a marker for mature neurons) immunoreactivity. NeuN immunoreactivity in the aged dog was poor compared to that in the adult dog. DCX protein level in the aged dentate gyrus was decreased by 80% compared to that in the adult dog. These results suggest that the reduction of DCX in the aged hippocampal dentate gyrus may be involved in some neural deficits related to the hippocampus.  相似文献   

4.
The present study is devoted to three-dimensional ultrastructural organization of mitotically dividing immature neurons in dentate gyrus using biophysical approaches. In adult vertebrate brain, cell proliferation persists throughout life mainly in dentate gyrus of the hippocampus (DG) and olfactory bulb. Neurogenesis has been demonstrated using tagged thymidine analogues incorporated into the S phase of the cell cycle, but these may also detect repaired DNA in postmitotic neurons. Recent retroviral labelling has shown that neuronal progenitors/neuroblasts divide and produce functional neurons. Providing ultrastructural evidence of mitotically active cells has proven problematical, not only because of technical issues of identifying dividing cells at electron microscope level, but also because it is difficult to demonstrate unequivocally that neurons identified in the electron microscope are really post mitotic. However by characterising post mitotic cells labelled with BrdU and doublecortin and comparing these with post mitotic cells reconstructed in 3-dimensions from ultrathin serial sections, we have been able to illustrate individual mitotic elements and phases of cells within the GC layer of adult rat dentate gyrus. Here we show dividing cells in metaphase within clusters of immature GCs in subgranular zone (SGZ). These reconstructions provide ultrastructural confirmation that cells expressing doublecortin (DCX), a microtubule-associated protein expressed in migrating neurons, localize as clusters in the subgranular zone (SGZ) of dentate gyrus (DG) in the hippocampus during all animal life. Such DG cells with clear synaptic specializations, somatic spines and basal dendrites are exclusive to immature GC that appear to re-enter the cell cycle, suggesting the possibility that newly generated neurons within the DG might arise not only from precursors, but also from clusters of immature GC.  相似文献   

5.
Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM), neuronal nuclei (NeuN), doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A–D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3) and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.  相似文献   

6.
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n?=?37) and matched controls (n?=?37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia.  相似文献   

7.
The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAM) has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM+ immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM+ immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the cortices of young individuals, while very few DCX/PSA-NCAM + cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM+ cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM+ neurons. We compare the distribution and fates of DCX/PSA-NCAM + neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term “adult non-canonical neurogenesis.”  相似文献   

8.
The neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus is a source of new neurons throughout life. Interestingly, SGZ proliferative capacity is regulated by both physiological and pathophysiological conditions. One outstanding question involves the molecular mechanisms that regulate both basal and inducible adult neurogenesis. Here, we examined the role of the MAPK‐regulated kinases, mitogen‐ and stress‐activated kinase (MSK)1 and MSK2. as regulators of dentate gyrus SGZ progenitor cell proliferation and neurogenesis. Under basal conditions, MSK1/2 null mice exhibited significantly reduced progenitor cell proliferation capacity and a corollary reduction in the number of doublecortin (DCX)‐positive immature neurons. Strikingly, seizure‐induced progenitor proliferation was totally blocked in MSK1/2 null mice. This blunting of cell proliferation in MSK1/2 null mice was partially reversed by forskolin infusion, indicating that the inducible proliferative capacity of the progenitor cell population was intact. Furthermore, in MSK1/2 null mice, DCX‐positive immature neurons exhibited reduced neurite arborization. Together, these data reveal a critical role for MSK1/2 as regulators of both basal and activity‐dependent progenitor cell proliferation and morphological maturation in the SGZ.  相似文献   

9.
Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30 mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after TBI.  相似文献   

10.
Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA‐NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA‐NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar‐pyramidal transitional neurons. Most were also immunoreactive for DCX, confirming their immature nature. In agreement with this, detection of PSA‐NCAM combined with that of different cell lineage‐specific antigens revealed that most PSA‐NCAM positive cells did not co‐express markers of glial cells or mature neurons. Their time of origin was evaluated by birthdating experiments with halogenated nucleosides performed at different developmental stages and in adulthood. We found that virtually all cells in this paleocortical region, including PSA‐NCAM‐positive cells, are born during fetal development. In addition, proliferation analyses in adult mice revealed that very few cells were cycling in layer II of the piriform cortex and that none of them was PSA‐NCAM‐positive. Moreover, we have established conditions to isolate and culture these immature neurons in the adult piriform cortex layer II. We find that although they can survive under certain conditions, they do not proliferate in vitro either. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 748–763, 2016  相似文献   

11.
ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer''s disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse.  相似文献   

12.
Oxidative stress is one of the most important factors in reducing adult hippocampal neurogenesis in the adult brain. In this study, we observed the effects of Cu,Zn-superoxide dismutase (SOD1) on lipid peroxidation, cell proliferation, and neuroblast differentiation in the mouse dentate gyrus using malondialdehyde (MDA), Ki67, and doublecortin (DCX), respectively. We constructed an expression vector, PEP-1, fused PEP-1 with SOD1, and generated PEP-1-SOD1 fusion protein. We administered PEP-1 and 100 or 500 μg PEP-1-SOD1 intraperitoneally once a day for 3 weeks and sacrificed at 30 min after the last administrations. PEP-1 administration did not change the MDA levels compared to those in the vehicle-treated group, while PEP-1-SOD1 treatment significantly reduced MDA levels compared to the vehicle-treated group. In the PEP-1-treated group, the number of Ki67-positive nuclei was similar to that in the vehicle-treated group. In the 100 μg PEP-1-SOD1-treated group, the number of Ki67-positive nuclei was slightly decreased; however, in the 500 μg PEP-1-SOD1-treated group, Ki67-positive nuclei were decreased to 78.5% of the vehicle-treated group. The number of DCX-positive neuroblasts in the PEP-1-treated group was similar to that in the vehicle-treated group. However, the arborization of DCX-positive neuroblasts was significantly decreased in both the 100 and 500 μg PEP-1-SOD1-treated groups compared to that in the vehicle-treated group. The number of DCX-positive neuroblasts with tertiary dendrites was markedly decreased in the 500 μg PEP-1-SOD1-treated group. These results suggest that a SOD1 supplement to healthy mice may not be necessary to modulate cell proliferation and neuroblast differentiation in the dentate gyrus.  相似文献   

13.
Acute Seizure (AS) activity in young adult age conspicuously modifies hippocampal neurogenesis. This is epitomized by both increased addition of new neurons to the granule cell layer (GCL) by neural stem/progenitor cells (NSCs) in the dentate subgranular zone (SGZ), and greatly enhanced numbers of newly born neurons located abnormally in the dentate hilus (DH). Interestingly, AS activity in old age does not induce such changes in hippocampal neurogenesis. However, the effect of AS activity on neurogenesis in the middle-aged hippocampus is yet to be elucidated. We examined hippocampal neurogenesis in middle-aged F344 rats after a continuous AS activity for >4 hrs, induced through graded intraperitoneal injections of the kainic acid. We labeled newly born cells via daily intraperitoneal injections of the 5'-bromodeoxyuridine (BrdU) for 12 days, commencing from the day of induction of AS activity. AS activity enhanced the addition of newly born BrdU+ cells by 5.6 fold and newly born neurons (expressing both BrdU and doublecortin [DCX]) by 2.2 fold to the SGZ-GCL. Measurement of the total number of DCX+ newly born neurons also revealed a similar trend. Furthermore, AS activity increased DCX+ newly born neurons located ectopically in the DH (2.7 fold increase and 17% of total newly born neurons). This rate of ectopic migration is however considerably less than what was observed earlier for the young adult hippocampus after similar AS activity. Thus, the plasticity of hippocampal neurogenesis to AS activity in middle age is closer to its response observed in the young adult age. However, the extent of abnormal migration of newly born neurons into the DH is less than that of the young adult hippocampus after similar AS activity. These results also point out a highly divergent response of neurogenesis to AS activity between middle age and old age.  相似文献   

14.
15.

Background

Adult neurogenesis occurs in specific regions of the mammalian brain such as the dentate gyrus of the hippocampus. In the neurogenic region, neural progenitor cells continuously divide and give birth to new neurons. Although biological properties of neurons and glia in the hippocampus have been demonstrated to fluctuate depending on specific times of the day, it is unclear if neural progenitors and neurogenesis in the adult brain are temporally controlled within the day.

Methodology/Principal Findings

Here we demonstrate that in the dentate gyrus of the adult mouse hippocampus, the number of M-phase cells shows a day/night variation throughout the day, with a significant increase during the nighttime. The M-phase cell number is constant throughout the day in the subventricular zone of the forebrain, another site of adult neurogenesis, indicating the daily rhythm of progenitor mitosis is region-specific. Importantly, the nighttime enhancement of hippocampal progenitor mitosis is accompanied by a nighttime increase of newborn neurons.

Conclusions/Significance

These results indicate that neurogenesis in the adult hippocampus occurs in a time-of-day-dependent fashion, which may dictate daily modifications of dentate gyrus physiology.  相似文献   

16.
The dentate gyrus of the hippocampus contains neural progenitor cells (NPCs) that generate neurons throughout life. Developing neurons of the adult hippocampus have been described in depth. However, little is known about their functional properties as they become fully mature dentate granule cells (DGCs). To compare mature DGCs generated during development and adulthood, NPCs were labeled at both time points using retroviruses expressing different fluorescent proteins. Sequential electrophysiological recordings from neighboring neurons of different ages were carried out to quantitatively study their major synaptic inputs: excitatory projections from the entorhinal cortex and inhibitory afferents from local interneurons. Our results show that DGCs generated in the developing and adult hippocampus display a remarkably similar afferent connectivity with regard to both glutamate and GABA, the major neurotransmitters. We also demonstrate that adult-born neurons can fire action potentials in response to an excitatory drive, exhibiting a firing behavior comparable to that of neurons generated during development. We propose that neurons born in the developing and adult hippocampus constitute a functionally homogeneous neuronal population. These observations are critical to understanding the role of adult neurogenesis in hippocampal function.  相似文献   

17.
采用传统H.E 染色和Golgi-Cox 染色方法观察成年牦牛海马结构的形态和细胞构筑,并通过DCX - DAB免疫组化染色和DCX/ NeuN、GFAP / NeuN 双重免疫荧光标记等技术观察齿状回颗粒下层中的新生神经元和放射状胶质细胞。结果表明,牦牛海马结构主要包括齿状回和海马本部,二者分层清晰。海马的主要细胞为颗粒细胞、苔藓细胞和锥体细胞。CA3 区的锥体细胞胞体较CA1 区的大,但其顶树突的平均长度较短。CA1 区的锥体细胞明显分为两层,而CA3 区的则为一层。DCX 阳性细胞的胞体主要集中在齿状回颗粒下层靠近门区处,沿颗粒层内侧单个或少数聚集分布。沿齿状回颗粒下层分布着一层GFAP 阳性的放射状胶质细胞样细胞,其胞质和单极性的细长突起均呈GFAP 阳性,而胞核为阴性。在整个海马结构中均有大量星形GFAP 阳性细胞散在分布,特别是海马分子层和门区内靠近颗粒层部分的密度较其它部位大。牦牛海马的形态结构与绵羊的相似,而与大鼠、小鼠、家猫、兔子等小型哺乳动物有一定差别。两种DCX 免疫组化实验结果表明在牦牛海马中存在着新生神经元。GFAP 免疫荧光标记表明,牦牛海马结构中分布有星形胶质细胞;特别是放射状胶质细胞。  相似文献   

18.
神经发生是神经干细胞在适当的条件下分化成功能性整合神经元的过程,主要包括细胞的增殖、迁移、分化和存活。成年神经发生区以前脑室管膜下区(Subventricular zones,SVZ)和海马齿状回颗粒层下区(Subgranular zones,SGZ)为主,但皮质作为神经元和神经胶质细胞数量最多、分布最广,同时也是哺乳动物高度发展的脑区,是否有成年神经元新生,已成为近年来神经科学领域的研究热点[1,2]。现本文就未成熟神经元在皮质区的研究方法、分布、来源与转归、病理生理功能影响等方面探讨成年哺乳动物皮质神经发生现象。  相似文献   

19.
In the present study, we investigated age-related changes of newborn neurons in the gerbil dentate gyrus using doublecortin (DCX), a marker of neuronal progenitors which differentiate into neurons in the brain. In the postnatal month 1 (PM 1) group, DCX immunoreactivity was detected in the subgranular zone of the dentate gyrus, but DCX immunoreactive neurons did not have fully developed processes. Thereafter, DCX immunoreactivity and its protein levels in the dentate gyrus were found to decrease with age. Between PM 3 and PM 18, DCX immunoreactive neuronal progenitors showed well-developed processes which projected to the granular layer of the dentate gyrus, but at PM 24, a few DCX immunoreactive neuronal progenitors were detected in the subgranular zone of the dentate gyrus. DCX protein level in the dentate gyrus at PM 1 was high, thereafter levels of DCX were decreased with time. The authors suggest that a decrease of DCX immunoreactivity and its protein level with age may be associated with aging processes in the hippocampal dentate gyrus.  相似文献   

20.
Neurogenesis in the adult dentate gyrus (DG) of the hippocampus occurs constitutively throughout postnatal life, and the rate of neurogenesis within the DG can be altered under various physiological and pathophysiological conditions. Adult neurogenesis includes the process in which the division of a precursor cell takes place and the multi-step process (proliferation, differentiation, migration, targeting, and synaptic integration) that ends with the formation of a postmitotic functionally integrated new neuron. During specific time-frames of adult neurogenesis, various markers are expressed that correlate with the differentiation steps along the pathway from early progenitor cells to newly generated postmitotic neurons within the DG. Markers that are currently widely used for the investigation of adult hippocampal neurogenesis are: glial fibrillary acidic protein, nestin, Pax6, NeuroD, PSA-NCAM, doublecortin, TUC-4, Tuj-1, and calretinin. The discovery and development of specific markers that allow the time-course and fate of neurons to be followed during adult neurogenesis in a detailed and precise fashion are not only helpful for gaining further insights into the genesis of new neurons in the hippocampus, but also might be applicable to the development of strategies for therapeutic interventions. This study was supported by the DFG (SFB 636/A5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号