首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DDX3, a DEAD-box RNA helicase, binds to the hepatitis C virus (HCV) core protein. However, the role(s) of DDX3 in HCV replication is still not understood. Here we demonstrate that the accumulation of both genome-length HCV RNA (HCV-O, genotype 1b) and its replicon RNA were significantly suppressed in HuH-7-derived cells expressing short hairpin RNA targeted to DDX3 by lentivirus vector transduction. As well, RNA replication of JFH1 (genotype 2a) and release of the core into the culture supernatants were suppressed in DDX3 knockdown cells after inoculation of the cell culture-generated HCVcc. Thus, DDX3 is required for HCV RNA replication.  相似文献   

2.
Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus.  相似文献   

3.
Host RNA helicase has been involved in human immunodeficiency virus type 1 (HIV-1) replication, since HIV-1 does not encode an RNA helicase. Indeed, DDX1 and DDX3 DEAD-box RNA helicases are known to be required for efficient HIV-1 Rev-dependent RNA export. However, it remains unclear whether DDX RNA helicases modulate the HIV-1 Tat function. In this study, we demonstrate, for the first time, that DDX3 is required for the HIV-1 Tat function. Notably, DDX3 colocalized and interacted with HIV-1 Tat in cytoplasmic foci. Indeed, DDX3 localized in the cytoplasmic foci P-bodies or stress granules under stress condition after the treatment with arsenite. Importantly, only DDX3 enhanced the Tat function, while various distinct DEAD-box RNA helicases including DDX1, DDX3, DDX5, DDX17, DDX21, and DDX56, stimulated the HIV-1 Rev-dependent RNA export function, indicating a specific role of DDX3 in Tat function. Indeed, the ATPase-dependent RNA helicase activity of DDX3 seemed to be required for the Tat function as well as the colocalization with Tat. Furthermore, the combination of DDX3 with other distinct DDX RNA helicases cooperated to stimulate the Rev but not Tat function. Thus, DDX3 seems to interact with the HIV-1 Tat and facilitate the Tat function.  相似文献   

4.
5.
Milk synthesis of bovine mammary gland is a complex biological process that is regulated by hormones and nutrients, but the mechanism of these regulations still needs further research. DEAD-box helicase 6 (DDX6) is an important member of the RNA helicase family, involved in the regulation of mRNA storage and translation in different systems, but its physiological role and mechanism are largely unclear. In this study, we describe DDX6 as a potentially novel negative regulator for milk synthesis and proliferation of bovine mammary epithelial cells (BMECs). Treatment of BMECs with amino acids (methionine or leucine) or hormones (estrogen or prolactin) decreased the expression of DDX6. DDX6 expression was lower in mammary tissues of lactation period than in mammary tissues of puberty and dry period. Notably, overexpressing DDX6 in BMECs significantly decreased milk synthesis, cell proliferation, and protein levels of p-mTOR, SREBP-1c, and cyclin D1, while inhibiting DDX6 had the opposite effect. Taken together, these results reveal that DDX6 is a new negative regulator to control milk synthesis and proliferation of BMECs.  相似文献   

6.
7.
S Yang  H M Temin 《The EMBO journal》1994,13(3):713-726
We conducted a mutational analysis within the previously defined encapsidation sequence (E) for spleen necrosis virus (SNV), an avian retrovirus. We found that two regions are necessary for efficient SNV replication. The first region is a double hairpin structure as proposed by Konings et al. (1992, J. Virol., 66, 632-640); the second region is located downstream of the hairpins. We showed further that the double hairpin structure is required for efficient SNV RNA encapsidation. Our work is the first to demonstrate, via linker-scanning and site-directed mutagenesis, that a specific RNA secondary structure is required for the encapsidation of retroviral RNA. Analysis of a series of mutations within the E region indicates (i) that preserving the secondary structure of the two hairpins is important for efficient encapsidation and (ii) that the stem regions of the hairpins contain specific sequences critical for encapsidation. Within the hairpins, the presence of at least one of the two conserved GACG four-residue loops, but not the moderately conserved bulge sequence of the first hairpin, is crucial for function. The function of the hairpins is independent of the relative order of the two hairpins. However, the two hairpins are not redundant and are not functionally identical. Replacement of SNV double hairpin sequences with those of Moloney murine leukemia virus (M-MLV) has no detectable effect on the replication of SNV-based retrovirus vectors with reticuloendotheliosis virus strain A (REV-A) helper virus. Furthermore, replacement of the entire E sequence of SNV with that of Moloney murine sarcoma virus (M-MSV) and M-MLV results in retroviral vectors that replicate as well as SNV vectors with wild type SNV E. This result indicates that the encapsidation sequences of M-MSV/M-MLV and SNV are not virus specific and that, during packaging of SNV and MLV RNA with viral proteins from REV-A, the encapsidation sequences are recognized largely by their secondary or tertiary structures.  相似文献   

8.
The human DEAD-box helicase DDX3 is a multi-functional protein involved in the regulation of gene expression and additional non-conventional roles as signalling adaptor molecule that are independent of its enzymatic RNA remodeling activity. It is a nucleo-cytoplasmic shuttling protein and it has previously been suggested that dysregulation of its subcellular localization could contribute to tumourigenesis. Indeed, both tumour suppressor and oncogenic functions have been attributed to DDX3. In this study, we investigated the regulation of DDX3’s nucleocytoplasmic shuttling. We confirmed that an N-terminal conserved Nuclear Export Signal (NES) is required for export of human DDX3 from the nucleus, and identified three regions within DDX3 that can independently facilitate its nuclear import. We also aimed to identify conditions that alter DDX3’s subcellular localisation. Viral infection, cytokine treatment and DNA damage only induced minor changes in DDX3’s subcellular distribution as determined by High Content Analysis. However, DDX3’s nuclear localization increased in early mitotic cells (during prophase) concomitant with an increase in DDX3 expression levels. Our results are likely to have implications for the proposed use of (nuclear) DDX3 as a prognostic biomarker in cancer.  相似文献   

9.
Proteins with RNA-binding activity are increasingly being implicated in DNA damage responses (DDR). Additionally, DNA:RNA-hybrids are rapidly generated around DNA double-strand breaks (DSBs), and are essential for effective repair. Here, using a meta-analysis of proteomic data, we identify novel DNA repair proteins and characterise a novel role for DDX17 in DNA repair. We found DDX17 to be required for both cell survival and DNA repair in response to numerous agents that induce DSBs. Analysis of DSB repair factor recruitment to damage sites suggested a role for DDX17 early in the DSB ubiquitin cascade. Genome-wide mapping of R-loops revealed that while DDX17 promotes the formation of DNA:RNA-hybrids around DSB sites, this role is specific to loci that have low levels of pre-existing hybrids. We propose that DDX17 facilitates DSB repair at loci that are inefficient at forming DNA:RNA-hybrids by catalysing the formation of DSB-induced hybrids, thereby allowing propagation of the damage response.  相似文献   

10.
Yoo HH  Chung IK 《Aging cell》2011,10(4):557-571
Human chromosome ends associate with shelterin, a six-protein complex that protects telomeric DNA from being recognized as sites of DNA damage. The shelterin subunit TRF2 has been implicated in the protection of chromosome ends by facilitating their organization into the protective capping structure and by associating with several accessory proteins involved in various DNA transactions. Here we describe the characterization of DDX39 DEAD-box RNA helicase as a novel TRF2-interacting protein. DDX39 directly interacts with the telomeric repeat binding factor homology domain of TRF2 via the FXLXP motif (where X is any amino acid). DDX39 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT but has no effect on telomerase activity. Whereas overexpression of DDX39 in telomerase-positive human cancer cells led to progressive telomere elongation, depletion of endogenous DDX39 by small hairpin RNA (shRNA) resulted in telomere shortening. Furthermore, depletion of DDX39 induced DNA-damage response foci at internal genome as well as telomeres as evidenced by telomere dysfunction-induced foci. Some of the metaphase chromosomes showed no telomeric signal at chromatid ends, suggesting an aberrant telomere structure. Our findings suggest that DDX39, in addition to its role in mRNA splicing and nuclear export, is required for global genome integrity as well as telomere protection and represents a new pathway for telomere maintenance by modulating telomere length homeostasis.  相似文献   

11.
12.
Planarian flatworms have an impressive regenerative power. Although their embryonic development is still poorly studied and is highly derived it still displays some simple characteristics. We have identified SpolvlgA, a Schmidtea polychroa homolog of the DDX3/PL10 DEAD-box RNA helicase DjvlgA from the planarian species Dugesia japonica. This gene has been previously described as being expressed in planarian adult stem cells (neoblasts), as well as the germ line. Here we present the expression pattern of SpolvlgA in developing embryos of S. polychroa and show that it is expressed from the first cleavage rounds in blastomere cells and blastomere-derived embryonic cells. These cells are undifferentiated cells that engage in a massive wave of differentiation during stage 5 of development. SpolvlgA expression highlights this wave of differentiation, where nearly all previous structures are substituted by blastomere-derived embryonic cells. In late stages of development SpolvlgA is expressed in most proliferating and differentiating cells. Thus, SpolvlgA is a gene expressed in planarian embryos from the first stages of development and a good marker for the zygote-derived cell lineage in these embryos. Expression in adult worms is also monitored and is found in the planarian germ line, where it is showed to be expressed in spermatogonia, spermatocytes and differentiating spermatids.  相似文献   

13.
The Ded1 protein (Ded1p), a member of the DEAD-box family, has recently been shown to be essential for translation initiation in Saccharomyces cerevisiae. Here, we show that Ded1p purified from Escherichia coli has an ATPase activity, which is stimulated by various RNA substrates. Using an RNA strand-displacement assay, we show that Ded1p has also an ATP-dependent RNA unwinding activity. Hydrolysis of ATP is required for this activity: the replacement of ATP by a nonhydrolyzable analog or a mutation in the DEAD motif abolishing ATPase activity results in loss of RNA unwinding. We find that cells harboring a Ded1 protein with this mutated DEAD motif are nonviable, suggesting that the ATPase and RNA helicase activities of this protein are essential to the cell. Finally, RNA binding measurements indicate that the presence of ATP, but not ADP, increases the affinity of Ded1p for duplex versus single-stranded RNA; we discuss how this differential effect might drive the unwinding reaction.  相似文献   

14.
15.
16.
The DEAD-box helicase DDX3 has suggested functions in innate immunity, mRNA translocation and translation, and it participates in the propagation of assorted viruses. Exploring initially the role of DDX3 in the life cycle of hepatitis C virus, we observed the protein to be involved in translation directed by different viral internal ribosomal entry sites. Extension of these studies revealed a general supportive role of DDX3 in translation initiation. DDX3 was found to interact in an RNA-independent manner with defined components of the translational pre-initiation complex and to specifically associate with newly assembling 80S ribosomes. DDX3 knock down and in vitro reconstitution experiments revealed a significant function of the protein in the formation of 80S translation initiation complexes. Our study implies that DDX3 assists the 60S subunit joining process to assemble functional 80S ribosomes.  相似文献   

17.
The construction of a set of transmissible gastroenteritis coronavirus (TGEV)-derived replicons as bacterial artificial chromosomes is reported. These replicons were generated by sequential deletion of nonessential genes for virus replication, using a modified TGEV full-length cDNA clone containing unique restriction sites between each pair of consecutive genes. Efficient activity of TGEV replicons was associated with the presence of the nucleoprotein provided either in cis or in trans. TGEV replicons were functional in several cell lines, including the human cell line 293T, in which no or very low cytopathic effect was observed, and expressed high amounts of heterologous protein.  相似文献   

18.
Abstract

In eukaryotic organisms, the orthologs of the DEAD-box RNA helicase Ded1p from yeast and DDX3 from human form a well-defined subfamily that is characterized by high sequence conservation in their helicase core and their N- and C- termini. Individual members of this Ded1/DDX3 subfamily perform multiple functions in RNA metabolism in both nucleus and cytoplasm. Ded1/DDX3 subfamily members have also been implicated in cellular signaling pathways and are targeted by diverse viruses. In this review, we discuss the considerable body of work on the biochemistry and biology of these proteins, including the recently discovered link of human DDX3 to tumorigenesis.  相似文献   

19.
Retroviruses, as a result of the presence of two identical RNA molecules in their virions, recombine at a high rate. When nonhomologous RNA is present in the dimer RNA molecules, nonhomologous recombination occurs, although the rate is only 0.1% of the rate of homologous recombination. We developed a protocol to study transduction of cellular proto-oncogenes in a single cycle of retrovirus replication. The psi sequences is a cis required sequence for packaging viral RNA into viral particles. To test if the rate of nonhomologous recombination increases about 1,000 times when the psi sequence is deleted, as reported by other, we modified vectors we used previously (J. Zhang and H. M. Temin, Science 259:234-238, 1993). Our results indicated that the recombination rate did not undergo the increase of about 1,000 times when the psi sequence of a chimeric RNA was deleted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号