首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects on estrus and fertility of 3 estrus synchronization protocols were studied in Brahman beef heifers. In Treatment 1 (PGF protocol; n=234), heifers received 7.5 mg, i.m. prostianol on Day 0 and were inseminated after observed estrus until Day 5. Treatment 2 (10-d NOR protocol; n = 220) consisted of norgestomet (NOR; 3 mg, s.c. implant and 3 mg, i.m.) and estradiol valerate (5 mg, i.m.) treatment on Day -10, NOR implant removal and 400 IU, i.m. PMSG on Day 0, and AI after observed estrus through to Day 5. Treatment 3 (14-d NOR+PGF protocol; n = 168) constituted a NOR implant (3 mg, sc) on Day -14, NOR implant removal on Day 0, PGF on Day 16, and AI after observed estrus through to Day 21. All heifers were examined for return to estrus at the next cycle and inseminated after observed estrus. The heifers were then exposed to bulls for at least 21 d. During the period of estrus observation (5 d) after treatment, those heifers treated with the PGF protocol had a lower (P<0.01) rate of estrual response (58%) than heifers treated with the 10-d NOR (87%) or 14-d NOR+PGF (88%) protocol. Heifers treated with the 10-d NOR protocol displayed estrus earlier and had a closer synchrony of estrus than heifers treated with either the PGF or the 14-d NOR+PGF protocol. Heifers treated with the 14-d NOR+PGF protocol had higher (P<0.05) conception and calving rates (51 and 46%) to AI at the induced estrus than heifers treated with the PGF (45 and 27%) or the 10-d NOR (38 and 33%) protocol. Calving rate to 2 rounds of AI was greater (P<0.05) for heifers treated with the 14-d NOR-PGF (50%) protocol than heifers treated with the 10-d NOR (38%) but not the PGF (43%) protocol. Breeding season calving rates were similar among the 3 protocols. The results show that the 14-d NOR+PGF estrus synchronization protocol induced a high incidence of estrus with comparatively high fertility in Brahman heifers.  相似文献   

2.
Three trials utilizing 231 beef heifers were conducted in 1993 to determine if a timed insemination would result in similar synchronized pregnancy rates as insemination by estrus following synchronization of estrus using the 14-d MGA-prostaglandin system. All heifers were fed 0.5 mg MGA/h/d fof 14 d and given a 25 mg injection of PGF(2)alpha im 17 d after the final day of MGA feeding. Heifers in Group 1 (timed AI treatment) were inseminated at 72 h after the prostaglandin injection independent of whether or not they were observed in estrus. Heifers in Group 2 (AI by estrus) were inseminated 12 to 18 h after the onset of estrus. Since the trial was a significant source of variation for synchronized pregnancy rate, the effect of treatment on pregnancy rate was analyzed for each trial. Synchronized pregnancy rates in Trials 2 and 3 were similar in both treatment groups; 37 vs 35% and 61 vs 58% for the timed AI vs AI by estrus (Groups 1 and 2) in Trials 2 and 3, respectively. In both of these trials the degree of estrous synchrony was high. In Trial 1, the synchronized pregnancy rate in heifers that were time-inseminated was significantly lower than that of heifers that were inseminated by estrus (29 vs 57%). The lower synchronized pregnancy rate of Group 1 (timed AI) heifers in Trial 1 appeared to be due to the low degree of estrous synchrony in this trial. Our results indicate that using timed insemination with the 14-d MGA-prostaglandin system will give similar synchronized pregnancy rates as inseminating by estrus in groups of beef heifers where the degree of synchrony is high. However, in heifers where the degree of estrous synchrony is low, a timed insemination reduces synchronized pregnancy rates.  相似文献   

3.
Angus (n=6), Brangus (5/8 Angus x 3/8 Brahman, n=6), and Brahman x Angus (3/8 Angus x 5/8 Brahman, n=6) heifers exhibiting estrous cycles at regular intervals were used to determine if the percentage of Bos indicus breeding influenced the secretory patterns of LH in response to a GnRH treatment on Day 6 of the estrous cycle. Heifers were pre-synchronized with a two-injection PGF(2 alpha) protocol (25 mg i.m. Day -14 and 12.5 mg i.m. Day -3 and -2 of experiment). Heifers received 100 microg GnRH i.m. on Day 6 of the subsequent estrous cycle. Blood samples were collected at -60, -30, and -1 min before GnRH and 15, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, and 480 min after GnRH to determine concentrations of serum LH. Estradiol concentrations were determined at -60, -30, and -1 min before GnRH. On Day 6 and 8, ovaries were examined by ultrasonography to determine if ovulation occurred. On Day 13, heifers received 25 mg PGF(2 alpha) i.m. and blood samples were collected daily until either the expression of estrus or Day 20 for heifers not exhibiting estrus to determine progesterone concentrations. There was no effect (P>0.10) of breed on ovulation rate to GnRH as well as size of the largest follicle, mean estradiol, and mean corpus luteum volume at GnRH. Mean LH was greater (P<0.05) for Angus (7.0+/-0.8 ng/mL) compared to Brangus (4.6+/-0.8 ng/mL) and Brahman x Angus (2.9+/-0.8 ng/mL), which were similar (P>0.10). Mean LH peak-height was similar (P>0.10) for Brangus (13.9+/-3.4 ng/mL) compared to Angus (21.9+/-3.4 ng/mL) and Brahman x Angus (8.0+/-3.4 ng/mL), but was greater (P<0.05) for Angus compared to Brahman x Angus. Interval from GnRH to LH peak was similar (P>0.10) between breeds. As the percentage of Bos indicus breeding increased the amount of LH released in response to GnRH on Day 6 of the estrous cycle decreased.  相似文献   

4.
Genetic, social and environmental factors affecting behavioral estrus were evaluated in Angus (n = 10), Brahman (n = 10) and Senepol (n = 10) cows during a PGF2alpha synchronized estrus and subsequent spontaneous estrus. Cows were equally stratified by breed to two groups of 15. Both groups were pre-synchronized with a modified two-injection PGF2alpha protocol. At the start of the experiment, cows were treated with 25 mg PGF2alpha followed by a second and third administration of 12.5 mg PGF2alpha, 11 and 12 days later to induce synchronized estrus. The subsequent estrus was designated as spontaneous estrus. Behavioral estrus data including the onset and end of estrus, estrous duration and the total number of mounts received for the synchronized and spontaneous estruses were collected using HeatWatch". Interval from the third PGF2alpha, treatment to the onset of a HeatWatch" estrus occurred earlier (P < 0.05) in Angus (31 +/- 5 h) than Brahman (53 +/- 7 h) or Senepol (53 +/- 4 h) cows, with dominant Senepol and Brahman cows taking longer to exhibit estrus after PGF2alpha than subordinate cows. The duration of the synchronized estrus tended to be shorter (P < 0.06) in Senepol (12 +/- 3 h) than in Angus (19 +/- 2 h) or Brahman (17 +/- 2 h) cows. Behavioral estrus data between the two periods were confounded by greater temperature-humidity index (THI) values during spontaneous estrus. The THI during spontaneous estrus appeared (P = 0.09) to affect the duration of estrus (9 +/- 1 h versus 16 +/- 1 h) and did affect (P < 0.0001) the total number of mounts received (8 +/- 4 mounts versus 34 +/- 4 mounts) during spontaneous estrus compared to synchronized estrus. Breed had no effect (P > 0.10) on the duration and total number of mounts received during synchronized and spontaneous estruses. In conclusion, type of estrus (synchronized or spontaneous), THI, social dominance and breed exerted significant effects on characteristics associated with behavioral estrus in beef cattle in subtropical environments.  相似文献   

5.
Twenty-two estrous cyclic, 2-yr-old Brahman heifers were randomly assigned to receive either estrus synchronization with Syncro-Mate-B((R)) (SMB; 11) or no treatment (Control; 11). Blood samples were collected via tail vessel puncture at onset of estrus and daily thereafter until Day 11 after estrus. Blood samples were also collected from five SMB and five Control heifers at 0, 4, 8 and 12 h after the onset of estrus. All samples were processed to yield serum and stored at -20 degrees C until radioimmunoassay. Heifers were inseminated by one technician using semen from a single ejaculate of a Brahman bull 12 h after the onset of estrus. All SMB heifers exhibited estrus within 72 h of implant removal. All heifers had corpora lutea (CL) detected by rectal examination 8 to 12 d following estrus. Serum luteinizing hormone (LH) was not affected by treatment, time (4 - h intervals) or an interaction of treatment by time (P > 0.10). Independent analysis with h indicated that at h 12, SMB (2.2 +/- 0.06 ng/ml) had lower LH than did control heifers (8.9 +/- 2.1 ng/ml). Serum progesterone increased from Day 1 through Day 12 in all heifers, which is indicative of functional CL. Serum progesterone was affected by treatment (P < 0.0001) and time (d intervals; P < 0.10). Progesterone elevation was lower (P < 0.05) and area under the progesterone curve was lower (P < 0.03) in SMB (5.6 +/- 0.5 ng/ml, 32.0 +/- 4.5 units, respectively) when compared with control heifers (7.0 +/- 4 ng/ml, 43.7 +/- 2.4 units, respectively). Conception rate was lower (P < 0.01) in SMB heifers (2 of 11) than in control heifers (8 of 11). The lowered conception rate in SMB treated Brahman heifers may be due to altered timing of LH release following estrus, resulting in an altered time of ovulation.  相似文献   

6.
Yearling beef heifers (n = 193) were used to evaluate reproductive performance attained with 2 MGA-PGF(2)alpha synchronization systems. These treatments were compared with an untreated control group. The 14-d MGA heifers were synchronized by feeding 0.5 mg MGA/h/d for 14 d. At 17 d after the last MGA feeding, these heifers were injected with PGF(2)alpha (25 mg, im). Heifers in the 7-d MGA treatment group were fed 0.5 mg MGA/h/d for 7 d and received a 25-mg, im injection of PGF(2)alpha on the last day of the MGA feeding period. Heifers in all 3 treatment groups were observed for estrus every 12 h for 7 d beginning 24 h after the PGF(2)alpha injection. Heifers observed in estrus during this 7-d period were artificially inseminated approximately 12 h after the onset of estrus. The percentages of heifers in estrus during the 7-d synchronized period were 75.4, 56.3 and 17.2% for the 14-d MGA, 7-d MGA and control groups, respectively. The estrous responses were significantly different in each treatment. The percentage of heifers in estrus during the peak 24-h period was higher (P < 0.05) in heifers synchronized with the 14-d MGA system than in heifers synchronized with the 7-d MGA system (75.5 vs 50.0%). The synchronized conception rate of the 14-d MGA heifers was significantly higher (65.3%) than that of both the 7-d MGA (41.7%) and control (45.4%) heifers. Synchronized conception rates were similar (P = 0.79) in the 7-d MGA and control treatments. Synchronized pregnancy rates were 55.2, 32.4 and 15.2% for the 14-d MGA, 7-d MGA and control groups, respectively. Both synchronization treatments resulted in significantly higher synchronized pregnancy rates compared with that of the controls. The synchronized pregnancy rate was higher (P < 0.05) in the 14-d MGA group than it was in the 7-d MGA group. The mean day of conception within the breeding season was 11.5 and 9.3 d shorter in the 14-d MGA heifers than in the 7-d MGA and control heifers, respectively. Our results indicate that using the 14-d MGA system to synchronize estrus in beef heifers results in better reproductive performance than that attained in heifers synchronized with the 7-d MGA system or in control heifers.  相似文献   

7.
Two trials involving 85 heifers and 67 cows were conducted to determine the effect of estrous cycle stage at the time of Syncro-Mate-B((R)) (SMB) treatment on interval to estrus following implant removal and on conception rate at the synchronized estrus. In Trial 1, 57 beef and 28 dairy heifers were treated with SMB on each representative day of a 22-d estrous cycle (estrus = Day 0). Beef heifers were artificially inseminated approximately 48 h after implant removal, whereas dairy heifers were inseminated 0 to 12 h after detection of estrus. Inseminations were scored by the inseminator according to their difficulty. Interval to the onset of estrus was not different between heifers treated early ( Day 11) in the cycle (35.2 +/- 7.2 h). Conception rate at the synchronized estrus was slightly higher in early-cycle heifers (22 47 = 47% ) compared to late-cycle heifers (14 38 = 37% , P = 0.2). Heifers that were difficult to inseminate had lower (P < 0.01) conception rates (2 11 = 18% ) at the synchronized estrus than heifers considered normal (21 51 = 41% ) or easier than normal to inseminate (13 23 = 57% ). In Trial 2, of the 131 beef cows synchronized, 67 that were estimated to be either early or late in the estrous cycle by progesterone analysis were utilized. Cows were treated with SMB and inseminated without regard to estrus 48-h after implant removal. Inseminations were scored as in Trial 1. Calves were separated from cows from the time of implant removal to insemination. Conception rate was higher (P < 0.05) in cows treated with SMB early ( Day 11, 16 35 = 46% ). Cows that were difficult to inseminate had a lower (P < 0.01) conception rate (0 8 = 0% ) than cows that were normal (43 94 = 46% ) or easier than normal to inseminate (13 29 = 45% ).  相似文献   

8.
Effect of timing of artificial insemination on gender ratio in beef cattle   总被引:3,自引:0,他引:3  
It was recently reported that cows inseminated at approximately 10 or 20 h before an expected ovulation deliver predominately a bull or heifer calf, respectively. The objective of this study was to further investigate the effect of timing of insemination on the gender of offspring in cattle. Angus heifers (n = 41) and cows (n = 98) were used in the study. Heifers were synchronized with a 16-d treatment of melengestrol acetate followed 17 d later with an injection of PGF2alpha. Cows were synchronized with GnRH followed 7 d later with PGF2alpha. A HeatWatch electronic estrus detection system was used to determine the onset of estrus. Based on previous studies, it was assumed that ovulation occurs approximately 32 h after the onset of estrus. Therefore, animals were artificially inseminated at either 8 to 10 h (early; > or = 20 h before expected ovulation) or 20 to 25 h (late; < or = 10 h before expected ovulation) after the onset of estrus. Sixty to 80 d after insemination, ultrasonography was used to confirm pregnancy status and to determine the gender of fetuses. Gender of calves was subsequently confirmed at calving. Data were analyzed for effects of time of insemination and sire or semen batch on gender ratio, as well as any effect of length and/or intensity of estrus on conception rate and gender ratio. Twenty-nine of 41 heifers and 69 of 98 cows were detected in estrus after synchronization and were inseminated; 20 of 29 heifers and 48 of 69 cows were subsequently confirmed pregnant. Neither the length of estrus nor its intensity (number of mounts) had an effect on pregnancy rate or gender ratio (P > or = 0.418). Timing of insemination (early versus late) had no effect on gender ratio (P = 0.887). Semen from 13 sires representing 17 lots was used to inseminate the cows and heifers. No differences (P = 0.494) were detected in the gender ratios resulting from different sires or semen batches. In contrast to previous findings, our results indicate that inseminating beef cattle at approximately 20 or 10 h before an expected ovulation does not alter the gender ratio of the resultant calves.  相似文献   

9.
Our objective was to determine whether extending the interval from 17 to 19 d between removal of melengestrol acetate (MGA) feed and administration of PGF2 alpha would alter conception rates, pregnancy rates and the degree of synchrony in replacement beef heifers. A commercial heifer operation in north-central Kansas purchased 591 Angus x Hereford heifers from 12 sources. Prior to the spring breeding season, 14% of the heifers were culled. The remaining heifers were assigned randomly to 2 MGA-PGF2 alpha synchronization systems. All heifers were fed MGA (0.5 mg/head/d) for 14 d, and PGF2 alpha was administered either 17 or 19 d after the completion of MGA feeding. Heifers were inseminated artificially for 30 d followed by 30 d of natural mating. Based on each source, first-service conception rates ranged from 66 to 90%, whereas overall pregnancy rates ranged from 91 to 100%. Heifers given PGF2 alpha on Day 17 after MGA had first-service conception rates of 75.9% compared with 81.4% for heifers receiving PGF2 alpha on Day 19. In response to the PGF2 alpha injection, 99% of the Day 19 heifers that were detected in estrus were inseminated artificially by 72 h after the PGF2 alpha injection, whereas 74% of the heifers in the Day 17 treatment were inseminated by that time. Average interval to artificial insemination (AI) after PGF2 alpha was greater (P < 0.01) for the Day 17 heifers (73.1 +/- 1.1 h) than for the Day 19 heifers (56.2 +/- 1.1 h). No differences in conception rates or overall pregnancy rates occurred; however, heifers receiving PGF2 alpha on Day 19 after MGA had shorter intervals to estrus, and a greater proportion was inseminated within 72 h after PGF2 alpha, thus possibly facilitating successful timed insemination of the remaining heifers not yet inseminated by that time.  相似文献   

10.
This study was designed to test the efficacy of melengestrol acetate (MGA) in combination with prostaglandin F(2alpha) (PGF(2alpha)) in synchronizing estrus in cyclic and noncyclic heifers. One hundred thirty-one cyclic and prepubertal crossbred heifers were randomly assigned to three treatment groups: Controls (n = 43); MGA (0.5 mg/d for 7 d) and PGF(2alpha) (25 mg i.m. on Day 7; n = 44); and PGF(2alpha) (25 mg i.m. on Day 7; n = 44). Observations for estrus were made at 6-n intervals throughout the 7-d treatment period followed by a 34-d artificial insemination breeding season. A greater percentage (P < 0.05) of MGA-PGF(2alpha) noncyclic heifers showed behavioral estrus (91%) than did Control (67%) or PGF(2alpha) heifers (61%) during the 34-d artificial insemination period. There was no difference (P > 0.05) between synchronization rates of the MGA-PGF(2alpha) heifers and PGF(2alpha) heifers 7 d after PGF(2alpha) administration. The percentage of control animals in estrus during the first 25 d of the breeding season did non differ from the synchronized rates of MGA-PGF(2alpha) and PGF(2alpha) heifers (P > 0.05). Conception rates (heifers pregnant/heifers inseminated) did not differ (P > 0.05) for cyclic or prepubertal heifers among Control, MGA-PGF(2alpha) or PGF(2alpha) heifers. Though conception rates did not differ, there was a trend toward lowered conception rates in MGA-PGF(2alpha) heifers.  相似文献   

11.
Two trials were conducted to evaluate the efficacy of short-term progestin administration to resynchronize the second estrus after artificial insemination in yearling beef heifers. In Trial 1 crossbred yearling heifers (n = 208) were synchronized with Syncro-Mate-B (SMB) and artificially inseminated (AI) between 48 and 54 h following implant removal. Implant removal is defined as Day 1. Following AI, the heifers were randomly assigned to 1 of 2 experimental groups. Group 1 heifers were fed melengestrol acetate (MGA) daily from Day 17 to 21 at a rate of 0.5 mg/head, while Group 2 control received no exogenous progestin during this period. Synchrony of estrus was defined as the 3-d period in which the highest number of heifers expressed behavioral estrus in each group. There was no difference (P < 0.05) in the pregnancy rate during the second estrus due to MGA supplementation. More MGA-treated heifers (P < 0.01) expressed estrus in a 3-d period than the controls. In Trial 2, yearling heifers (n = 108) were synchronized with 2 injections of PGF(2alpha) (second PGF(2alpha) injection is designated as Day 1) administered 14 d apart with AI 12 h after the onset of behavioral estrus. The heifers were then randomly assigned to 1 of the following 3 treatment groups after initial AI: 1) MGA fed at 0.5 mg/head daily from Days 17 to 21; 2) norgestomet administered in 6.0-mg implants from Days 17 to 21; 3) untreated control heifers. Blood samples were collected on Day 21 and analyzed for progesterone (P(4)). Elevated P(4) (> 1 ng/ml) on Day 21 indicated pregnancy to the first insemination. Synchrony among the 3 groups of heifers was similar (P > 0.10); however, the second estrus was less (P < 0.05) variable in the MGA and norgestomet treated heifers. During the resynchronized second estrus, conception rates were not affected by progestin treatment (MGA 40%, norgestomet 64%, and control 62%; P > 0.10). However, a proportion of heifers treated MGA 10% 4 36 and norgestomet 3% 1 36 expressed behavioral estrus during second estrus even though they were diagnosed as pregnant from first service by elevated P(4) levels on Day 21. We conclude that short-term use of progestin from Days 17 to 21 following AI causes closer synchrony of estrus; however, inseminating pregnant heifers that exhibit behavioral estrus may cause abortion.  相似文献   

12.
The influence of interval between insemination (AI) and estrus on subsequent fertility of PGF(2alpha)-treated (two injections of 25 mg, 11 days apart) heifers was assessed in two experiments. In Experiment I, 240 heifers were allotted to Control (AI 8 to 16 hr after estrus detection), PGF(2alpha)-E (AI 8 to 16 hr after estrus within five days of second PGF(2alpha)) or PGF(2alpha)-T (AI 80 hr after second PGF(2alpha)). In Experiment II, 130 heifers were assigned to control (AI as before) or PGF(2alpha) (AI 72 or 80 hr after second PGF(2alpha)) with half the PGF(2alpha) heifers receiving 100 mug GnRH 72 hr after first PGF(2alpha). Heifers of both experiments that were bred at a predetermined time were arrayed by interval from AI to estrus. Conception rates of heifers detected in estrus from 32 hr before AI to 24 hr after AI did not differ (x(2)=3.35, df=5, P>0.5). The percentage of GnRH-treated heifers in estrus within five days (81.8%) was not (P>0.75) greater than those not receiving GnRH (77.3%) but they had higher (P<0.05) serum progesterone (P(4)) concentration at second PGF(2alpha) (3.17 vs 2.41 ng/ml). When P(4) values were arrayed for both groups at 1 ng intervals, the percentage of heifers exhibiting estrus increased with increasing P(4) level (P<0.05).  相似文献   

13.
Two experiments evaluated a modified delivery of prostaglandin F2alpha (PGF2alpha) after a melengestrol acetate (MGA) treatment in Angus and Bos indicus x Bos taurus (BI) heifers. Experiment 1 was replicated three times with yearling BI heifers (n = 695). Heifers received MGA (0.5 mg head(-1) day(-1)) for 14 days. In Replications 1 and 2, heifers received either 25 mg of PGF2alpha im 19 days after MGA (single) or 12.5 mg of PGF2alpha im 19 and 20 days after MGA (split). In Replication 3, heifers received the same treatments, with PGF2alpha initiated either 18 or 19 days after MGA. Estrus was detected for 72 h after PGF2alpha, with AI commencing 8-12 h after a detected estrus. Heifers not observed in estrus by 72 h were timed-AI concomitant with GnRH (100 microg im). Heifers from Replication 2 (n = 146) had blood samples collected at the initial PGF2alpha and at timed-AI to determine corpus luteum (CL) regression by evaluating plasma progesterone concentrations. The interval from MGA withdrawal to PGF2alpha did not have a significant effect on any variable in Replication 3 and there were no treatment by replication effects for any variables, therefore data were pooled. Modifying the PGF2alpha treatment from a single treatment to two treatments on consecutive days increased (P < 0.05) 72 h estrous response (43.2% versus 50.1%), timed-AI (23.9% versus 33.5%) and total-AI pregnancy rates (34.5% versus 42.5%), and CL regression (79.1% versus 92.5%), respectively. In Experiment 2, yearling Angus (n = 66) and 2-year-old BI (n = 68) heifers were synchronized as per Experiment 1 (with the initial PGF2alpha 19 days after MGA). Neither breed nor PGF2alpha treatment effected (P > 0.05) 72 h estrous response, total-AI pregnancy rate, or CL regression rate. In conclusion, treating yearling BI heifers with split treatments of PGF2alpha (given on two consecutive days) improved estrous response and pregnancy rates by increasing PGF2alpha-induced luteolysis.  相似文献   

14.
Following observation of estrus, 134 Holstein heifers were given injections of Prostaglandin F(2)alpha (PGF(2)alpha) between Days 5 and 10 of their cycle (estrus = Day 0). They were then randomly assigned to either a group receiving 400 mug of estradiol benzoate (E(2)B) 40 h or maintained as controls. Heifers observed in estrus within 120 h of PGF(2)alpha administration were inseminated (approximately 12 h after initial observation of estrus). Blood samples for progesterone determination were drawn from the coccygeal vein on Days 15 and 21 after insemination. Pregnancy was confirmed by palpation per rectum between Days 5.0 and 60 post insemination. When control and treated heifers were compared it was found that a higher percentage of heifers treated with E(2)B exhibited estrus after PGF(2)alpha, but there had been no effect on subsequent progesterone concentrations or pregnancy rates.  相似文献   

15.
Following detection of estrus in an estrus synchronization system, 216 dairy heifers were inseminated (A.I.) randomly either soon after detected estrus (1X) or soon after detected estrus and again 10 to 12 h later (2X). Average h from detection of estrus to A.I. was 1.8+/-0 for 1X and 1.1+/-0 and 11.1+/-0.4 for 2X. During the regimen, heifers were checked visually for estrus daily for five consecutive days with 16.0 and 17.3% showing estrus and receiving A.I. in the 1X and 2X groups, respectively. Those not seen in estrus were injected with 25 mg PGF(2)alpha with observations for estrus and A.I. continuing for five more days. Response rates as indicated by estrus following prostaglandin F(2)alpha (PGF(2)alpha) were 74.7 and 75.8% for 1X and 2X, respectively. Percentages of heifers in estrus <24, 25 to 48, 49 to 72, 73 to 96 and >96 h after PGF(2)alpha were 3.7, 22.8, 47.1, 15.4 and 11.0, respectively. Based on rectal palpation for pregnancy between 45 and 60 days after A.I., conception rates of 70.2% for 1X and 68.6% for 2X did not differ significantly (P>0.05). Progesterone concentrations at injection for heifers not responding to PGF(2)alpha were lower than was seen in responding heifers (2.7 vs 5.8 ng/ml) (P<0.01). Data from the present experiment supports the conclusion of an earlier experiment that satisfactory conception can be achieved with a single, established daily insemination period.  相似文献   

16.
Three hundred and ten yearling heifers of various breeds were used in five trials to compare two estrus synchronization treatments. Treatment 1 consisted of Melengestrol Acetate-Prostaglandin F(2)alpha (MGA-PGF(2)alpha). Heifers were fed 0.5 mg MGA/head/d for 14 to 16 d. Sixteen or 17 d after the final MGA feeding, heifers were injected i.m. with 25 mg PGF(2)alpha. Treatment 2 consisted of Syncro-Mate B (SMB). Heifers were given a 9-d norgestomet implant plus an injection containing 3 mg norgestomet and 5 mg estradiol valerate i.m. at implant insertion. Heifers were observed for estrus at 6-h intervals for 120 h after the end of treatments and were artificially inseminated 12 to 18 h after observed estrus. Heifers synchronized with MGA-PGF(2)alpha and SMB had a similar (P > 0.10) estrous response (83.4 vs 90.2%) and a similar (P > 0.10) degree of synchrony (71.8 vs 79.0%) following treatment. However, the synchronized conception rate (68.7 vs 40.6%) and the synchronized pregnancy rate (57.3 vs 36.6%) were higher (P < 0.01) in MGA-PGF(2)alpha than SMB heifers. Breeding season pregnancy rates were similar in both treatment groups. Heifers in both groups that were classified as cycling prior to initiation of treatment had improved reproductive performance following synchronization compared with those classified as noncycling. Based on higher synchronized conception and pregnancy rates and lower labor requirements and drug costs, the MGA-PGF(2)alpha system appears to be a better method to synchronize estrus in beef heifers than the SMB system.  相似文献   

17.
The objective was to improve pregnancy per artificial insemination (P/AI; 35-42 d after AI) in virgin Jersey heifers bred by AI of sex-sorted semen after being detected in estrus. Giving 100 μg of GnRH at first detection of estrus, with AI 12 h later, did not affect P/AI in Experiment I [GnRH = 47.2% (100/212) vs. No GnRH = 51.7% (104/201); P = 0.38] or Experiment II [GnRH = 53.1% (137/258) vs. No GnRH = 48.6% (122/251); P = 0.43]. In these two experiments, estrus detection was done with tail-head chalk or a HeatWatch® system, respectively. In Experiment III, a single insemination dose (2.1 × 106 sperm) 12 h after estrus detection (n = 193), a double dose at 12 h (n = 193), or a double dose involving insemination 12 and 24 h after estrus detection (n = 190) did not affect P/AI (87/193 = 45.1%, 85/193 = 44.0%, and 94/190 = 49.5%, respectively; P = 0.51). However, P/AI was influenced by the number of AI service (First, 115/208 = 55.3%a; Second, 94/204 = 46.1%a; and Third, 57/165 = 34.8%b; P = 0.004). In Experiment IV, the P/AI of heifers inseminated from 12 to 16 h after the onset of estrus (40/106 = 37.7%) was less (P = 0.03) than those inseminated from 16.1 to 20 h (85/164 = 51.8%), and 20.1 to 24 h (130/234 = 55.6%). However, the P/AI for heifers inseminated from 24.1 to 30 h (61/134 = 45.5%) did not differ from that of any other interval. In conclusion, in Jersey heifers inseminated with sex-sorted semen, P/AI was not significantly affected by giving GnRH at detection of estrus or a double insemination dose, but it was higher with AI 16.1 to 24 h vs. 12 to 16 h after the onset of estrus.  相似文献   

18.
The objective was to synchronize follicular wave emergence among cattle for synchronization of estrus and ovulation, and to determine pregnancy rate after AI at observed estrus. At random stages of the estrous cycle, a controlled internal drug release device (CIDR-B) was inserted intravaginally (Day 0) in 67 cross-bred beef heifers, and they were randomly allocated to receive either no further treatment (Control; n = 18); 5 mg of estradiol-17beta and 100 mg of progesterone im (E/P; n = 16); 100 microg im of GnRH (GnRH; n = 16); or transvaginal ultrasound-guided follicular ablation of all follicles > or = 5 mm (FA; n = 17). All heifers received a luteolytic dose of PGF (repeated 12 h later), and CIDR-B were removed on Days 9, 8, 6 or 5, in Control, E/P, GnRH or FA groups, respectively, so the dominant follicle of the induced wave was exposed to exogenous progesterone for a similar period of time in each group. Mean (+/- SEM) intervals (and range, in days) from treatment to follicular wave emergence in these groups were 3.5 +/- 0.6 (-2 to 8), 3.4 +/- 0.1 (3 to 4), 1.5 +/- 0.3 (-1 to 4), and 1.0 +/- 0.1 (0 to 2), respectively. Although the interval was longest (P<0.01) in the E/P and Control groups, it was least variable (P<0.01) in the E/P and FA groups. Intervals (and range, in days) from CIDR-B removal (and first PGF treatment) to estrus were 2.3 +/- 0.2 (1.5 to 4.5), 2.2 +/- 0.2 (1.5 to 3.0), 2.1 +/- 0.1,(1.5 to 3.5), and 2.5 +/- 0.1 (2.0 to 3.5), and to ovulation were 3.5 +/- 0.2 (2.5 to 5.5), 3.4 +/- 0.1 (3.0 to 4.5), 3.5 +/- 0.1 (2.5 to 4.5), and 3.8 +/- 0.1 (3.0 to 4.5), for Control, E/P, GnRH and FA groups, respectively (ns). The proportion of heifers displaying estrus was higher in the Control than in the FA group (94% versus 65%, P<0.05) and intermediate in EP and GnRH groups (87% and 75%). Heifers were inseminated approximately 12 h prior to ovulation (based on estrous behavior and ultrasound examinations). Pregnancy rates were 78%, 80%, 69% and 65% for Control, E/P, GnRH and FA groups, respectively (P=0.73). Results support the hypothesis that synchronous follicular wave emergence results in synchronous follicle development and, following progesterone removal, synchronous estrus and ovulation with high pregnancy rates to AI. The synchrony of estrus and ovulation in the E/P, GnRH and FA groups suggest that these treatments, in combination with CIDR-B, could be adapted to fixed-time insemination programs.  相似文献   

19.
Beef females (547) were included in three experiments to evaluate methods of identifying and inseminating nonpregnant beef females after synchronization of second estrus with norgestomet implants. In the first experiment, heifers not pregnant to the first insemination were identified for insemination via estrus (inseminated via the a.m./p.m. rule or 48 h after implant removal). In the second experiment, females not pregnant to the first insemination were identified for insemination via estrus (inseminated via the a.m./p.m. rule) or progesterone concentrations < 1.5 ng/mL at implant removal (inseminated 48 h after implant removal). In the third experiment, heifers not pregnant to the first insemination were identified for insemination via progesterone concentrations (as in experiment 2) or anterior vagina electrical resistance values < 81 ohm resistance 48 h after implant removal (inseminated after resistance measured). All methods of identifying and inseminating nonpregnant females were equally effective (P > 0.10) and did not effect (P > 0.10) calving rates from the first and second AI.  相似文献   

20.
Efficiency in reference to pregnancy rates of breeding beef bulls with estrus synchronized cows and heifers was tested. Most bulls (104 of 112) were given a breeding soundness examination and two 10-min libido/serving capacity tests. Females received either Syncro-Mate-B (SMB) or two injections of Prostaglandin F(2)alpha (PGF) to synchronize estrus. They were assigned to single-sire breeding groups with bull-to-female ratios ranging from 1:7 to 1:51. Control groups consisted of untreated females maintained in single-sire breeding pastures with ratios from 1:24 to 1:37. Continuous observations of sexual activity were made for 30 h (SMB) and 48 h (PGF). After the 120-h posttreatment breeding period, females were placed in breeding pastures. During the synchronized breeding period the percentage of pregnant cattle of total treated was 43.5 +/- 1.7% compared (P < 0.01) with 58.9 +/- 3.3% for the control group after 23 d of breeding. At end of 28-d (treated) and 46-d (control) period, the percentage of pregnant females was 75.0 +/- 2.4 and 79.6 +/- 4.7, respectively (P > 0.05). In SMB trials, the percentages of females exhibiting estrus, those serviced at estrus and those pregnant following service during the synchronized breeding period were 90.8 +/- 1.5, 73.3 +/- 4.5 and 56.4 +/- 5.6%, respectively. In PGF trials, the means for these same factors were 78.3 +/- 2.4, 70.4 +/- 5.9 and 56.1 +/- 6.5%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号