首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liao M  Kielian M 《Journal of virology》2006,80(19):9599-9607
The E1 envelope protein of the alphavirus Semliki Forest virus (SFV) is a class II fusion protein that mediates low pH-triggered membrane fusion during virus infection. Like other class I and class II fusion proteins, during fusion E1 inserts into the target membrane and rearranges to form a trimeric hairpin structure. The postfusion structures of the alphavirus and flavivirus fusion proteins suggest that the "stem" region connecting the fusion protein domain III to the transmembrane domain interacts along the trimer core during the low pH-induced conformational change. However, the location of the E1 stem in the SFV particle and its rearrangement and functional importance during fusion are not known. We developed site-directed polyclonal antibodies to the N- or C-terminal regions of the SFV E1 stem and used them to study the stem during fusion. The E1 stem was hidden on neutral pH virus but became accessible after low pH-triggered dissociation of the E2/E1 heterodimer. The stem packed onto the trimer core in the postfusion conformation and became inaccessible to antibody binding. Generation of the E1 homotrimer on fusion-incompetent membranes identified an intermediate conformation in which domain III had folded back but stem packing was incomplete. Our data suggest that E1 hairpin formation occurs by the sequential packing of domain III and the stem onto the trimer core and indicate a tight correlation between stem packing and membrane merger.  相似文献   

2.
A prevailing model for virus membrane fusion proteins has been that the hydrophobic fusion peptide is hidden in the prefusion conformation, becomes exposed once the fusion reaction is triggered, and then either inserts into target membranes or is rapidly inactivated. This model is in general agreement with the structure and mechanism of class I fusion proteins, such as the influenza virus hemagglutinin. We here describe studies of the class II fusion protein E1 from the alphavirus Semliki Forest virus (SFV). SFV fusion is triggered by low pH, which releases E1 from its heterodimeric interaction with the E2 protein and induces the formation of a stable E1 homotrimer. The exposure and target membrane interaction of the E1 fusion peptide (residues 83 to 100) were followed using a monoclonal antibody (MAb E1f) mapping to E1 residues 85 to 95. In agreement with the known structure of SFV and other alphaviruses, the fusion peptide was shielded in native SFV particles and exposed when E1-E2 dimer dissociation was triggered by acidic pH. In contrast, the fusion peptide on purified E1 ectodomains (E1(*)) was fully accessible at neutral pH. Functional assays showed that MAb E1f binding at neutral pH prevented subsequent low-pH-triggered E1(*) interaction with target membranes and trimerization. E1(*) was not inactivated by low pH when treated either in the absence of target membranes or in the presence of fusion-inactive cholesterol-deficient liposomes. Thus, the membrane insertion of the E1 fusion peptide is regulated by additional low-pH-dependent steps after exposure, perhaps involving an E1-cholesterol interaction.  相似文献   

3.
Enveloped viruses enter cells via a membrane fusion reaction driven by conformational changes of specific viral envelope proteins. We report here the structure of the ectodomain of the tick-borne encephalitis virus envelope glycoprotein, E, a prototypical class II fusion protein, in its trimeric low-pH-induced conformation. We show that, in the conformational transition, the three domains of the neutral-pH form are maintained but their relative orientation is altered. Similar to the postfusion class I proteins, the subunits rearrange such that the fusion peptide loops cluster at one end of an elongated molecule and the C-terminal segments, connecting to the viral transmembrane region, run along the sides of the trimer pointing toward the fusion peptide loops. Comparison with the low-pH-induced form of the alphavirus class II fusion protein reveals striking differences at the end of the molecule bearing the fusion peptides, suggesting an important conformational effect of the missing membrane connecting segment.  相似文献   

4.
The alphavirus Semliki Forest virus (SFV) infects cells through low-pH-induced membrane fusion mediated by the E1 protein, a class II virus membrane fusion protein. During fusion, E1 inserts into target membranes via its hydrophobic fusion loop and refolds to form a stable E1 homotrimer. Mutation of a highly conserved histidine (the H230A mutation) within a loop adjacent to the fusion loop was previously shown to block SFV fusion and infection, although the mutant E1 protein still inserts into target membranes and forms a homotrimer. Here we report on second-site mutations in E1 that rescue the H230A mutant. These mutations were located in a cluster within the hinge region, at the membrane-interacting tip, and within the groove where the E1 stem is believed to pack. Together the revertants reveal specific and interconnected aspects of the fusion protein refolding reaction.  相似文献   

5.
Liao M  Kielian M 《Journal of virology》2006,80(22):11362-11369
Membrane fusion of the alphaviruses is mediated by the E1 protein, a class II virus membrane fusion protein. During fusion, E1 dissociates from its heterodimer interaction with the E2 protein and forms a target membrane-inserted E1 homotrimer. The structure of the homotrimer is that of a trimeric hairpin in which E1 domain III and the stem region fold back toward the target membrane-inserted fusion peptide loop. The E1 stem region has a strictly conserved length and several highly conserved residues, suggesting the possibility of specific stem interactions along the trimer core and an important role in driving membrane fusion. Mutagenesis studies of the alphavirus Semliki Forest virus (SFV) here demonstrated that there was a strong requirement for the E1 stem in virus assembly and budding, probably reflecting its importance in lateral interactions of the envelope proteins. Surprisingly, however, neither the conserved length nor any specific residues of the stem were required for membrane fusion. Although the highest fusion activity was observed with wild-type E1, efficient fusion was mediated by stem mutants containing a variety of substitutions or deletions. A minimal stem length was required but could be conferred by a series of alanine residues. The lack of a specific stem sequence requirement during SFV fusion suggests that the interaction of domain III with the trimer core can provide sufficient driving force to mediate membrane merger.  相似文献   

6.
Alphaviruses are small enveloped RNA viruses that include important emerging human pathogens, such as chikungunya virus (CHIKV). These viruses infect cells via a low-pH-triggered membrane fusion reaction, making this step a potential target for antiviral therapies. The E1 fusion protein inserts into the target membrane, trimerizes, and refolds to a hairpin-like conformation in which the combination of E1 domain III (DIII) and the stem region (DIII-stem) pack against a core trimer composed of E1 domains I and II (DI/II). Addition of exogenous DIII proteins from Semliki Forest virus (SFV) has been shown to inhibit E1 hairpin formation and SFV fusion and infection. Here we produced and characterized DIII and DI/II proteins from CHIKV and SFV. Unlike SFV DIII, both core trimer binding and fusion inhibition by CHIKV DIII required the stem region. CHIKV DIII-stem and SFV DIII-stem showed efficient cross-inhibition of SFV, Sindbis virus, and CHIKV infections. We developed a fluorescence anisotropy-based assay for the binding of SFV DIII-stem to the core trimer and used it to demonstrate the relatively high affinity of this interaction (Kd [dissociation constant], ∼85 nM) and the importance of the stem region. Together, our results support the conserved nature of the key contacts of DIII-stem in the alphavirus E1 homotrimer and describe a sensitive and quantitative in vitro assay for this step in fusion protein refolding.  相似文献   

7.
Rubella virus (RuV) infection of pregnant women can cause fetal death, miscarriage, or severe fetal malformations, and remains a significant health problem in much of the underdeveloped world. RuV is a small enveloped RNA virus that infects target cells by receptor-mediated endocytosis and low pH-dependent membrane fusion. The structure of the RuV E1 fusion protein was recently solved in its postfusion conformation. RuV E1 is a member of the class II fusion proteins and is structurally related to the alphavirus and flavivirus fusion proteins. Unlike the other known class II fusion proteins, however, RuV E1 contains two fusion loops, with a metal ion complexed between them by the polar residues N88 and D136. Here we demonstrated that RuV infection specifically requires Ca2+ during virus entry. Other tested cations did not substitute. Ca2+ was not required for virus binding to cell surface receptors, endocytic uptake, or formation of the low pH-dependent E1 homotrimer. However, Ca2+ was required for low pH-triggered E1 liposome insertion, virus fusion and infection. Alanine substitution of N88 or D136 was lethal. While the mutant viruses were efficiently assembled and endocytosed by host cells, E1-membrane insertion and fusion were specifically blocked. Together our data indicate that RuV E1 is the first example of a Ca2+-dependent viral fusion protein and has a unique membrane interaction mechanism.  相似文献   

8.
The alphavirus Semliki Forest virus (SFV) and a number of other enveloped animal viruses infect cells via a membrane fusion reaction triggered by the low pH within endocytic vesicles. In addition to having a low pH requirement, SFV fusion and infection are also strictly dependent on the presence of cholesterol in the host cell membrane. A number of conformational changes in the SFV spike protein occur following low-pH treatment, including dissociation of the E1-E2 dimer, conformational changes in the E1 and E2 subunits, and oligomerization of E1 to a homotrimer. To allow the ordering of these events, we have compared the kinetics of these conformational changes with those of fusion, using pH treatment near the fusion threshold and low-temperature incubation to slow the fusion reaction. Dimer dissociation, the E1 conformational change, and E1 trimerization all occur prior to the mixing of virus and cell membranes. Studies of cells incubated at 20 degrees C showed that as with virus fusion, E1 trimerization occurred in the endosome before transport to lysosomes. However, unlike the strictly cholesterol-dependent membrane fusion reaction, the E1 homotrimer was produced in vivo during virus uptake by cholesterol-depleted cells or in vitro by low-pH treatment of virus in the presence of artificial liposomes with or without cholesterol. Purified, lipid-free spike protein rosettes were assayed to determine the requirement for virus membrane cholesterol in E1 homotrimer formation. Spike protein rosettes were found to undergo E1 oligomerization upon exposure to low pH and target liposomes and showed an enhancement of oligomerization with cholesterol-containing membranes. The E1 homotrimer may represent a perfusion complex that requires cholesterol to carry out the final coalescence of the viral and target membranes.  相似文献   

9.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by the acidic pH of endosomes. In response to low pH, the E1 proteins on the virus membrane undergo a series of conformational changes, resulting in the formation of a stable E1 homotrimer. Little is known about the structural basis of either the E1 conformational changes or the resulting homotrimer or about the mechanism of action of the homotrimer in fusion. Here, the E1 homotrimer was formed in vitro from either virus or soluble E1 ectodomain and then probed by various perturbants, proteases, or glycosidase. The preformed homotrimer was extremely stable to moderately harsh conditions and proteases. By contrast, mild reducing conditions selectively disrupted the N-terminal region of trimeric E1, making it accessible to proteolytic cleavage and producing E1 fragments that retained trimer interactions. Trypsin digestion produced a fragment missing a portion of the N terminus just proximal to the putative fusion peptide. Digestion with elastase produced several fragments with cleavage sites between residues 78 and 102, resulting in the loss of the putative fusion peptide and the release of membrane-bound E1 ectodomain as a soluble trimer. Elastase also cleaved the homotrimer within an E1 loop located near the fusion peptide in the native E1 structure. Mass spectrometry was used to map the C termini of several differentially produced and fully functional E1 ectodomains. Together, our data identify two separate regions of the SFV E1 ectodomain, one responsible for target membrane association and one necessary for trimer interactions.  相似文献   

10.
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered membrane fusion reaction mediated by the E1 protein. E1 is a class II fusion protein that contains the hydrophobic fusion peptide loop and converts to a stable homotrimer during the fusion reaction. Intriguingly, the fusion loop is closely associated with a loop connecting the i and j beta-strands. This ij loop plays a role in the cholesterol dependence of membrane fusion and is specifically susceptible to proteolysis in the protease-resistant E1 homotrimer. The SFV ij loop contains a histidine residue at position 230. Sequence comparisons revealed that an analogous histidine is completely conserved in all alphavirus and flavivirus fusion proteins. An E1 H230A mutant was constructed using the SFV infectious clone. Although cells infected with H230A RNA produced virus particles, these virions were completely noninfectious and were blocked in both cell-cell fusion and lipid mixing assays. The H230A virions efficiently bound to cell surface receptors and responded to low pH by undergoing acid-dependent conformational changes including dissociation of the E1/E2 dimer, exposure of the fusion loop, association with target liposomes, exposure of acid-conformation-specific epitopes, and formation of the stable E1 homotrimer. Studies with a soluble fragment of E1 showed that the mutant protein was defective in lipid-dependent conformational changes. Our results indicate that the E1 ij loop and the conserved H230 residue play a critical role in alphavirus-membrane fusion and suggest the presence of a previously undescribed late intermediate in the fusion reaction.  相似文献   

11.
Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell-cell fusion (G91A), or block cell-cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell- cell and virus-liposome fusion assays. During the low pH- induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer.  相似文献   

12.
A central event in the invasion of a host cell by an enveloped virus is the fusion of viral and cell membranes. For many viruses, membrane fusion is driven by specific viral surface proteins that undergo large-scale conformational rearrangements, triggered by exposure to low pH in the endosome upon internalization. Here, we present evidence suggesting that in both class I (helical hairpin proteins) and class II (beta-structure-rich proteins) pH-dependent fusion proteins the protonation of specific histidine residues triggers fusion via an analogous molecular mechanism. These histidines are located in the vicinity of positively charged residues in the prefusion conformation, and they subsequently form salt bridges with negatively charged residues in the postfusion conformation. The molecular surfaces involved in the corresponding structural rearrangements leading to fusion are highly conserved and thus might provide a suitable common target for the design of antivirals, which could be active against a diverse range of pathogenic viruses.  相似文献   

13.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells by a low-pH-triggered membrane fusion reaction mediated by the viral E1 protein. E1 inserts into target membranes and refolds to a hairpin-like homotrimer containing a central core trimer and an outer layer composed of domain III and the juxtamembrane stem region. The key residues involved in mediating E1 trimerization are not well understood. We recently showed that aspartate 188 in the interface of the core trimer plays a critical role. Substitution with lysine (D188K) blocks formation of the core trimer and E1 trimerization and strongly inhibits virus fusion and infection. Here, we have isolated and characterized revertants that rescued the fusion and growth defects of D188K. These revertants included pseudorevertants containing acidic or polar neutral residues at E1 position 188 and a second-site revertant containing an E1 K176T mutation. Computational analysis using multiconformation continuum electrostatics revealed an important interaction bridging D188 of one chain with K176 of the adjacent chain in the core trimer. E1 K176 is completely conserved among the alphaviruses, and mutations of K176 to threonine (K176T) or isoleucine (K176I) produced similar fusion phenotypes as D188 mutants. Together, our data support a model in which a ring of three salt bridges formed by D188 and K176 stabilize the core trimer, a key intermediate of the alphavirus fusion protein.Enveloped viruses contain a phospholipid bilayer that surrounds and protects the viral genome until fusion of the virus and host membranes delivers the genome into the cytoplasm. Fusion is mediated by transmembrane fusion proteins in the virus envelope. Viruses have evolved specific mechanisms to trigger membrane fusion upon interaction with the host cell (15, 42). For example, the fusion protein of the human immunodeficiency virus is triggered by receptor and coreceptor binding, while alphaviruses such as Semliki Forest virus (SFV) and flaviviruses such as dengue virus are triggered by exposure to acidic pH. The fusion trigger initiates the conversion of the fusion protein from the metastable prefusion state to the more energetically stable postfusion state (14, 15). The energy released during the refolding of the membrane fusion protein drives the merger of the viral and host membranes.Alphaviruses take advantage of the low-pH environment of the endocytic pathway to trigger membrane fusion during entry (37). E1 is the fusion protein and forms heterodimers with the E2 protein on the virus surface. These heterodimers are organized into trimers (E2/E1)3 to form the icosahedral glycoprotein shell (21, 30, 43). Alphaviruses bind to cell surface receptors and are internalized by clathrin-mediated endocytosis and delivered to endosomes (16). Here, low pH induces E1/E2 heterodimer dissociation, E1 insertion into endosomal membranes, and the refolding of E1 to the final postfusion homotrimer conformation (16, 37). The resultant membrane fusion releases the viral RNA genome into the cytoplasm to initiate virus replication. During replication the envelope glycoproteins are translated in the endoplasmic reticulum (ER), processed through the cellular secretory pathway, and delivered to the plasma membrane, where budding of virus particles occurs (20).The alphavirus membrane fusion protein E1 and the flavivirus membrane fusion protein E are structurally related. These proteins are often referred to as class II fusion proteins to distinguish them from the class I proteins (exemplified by influenza hemagglutinin [HA] and HIV gp41) and the class III proteins (exemplified by vesicular stomatitis virus G and baculovirus gp64) (reviewed in references 15, 19, and 42). Class II fusion proteins such as the SFV E1 protein are composed almost exclusively of β-sheets organized into three domains (DI to DIII) (22, 35). There is a central DI that connects to the elongated DII containing the hydrophobic fusion loop at the tip. The other side of DI connects to DIII, followed by the stem and transmembrane domain that anchors the protein to the viral membrane. Unlike the class I and class III proteins, the alphavirus and flavivirus fusion proteins are dimers in the prefusion state and homotrimers in the postfusion state. During the prefusion to postfusion transition, DIII moves approximately 37 Å toward the target membrane-inserted fusion loop. The resulting hairpin-like conformation brings the viral and host membranes together to mediate membrane fusion (4, 13, 31) (see Fig. Fig.11 for the SFV E1 homotrimer structure).Open in a separate windowFIG. 1.Location of revertants in the E1 trimer. (A) The crystal structure of the postfusion E1* homotrimer (PDB entry 1RER) is shown with two chains in light gray and one chain colored as follows: DI in red, DII in yellow, DIII in blue, the fusion loop in green, the DI-DIII linker in black, and the N-terminal region of the stem in purple. The C-terminal stem connects to the transmembrane domain (neither of these is present in the crystal structure). The E1 residues discussed in this work are labeled and are represented as sticks highlighted with colors for clarity. D188 on the g-h loop in DII is shown in cyan, K176 on the DII β-strand f is in pink, and P14 on the DI β-strand C0 is in orange. (B) A view of the central trimer interface (fusion loops pointing toward the viewer) showing the positions of D188 and K176 in the crystal structure, with colors as in panel A but with oxygen shown in red and nitrogen in blue on the stick structures. A holmium atom (not shown) is coordinated by the three inwardly pointing D188 residues. This figure was prepared using PyMol (9).Alphavirus membrane fusion is a necessary step for virus infection and occurs rapidly and efficiently with a threshold pH of ∼6.2 (reviewed in reference 16). Mutations that block trimerization prevent virus fusion and infection (18, 29). Similarly, chemical inhibition of trimerization inhibits fusion in a virus-liposome system (8). Fusion and infection are also specifically inhibited by the addition of exogenous DIII, which binds a trimeric intermediate of E1 and prevents fold-back of endogenous DIII and formation of the final postfusion trimer (25).Although formation of the E1 homotrimer is crucial to membrane fusion, little is known about the residues that regulate the overall process and steps of trimerization. The dramatic effects of local environment on the pKa of ionizable residues make it difficult to predict the key players that initiate and drive E1 refolding, despite the fact that it takes place in a physiological window between pH values of ∼5 and 7 (37). The postfusion structures of E1 and E show that DI and DII comprise the central region of the trimer and that DIII and the stem pack against this core to form the outer layer of the trimer (4, 13, 31). It was recently shown that a truncated version of SFV E1 containing only DI and DII forms a stable core trimer with biochemical features similar to those of the full-length trimer (38). This result suggests that important interactions exist within the alphavirus core trimer.Inspection of the E1 postfusion structure identified a conserved aspartate residue, D188, located in the central trimer interface. This residue was shown to play an important role in the initial events of trimerization (29). Mutation of D188 to lysine (D188K) blocks virus fusion and infection and prevents stable trimers from forming while having no effect on E2/E1 heterodimer dissociation or E1 membrane insertion. Here, we have selected and characterized viable revertants of the D188K mutant and used them to identify an important interaction of D188 with a lysine residue on the adjoining E1 chain. This ring of salt bridges acts to stabilize the E1 core trimer and helps to drive formation of an extended trimer intermediate.(The data in this paper are from a thesis to be submitted by C. Y. Liu in partial fulfillment of the requirements for a Ph.D. in the Graduate Division of Medical Sciences, Albert Einstein College of Medicine, Yeshiva University, New York, NY.)  相似文献   

14.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   

15.
Alphaviruses and flaviviruses infect cells through low pH-dependent membrane fusion reactions mediated by their structurally similar viral fusion proteins. During fusion, these class II viral fusion proteins trimerize and refold to form hairpin-like structures, with the domain III and stem regions folded back toward the target membrane-inserted fusion peptides. We demonstrate that exogenous domain III can function as a dominant-negative inhibitor of alphavirus and flavivirus membrane fusion and infection. Domain III binds stably to the fusion protein, thus preventing the foldback reaction and blocking the lipid mixing step of fusion. Our data reveal the existence of a relatively long-lived core trimer intermediate with which domain III interacts to initiate membrane fusion. These novel inhibitors of the class II fusion proteins show cross-inhibition within the virus genus and suggest that the domain III-core trimer interaction can serve as a new target for the development of antiviral reagents.  相似文献   

16.
Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E) mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion.  相似文献   

17.
Flavivirus membrane fusion is triggered by acidic pH and mediated by the major envelope protein E. A structurally very similar fusion protein is found in alphaviruses, and these molecules are designated class II viral fusion proteins. In contrast to that of flaviviruses, however, alphavirus fusion has been shown to be absolutely dependent on the presence of cholesterol and sphingomyelin in the target membrane, suggesting significant differences in the fusion protein-membrane interactions that lead to fusion. With the flavivirus tick-borne encephalitis virus (TBEV), we have therefore conducted a study on the lipid requirements of viral fusion with liposomes and on the processes preceding fusion, specifically, the membrane-binding step and the fusion-associated oligomeric switch from E protein dimers to trimers. As with alphaviruses, cholesterol had a strong promoting effect on membrane binding and trimerization of the fusion protein, and-as shown by the use of cholesterol analogs-the underlying interactions involve the 3beta-hydroxyl group at C-3 in both viral systems. In contrast to alphaviruses, however, these effects are much less pronounced with respect to the overall fusion of TBEV and can only be demonstrated when fusion is slowed down by lowering the temperature. The data presented thus suggest the existence of structurally related interactions of the flavivirus and alphavirus fusion proteins with cholesterol in the molecular processes required for fusion but, at the same time, point to significant differences between the class II fusion machineries of these viruses.  相似文献   

18.
Enveloped animal viruses infect cells via fusion of the viral membrane with a host cell membrane. Fusion is mediated by a viral envelope glycoprotein, which for a number of enveloped animal viruses rearranges itself during fusion to form a trimeric alpha-helical coiled-coil structure. This conformational change from the metastable, nonfusogenic form of the spike protein to the highly stable form involved in fusion can be induced by physiological activators of virus fusion and also by a variety of destabilizing conditions. The E1 spike protein subunit of Semliki Forest virus (SFV) triggers membrane fusion upon exposure to mildly acidic pH and forms a homotrimer that appears necessary for fusion. We have here demonstrated that formation of the E1 homotrimer was efficiently triggered under low-pH conditions but not by perturbants such as heat or urea, despite their induction of generalized conformational changes in the E1 and E2 subunits and partial exposure of an acid-specific E1 epitope. We used a sensitive fluorescence assay to show that neither heat nor urea treatment triggered SFV-liposome fusion at neutral pH, although either treatment inactivated subsequent low-pH-triggered fusion activity. Once formed, the low-pH-induced E1 homotrimer was very stable and was only dissociated under harsh conditions such as heating in sodium dodecyl sulfate. Taken together, these data, as well as protein structure predictions, suggest a model in which the less stable native E1 subunit specifically responds to low pH to form the more stable E1 homotrimer via conformational changes different from those of the coiled-coil type of fusion proteins.  相似文献   

19.
Vesiculoviruses enter cells by membrane fusion, driven by a large, low-pH-induced, conformational change in the fusion glycoprotein (G) that involves transition from a trimeric pre-fusion to a trimeric post-fusion state. G is the model of class III fusion glycoproteins which also includes the fusion glycoproteins of herpesviruses (gB) and baculoviruses (gp64). Class III fusion proteins combine features of the previously characterized class I and class II fusion proteins. In this review, we first present and discuss the data that indicate that the Vesiculovirus G structural transition proceeds through monomeric intermediates. Then, we focus on a recently determined crystal structure of the Chandipura virus G ectodomain that contained two monomeric intermediate conformations of the glycoprotein, revealing the chronological order of the structural changes in the protein and offering a detailed pathway for the conformational change, in agreement with electron microscopy data. In the crystal, the intermediates were associated through their fusion domain in an antiparallel manner to form an intermolecular β-sheet. Mutagenesis indicated that this interface is functionally relevant. All those structural data challenge the current model proposed for viral membrane fusion. Therefore, we wonder if this mode of operating is specific to Vesiculovirus G and discuss data indicating that class II fusion glycoproteins are monomeric when they interact with the target membrane but also crystal structures suggesting the existence of non-trimeric intermediates for influenza hemagglutinin which is the prototype of class I fusion proteins.  相似文献   

20.
The alphavirus Semliki Forest virus (SFV) infects cells through a low-pH-dependent membrane fusion reaction mediated by the virus fusion protein E1. Acidic pH initiates a series of E1 conformational changes that culminate in membrane fusion and include dissociation of the E1/E2 heterodimer, insertion of the E1 fusion loop into the target membrane, and refolding of E1 to a stable trimeric hairpin conformation. A highly conserved histidine (H3) on the E1 protein was previously shown to promote low-pH-dependent E1 refolding. An SFV mutant with an alanine substitution at this position (H3A) has a lower pH threshold and reduced efficiency of virus fusion and E1 trimer formation than wild-type SFV. Here we addressed the mechanism by which H3 promotes E1 refolding and membrane fusion. We identified E1 mutations that rescue the H3A defect. These revertants implicated a network of interactions that connect the domain I-domain III (DI-DIII) linker region with the E1 core trimer, including H3. In support of the importance of these interactions, mutation of residues in the network resulted in more acidic pH thresholds and reduced efficiencies of membrane fusion. In vitro studies of truncated E1 proteins demonstrated that the DI-DIII linker was required for production of a stable E1 core trimer on target membranes. Together, our results suggest a critical and previously unidentified role for the DI-DIII linker region during the low-pH-dependent refolding of E1 that drives membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号