首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconstruction of extracellular matrix substrates for delivery of functional photoreceptors is crucial in pathologies such as retinal degeneration and age-related macular degeneration. In this study, we assembled polyelectrolyte films using the layer-by-layer deposition method. The buildup of three different films composed of poly(L-lysine)/chondroitin sulfate (PLL/CSA), poly(L-lysine)/poly(styrenesulfonate) (PLL/PSS), or poly(L-lysine)/hyaluronic acid (PLL/HA) was followed by means of quartz crystal microbalance measurements, optical waveguide light mode spectroscopy, confocal microscopy, and atomic force microscopy. The exponential growth regime and the diffusion of PLL chains from the bulk through the PLL/CSA, PLL/PSS, and PLL/HA films was examined. Evaluation of photoreceptor cell viability was optimal on one layer of PLL (PLL(1)), followed by 10 bilayers of PLL/HA [(PLL/HA)(10)] and 10 bilayers of PLL/CSA [(PLL/CSA)(10)]. The number of bilayers and the type of terminating layer also had a significant influence on the number of photoreceptor cells attached. Functionalized polyelectrolyte multilayer films were obtained by adsorbing basic fibroblastic factor (bFGF) or the insoluble fraction of interphotoreceptor matrix (IPM) on or within polyelectrolyte multilayers. bFGF and IPM adsorption on top of the (PLL/CSA)(10)/PLL polyelectrolyte films increased the number of photoreceptor cells attached and maintained the differentiation of rod and cone cells.  相似文献   

2.
We studied the efficiency of pulsed low-power laser irradiation of 532 nm from an Nd:YAG (neodymium-doped yttrium-aluminum-garnet) laser to remove marine biofilm developed on titanium and glass coupons. Natural biofilms with thicknesses of 79.4 +/- 27.8 microm (titanium) and 107.4 +/- 28.5 microm (glass) were completely disrupted by 30 s of laser irradiation (fluence, 0.1 J/cm2). Laser irradiation significantly reduced the number of diatoms and bacteria in the biofilm (paired t test; P < 0.05). The removal was better on titanium than on glass coupons.  相似文献   

3.
The molecular details of adhesion mechanics in phospholipid bilayers have been studied using atomic force microscopy (AFM). Under tension fused bilayers of dipalmitoylphosphatidylcholine (DPPC) yield to give non-distance dependent and discrete force plateaux of 45.4, 81.6 and 113+/-3.5 pN. This behaviour may persist over distances as great as 400 nm and suggests the stable formation of a cylindrical tube which bridges the bilayers on the two surfaces. The stability of this connective structure may have implications for the formation of pili and hence for the initial stage of bacterial conjugation. Dimyristoylphosphatidylcholine (DMPC) bilayers also exhibit force plateaux but with a much less pronounced quantization. Bilayers composed of egg PC, sterylamine and cholesterol stressed in a similar way show complex behaviour which can in part be explained using the models demonstrated in the pure lipids.  相似文献   

4.
Palmitic acid conjugates of poly-L-lysine (PLL-PA) were prepared, and their ability to deliver plasmid DNA into human skin fibroblasts was evaluated in vitro. The conjugates were capable of condensing a 4.7 kb plasmid DNA into 50-200 nm particles (mean +/- SD = 112 +/- 34 nm), which were slightly smaller than the particles formed by PLL (mean +/- SD = 126 +/- 51 nm). Both PLL and PLL-PA were readily taken up by the cells, but PLL-PA delivered the plasmid DNA into a higher proportion of cells. DNA delivery was found to be reduced by endocytosis inhibitor Brefeldin A, suggesting an active mechanism of particle uptake. Using enhanced green fluorescent protein (EGFP) as a reporter gene, PLL-PA was found to give the highest number of EGFP-positive cells among several carriers tested, including polyethyleneimine, Lipofectamine-2000, and an adenovirus. Although some carriers gave a higher percentage of EGFP-positive cells than PLL-PA, they were also associated with higher toxicities. We conclude that PLL-PA is a promising gene carrier for non-viral modification of human fibroblasts.  相似文献   

5.
A bifunctional copolymer series of (4-vinylbenzyl)phosphonic acid diethylester and N-acryloxysuccinimide was developed as an interlayer with the aim of immobilizing proteins on titanium surfaces. Copolymers with varying compositions were synthesized, and an alternating copolymerization of the two monomers was found. The copolymers form ultrathin films of about 2-8 nm on titanium surfaces in a simple dipping process, as estimated from the attenuation of the titanium X-ray photoelectron spectroscopy (Ti-XPS) signal. The films were characterized by infrared spectroscopy, XPS, and time-of-flight secondary ion mass spectrometry. The results indicate that the immobilization is due to phosphonate groups, and thus the phosphonate content of the copolymers is decisive for the final film thickness. These polymer films were examined for their potential protein binding capacity by using trifluoroethylamine derivatization and subsequent XPS analysis as a reactivity assay.  相似文献   

6.
Cell interactions with polyelectrolyte multilayer films   总被引:1,自引:0,他引:1  
The short-term interactions of chondrosarcoma cells with polyelectrolyte multilayer films built up by the alternate adsorption of poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) was studied in the presence and in the absence of serum. The films and their interaction with serum proteins were first characterized by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, and zeta potential measurements. In a serum-containing medium, the detachment forces measured by the micropipet technique were about eight times smaller on PGA-ending than on PLL-ending films. For these latter ones, the adhesion force decreased when the film thickness increased. In a serum-free medium, the differences between the negative- and positive-ending films were enhanced: adhesion forces on PLL-ending films were 40-100% higher, whereas no cellular adherence was found on PGA-terminating films. PGA-ending films were found to prevent the adsorption of serum proteins, whereas important protein adsorption was always observed on PLL-ending films. These results show how cell interactions with polyelectrolyte films can be tuned by the type of the outermost layer, the presence of proteins, and the number of layers in the film.  相似文献   

7.
Fluorescence interference-contrast (FLIC) microscopy is a powerful new technique to measure vertical distances from reflective surfaces. A pattern of varying intensity is created by constructive and destructive interference of the incoming and reflected light at the surface of an oxidized silicon chip. Different levels of this pattern are probed by manufacturing silicon chips with terraces of oxide layers of different heights. Fluorescence collected from membranes that are deposited on these terraces is then used to measure the distance of the fluorescent probes from the silicon oxide surface. Here, we applied the method to measure the distance between supported lipid bilayers and the surface of oxidized silicon chips. For plain fluid phosphatidylcholine bilayers, this distance was 1.7 +/- 1.0 nm. The cleft distance was increased to 3.9 +/- 0.9 nm in bilayers that were supported on a 3400-Da polyethylene glycol cushion. This distance is close to the Flory distance (4.8 nm) that would be expected for a grafted random coil of this polymer. In a second application, the distance of a membrane-bound protein from the membrane surface was measured. The integral membrane protein syntaxin1A/SNAP25 (t-SNARE) was reconstituted into tethered polymer-supported bilayers. A soluble form of the green fluorescent protein/vesicle-associated membrane protein (GFP-VAMP) was bound to the reconstituted t-SNAREs. The distance of the GFP from the membrane surface was 16.5 +/- 2.8 nm, indicating an upright orientation of the rod-shaped t-SNARE/v-SNARE complex from the membrane surface.  相似文献   

8.
We report the synthesis of covalently stabilized hollow capsules from biodegradable materials using a combination of click chemistry and layer-by-layer (LbL) assembly. The biodegradable polymers poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) were modified with alkyne and azide moieties. Linear film buildup was observed for both materials on planar surfaces and colloidal silica templates. A variation of the assembly conditions, such as an increase in the salt concentration and variations in pH, was shown to increase the individual layer thickness by almost 200%. The biodegradable click capsules were analyzed with optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Capsules were uniform in size and had a regular, spherical shape. They were found to be stable between pH 2 and 11 and showed reversible, pH-responsive shrinking/swelling behavior. We also show that covalently stabilized PLL films can be postfunctionalized by depositing a monolayer of heterobifunctional poly(ethylene glycol) (PEG), which provides low-fouling properties and simultaneously enhances specific protein binding. The responsive, biodegradable click films reported herein are promising for a range of applications in the biomedical field.  相似文献   

9.
Casein films were successfully prepared with the spin-coating technique of aqueous casein solutions on base-treated glass surfaces. The film structure is investigated in real space with optical microscopy and atomic force microscopy and for the first time in reciprocal space with grazing incidence small-angle X-ray scattering (GISAXS). The size of the substructures detected in the film increases with pH from 170 nm (pH 5.1) up to 490 nm (pH 9.4). Dynamic light scattering experiments reveal that the average diameters of casein micelles in solution exhibit the same quantitative increase. This result suggests that the substructures detected in the bulklike films with GISAXS reflect intact casein micelles. However, with thin homogeneous casein films, the micelle size diminishes with decreasing film thickness. This indicates that the moderate pressures introduced by spin-coating force the micelles to rearrange into a more compact structure.  相似文献   

10.
Advancing biotechnology spurs the development of new pharmaceutically engineered gene delivery vehicles. Poly(L-histidine) ?PLH? has been shown to induce membrane fusion at endosomal pH values, whereas PLL has a well documented efficacy in polyplex formation. Therefore, N-Ac-poly(L-histidine)-graft-poly(L-lysine) ?PLH-g-PLL? was synthesized by grafting poly(L-histidine) to poly(L-lysine) ?PLL?. PLH-g-PLL formed polyplex particles by electrostatic interactions with plasmid DNA ?pDNA?. The mean particle size of the polyplexes was in the range of 117 +/- 6 nm to 306 +/- 77 nm. PLH-g-PLL gene carrier demonstrated higher transfection efficacy in 293T cells than PLL at all equivalent weight ratios with pDNA. The inclusion of chloroquine as an endosomolytic agent enhanced transfection for both PLL and PLH-g-PLL gene carriers. PLH-g-PLL enhanced beta-galactosidase expression compared to PLL, but still increased in efficacy when chloroquine was included.  相似文献   

11.
Laboratory studies on adhesion of microalgae to hard substrates   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Satpathy  K.K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):109-116
Adhesion of Chlorella vulgaris(chlorophyceae), Nitzschia amphibia(bacillariophceae) and Chroococcus minutus(cyanobacteria) to hydrophobic (perspex, titanium and stainless steel 316-L), hydrophilic (glass) and toxic (copper, aluminium brass and admiralty brass) substrata were studied in the laboratory. The influence of surface wettability, surface roughness, pH of the medium, culture age, culture density, cell viability and presence of organic and bacterial films on the adhesion of Nitzschia amphibia was also studied using titanium, stainless steel and glass surfaces. All three organisms attached more on titanium and stainless steel and less on copper and its alloys. The attachment varied significantly with respect to exposure time and different materials. The attachment was higher on rough surfaces when compared to smooth surfaces. Attachment was higher on pH 7 and above. The presence of organic film increased the attachment significantly when compared to control. The number of attached cells was found to be directly proportional to the culture density. Attachment by log phase cells was significantly higher when compared to stationary phase cells. Live cells attached more when compared to heat killed and formalin killed cells. Bacterial films of Pseudomonas putida increased the algal attachment significantly. %  相似文献   

12.
We present a new method for creating patches of fluid lipid bilayers with conjugated biotin and other compounds down to 1 microm resolution using a photolithographically patterned polymer lift-off technique. The patterns are realized as the polymer is mechanically peeled away in one contiguous piece in solution. The functionality of these surfaces is verified with binding of antibodies and avidin on these uniform micron-scale platforms. The biomaterial patches, measuring 1 micro m-76 microm on edge, provide a synthetic biological substrate for biochemical analysis that is approximately 100x smaller in width than commercial printing technologies. 100 nm unilamellar lipid vesicles spread to form a supported fluid lipid bilayer on oxidized silicon surface as confirmed by fluorescence photobleaching recovery. Fluorescence photobleaching recovery measurements of DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC(18)(3))) stained bilayer patches yielded an average diffusion coefficient of 7.54 +/- 1.25 microm(2) s(-1), equal to or slightly faster than typically found in DiI stained cells. This diffusion rate is approximately 3x faster than previous values for bilayers on glass. This method provides a new means to form functionalized fluid lipid bilayers as micron-scale platforms to immobilize biomaterials, capture antibodies and biotinylated reagents from solution, and form antigenic stimuli for cell stimulation.  相似文献   

13.
We have tested the zeta potential (zeta, the surface charge density) of transfection complexes formed in serum-free medium as a rapid and reliable technique for screening transfection efficiency of a new reagent or formulation. The complexes of CAT plasmid DNA (1 microgram) and DC-chol/DOPE liposomes (3-20 nmol) were largely negatively charged (zeta=-15 to -21 mV), which became neutral or positive as 0.5 microgram or a higher amount of poly-L-lysine (PLL, MW 29300 or MW 204000) was added (-3.16+/-3.47 to +6.04+/-2.23 mV). However, the complexes of CAT plasmid DNA (1 microgram) and PLL MW 29300 (0.5 microgram or higher) were neutral or positively charged (-3.22+/-2.3 to +6.55+/-0.64 mV), which remained the same as 6.6 nmol of the liposomes was added. The complexes formed between two positively charged compounds, PLL MW 29300 (0.5 microgram) and the liposomes (3-20 nmol), were as closely positively charged as DNA/PLL or DNA/liposomes/PLL complexes (+3.31+/-0.41 to 7.16+/-1.0 mV). These results indicate that PLL determined the overall charge of the DNA/liposome/PLL ternary complexes. The complexes formed with histone (0.75 microgram or higher) were also positively charged, whose transfection activity was as high as PLL MW 29300. However, the complexes formed with protamine or PLL MW 2400 remained negatively charged. These observations are in good agreement with the transfection activity of the formulation containing each polycationic polymer. The presence of PLL MW 29300 did not change the hydrodynamic diameter of DNA/liposome/PLL complexes (d(H)=275-312 nm). The complexes made of different sizes of PLL (MW 2400 and 204000) also did not significantly change their size. This suggests that DNA condensation may not be critical. Therefore, zeta of the transfection complex can predict the transfection efficiency of a new formulation or reagent.  相似文献   

14.
Effects of non-ionic surfactants N-alkyl-N,N-dimethylamine-N-oxides (C(n)NO, n is the number of alkyl carbons) on the structure of egg yolk phosphatidylcholine (EYPC) bilayers in the lamellar fluid phase was studied by small-angle X-ray diffraction as a function of H(2)O:EYPC and C(n)NO:EYPC molar ratios. The bilayer thickness d(L) and the lipid surface area at the bilayer-aqueous interface S(L) were calculated from the repeat period, d of the lamellar phase, based on the model that water and EYPC + CnNO molecules form separated layers and that their molecular volumes are additive. In the studied range of m=CnNO:EYPC molar ratios up to 1:1, d(L) and S(L) change linearly. The slopes Delta L = delta dL/ delta m and Delta S= delta S L / delta m are equal to -0.876 +/- 0.027 nm and 0.347 +/- 0.006 nm2 for C(6)NO, -1.025+/-0.060 nm and 0.433+/-0.025 nm(2) for C(8)NO, -0.836+/-0.046 nm and 0.405+/-0.018 nm(2) for C(10)NO, -0.604+/-0.015 nm and 0.375+/-0.007 nm(2) for C(12)NO, -0.279+/-0.031 nm and 0.318+/-0.005 nm(2) for C(14)NO, -0.0865+/-0.070 nm and 0.2963 +/-0.014 nm(2) for C(16)NO, and -0.040+/-0.022 nm and 0.297+/- 0.002 nm(2) for C(18)NO, respectively, at full bilayer hydration. The peak-peak distance in the bilayer electron density profile, which relates to the P-P distance d(PP), obtained from the first four diffraction peaks by the Fourier transform also depends linearly on m, and the slope Delta PP = delta dPP/delta m is -0.528+/-0.065 nm for C(6)NO, -0.680+/-0.018 nm for C(8)NO, -0.573+/-0.021 nm for C(10)NO, -0.369+/-0.075 nm for C(12)NO, -0.190+/-0.015 for C(14)NO, -0.088+/-0.016 nm for C(16)NO and -0.094+/-0.016 nm for C(18)NO. The effects of C(n)NO on Delta(L), Delta(S) and Delta(PP) are the results of C(n)NO insertion into EYPC bilayers and depend on the hydrophobic mismatch between C(n)NO and EYPC hydrocarbon chains and on the lateral interactions of C(n)NO and EYPC in the bilayer.  相似文献   

15.
In this article, the surface erosion of spin-coated poly(trimethylene carbonate) (PTMC) films by lipase solutions from Thermomyces lanuginosus was studied using atomic force microscopy (AFM). PTMC films (23-48 nm thick) were stable in water at 37 degrees C for 16 h, while after immersion in lipase solutions at 37 degrees C for 30 s and 1 min, the average thickness of the film decreased in time at a rate of 11.0 +/- 3.7 nm/min. The initially smooth films became significantly rougher during the erosion process. When the immersion time of the films in the lipase solutions was limited to less than 5 s, degradation of the surface was minimal and individual lipase molecules adsorbed on PTMC films could be discerned. By microcontact printing of the PTMC surfaces using a patterned PDMS stamp and lipase solution for 30 s, a predefined micropattern consisting of parallel, 5-microm-wide lines lying 5-nm deep and separated at a distance of 2 microm was formed. Friction images showed differences in surface properties between the recessed and protruding lines in the pattern.  相似文献   

16.
The association of bacterial lipopolysaccharide with artificial membranes was studied in an attempt to understand the mechanism of binding of lipopolysaccharide to cell surfaces and to look for an effect on membrane stability. The membrane models used were phospholipid bilayers and monolayers. As measured by survival time, lipopolysaccharide was found to decrease the stability of bilayers at a concentration of 300 μg/ml. When assayed by dielectric breakdown, an effect of lipopolysaccharide was noticeable at concentrations of 50 μg/ml. In studies involving the penetration of monomolecular films of various phospholipids, native and alkali-treated lipopolysaccharide both caused increases in surface pressure, and therefore penetrated the films. However, alkali-treated lipopolysaccharide was at least ten times more efficient than the native product in penetration. Alkali-treated lipopolysaccharide had a greater degree of surface activity than native lipopolysaccharide, since alkali-treated lipopolysaccharide formed monomolecular films by itself, whereas native lipopolysaccharide did not. The changes in the surface pressure and surface potential of phospholipid films produced by lipopolysaccharide in the subsolution suggested that the interaction of lipopolysaccharide with phospholipid monolayers was by a combination of penetration and adsorption to the undersurface.  相似文献   

17.
Lectin-mediated targeting of liposomes to a model surface. An ELISA method   总被引:1,自引:0,他引:1  
Wheat germ agglutinin has been conjugated to the surfaces of sonicated phospholipid liposomes by reacting the protein derivatised with N-succinimidyl-S-acetylthioacetate (SATA) with the m-maleimidobenzoyl-N-hydroxysuccinimide (MBS) derivative of dipalmitoylphosphatidylethanolamine (DPPE) incorporated into the liposomal bilayers. The liposomes as characterised by photon correlation spectroscopy had a weight-average radius of 44 +/- 10 nm and the number of WGA molecules per liposome was in the range up to approx. 120. An ELISA method has been developed to assess the efficiency of targeting the conjugated liposomes to the antigenic determinants on a surface coated with glycophorin A (blood group B). For liposomes in which the degree of conjugation was controlled by varying the mol% DPPE-MBS from 3 to 27% targeting efficiency as assessed from the extent of inhibition of the ELISA increased by a factor of 10.  相似文献   

18.
H Mueller  H J Butt    E Bamberg 《Biophysical journal》1999,76(2):1072-1079
The mechanical and adhesion properties of myelin basic protein (MBP) are important for its function, namely the compaction of the myelin sheath. To get more information about these properties we used atomic force microscopy to study tip-sample interaction of mica and mixed dioleoylphosphatidylserine (DOPS) (20%)/egg phosphatidylcholine (EPC) (80%) lipid bilayer surfaces in the absence and presence of bovine MBP. On mica or DOPS/EPC bilayers a short-range repulsive force (decay length 1.0-1.3 nm) was observed during the approach. The presence of MBP always led to an attractive force between tip and sample. When retracting the tip again, force curves on mica and on lipid layers were different. While attached to the mica surface, the MBP molecules exhibited elastic stretching behavior that agreed with the worm-like chain model, yielding a persistence length of 0.5 +/- 0.25 nm and an average contour length of 53 +/- 19 nm. MBP attached to a lipid bilayer did not show elastic stretching behavior. This shows that the protein adopts a different conformation when in contact with lipids. The lipid bilayer is strongly modified by MBP attachment, indicating formation of MBP-lipid complexes and possibly disruption of the original bilayer structure.  相似文献   

19.

Copper sulfide (CuS) thin films have been used in many applications such as solar cells, photo-thermal, electro-conductive, and microwave shielding. In this work, copper sulfide thin films were deposited on glass and silicon substrates by thermal evaporation of in situ synthesized CuS powder. XRD analysis of these films revealed a single-crystal structure, AFM measurements indicated the films have a surface roughness (14.1 nm) and agglomerates of multiple monocrystalline particles with average size (66 nm), and the optical properties were investigated by UV-Vis spectrophotometer showing the films have high transmission (>80%) in the visible region and low absorbance with wide energy gap (3.813 eV). This novel structure with outstanding optical properties makes it very promising optical materials in optoelectronics.

  相似文献   

20.
Shen L  Chaudouet P  Ji J  Picart C 《Biomacromolecules》2011,12(4):1322-1331
In this study, we investigate the growth and internal properties of polyelectrolyte multilayer films made of poly(l-lysine) and hyaluronan (PLL/HA) under pH-amplified conditions, that is, by alternate deposition of PLL at high pH and HA at low pH. We focus especially on the influence of the molecular weight of HA in this process as well as on its concentration in solution. Film growth was followed by quartz crystal microbalance and by infrared spectroscopy to quantify the deposited mass and to characterize the internal properties of the films, including the presence of hydrogen bonds and the ionization degree of HA in the films. Film growth was significantly faster for HA of high molecular weight (1300 kDa) as compared with 400 and 200 kDa. PLL was found to exhibit a random structure once deposited in the films. Furthermore, we found that PLL-ending films are more stable when they are placed in PBS than their HA counterparts. This was explained on the basis of more cohesive interactions in the films for PLL-ending films. Finally, we quantified PLL(FITC) diffusion into the films and observed that PLL diffusion is enhanced when PLL is paired with the HA of high MW. All together, these results suggest that besides purely physicochemical parameters such as variation in pH, the molecular weight of HA, its concentration in solution, and the possibility to form intermolecular HA association play important roles in film growth, internal cohesion, and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号