首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract Transport of Mn2+ was repressed in Candida utilis cells grown in continuous culture in high-Mn2+ (100 μM Mn2+) medium as compared to cells grown in basic (0.45 μM Mn2+) and low-Mn2+ (< 0.05 μM Mn2+) media. In contrast, no repression of Cu2+ uptake occurred in high-Cu2+-grown (25 μM Cu2+) cells as compared to cells grown in basic medium (0.54 μM Cu2+). Cu2+-limited cells did not hyperaccumulate Cu2+ and there was not significant difference in initial uptake rates for all 3 Cu2+ conditions. Mn2+ uptake appears to be regulated by a mechanism sensitive to the external Mn2+ concentration, whereas Cu2+ transport is not governed in this way by the external Cu2+.  相似文献   

2.
Abstract— The hypothesis that the ATPase and phosphatidyhnositol (PI) kinase activities of chromaffin vesicle membranes are catalysed by same enzyme was investigated. The two activities exhibited entirely different responses to variations in Mg2+ or Mn2+ concentrations. In the presence of 1 mM ATP, maximal ATPase activity occurred with 1 mM Mg2+ while maximal PI kinase activity required 100 mM Mg2+ Similar differences were observed with Mn2+ with the exception that maximal ATPase activity occurred with 0.5 mM Mn2+ and maximal PI kinase activity occurred with 5 mM Mn2+ Mn2+ was more effective than Mg2+ in stimulating PI kinase activity at low concentrations, but at optimal concentrations of each, the maximal activity obtained with Mg2+ was 5-fold greater than the maximal activity obtained with Mn2+ The heat stabilities of the two enzymes are vastly different. At 50°C the ATPase activity of the intact membranes was stable for up to 20 min while the t l/2 of PI kinase was less than 2 min. After solubilization in Lubrol PX or at higher temperatures both enzymes were less heat stable, but PI kinase was still inactivated at a much greater rate than the ATPase. The evidence suggests that the ATPase and the PI kinase are different proteins.
The major phosphorylated product was diphosphatidylinositol and once formed, it was stable. Phosphorylation of membrane protein accounted for less than 10% of the total 32P-incorporated into chromaffin vesicles. SDS gel electrophoresis of the solubilized membranes showed the presence of at least 2 major phosphorylated high molecular weight components.  相似文献   

3.
Manganese (Mn2+) is an essential metal involved in normal functioning of a range of physiological processes. However, occupational overexposure to Mn2+ causes neurotoxicity. The dopaminergic system is a particular target for Mn2+ neurotoxicity. Tyrosine hydroxylase (TH) is the rate limiting enzyme for dopamine synthesis and is regulated acutely by phosphorylation at Ser40 and chronically by protein synthesis. In this study we used pheochromocytoma 12 cells to investigate the effects of Mn2+ exposure on the phosphorylation and activity of TH. Mn2+ treatment for 24 h caused a sustained increase in Ser40 phosphorylation and TH activity at a concentration of 100 μM, without altering the level of TH protein or PC12 cell viability. Inhibition of protein kinase A and protein kinase C and protein kinases known to be involved in sustained phosphorylation of TH in response to other stimuli did not block the effects of Mn2+ on Ser40 phosphorylation. A substantial increase in H2O2 production occurred in response to 100 μM Mn2+. The antioxidant TroloxTM completely inhibited H2O2 production but did not block TH phosphorylation at Ser40, indicating that oxidative stress was not involved. Sustained TH phosphorylation at Ser40 and the consequent activation of TH both occurred at low concentrations of Mn2+ and this provides a potential new mechanism for Mn2+-induced neuronal action that does not involve H2O2-mediated cell death.  相似文献   

4.
Increase in the extracellular Ca2+ concentration from low (≤ 10−7 M) to normal (10−3 M) caused morphological changes of cultured myocardial cells obtained from fetal mouse heart. The extracellular Na+ and K+ concentrations of the normal medium (10−3 M Ca2+) did not significantly affect the genesis of these morphological changes. Like Ca2+, Ba2+ and Sr2+, but not Mg2+, Co2+ or Ni2+, could induce morphological changes. Increase in the extracellular Ca2+ concentration from 10−8 M to 10−3M also caused excess uptake of 45Ca2+ by cultured myocardial cells. B–16CW 1 cells, which did not show these morphological changes, did not take up excess 45Ca2+ on this treatment. Treatments, such as addition of verapamil or incubation at pH 6.3, which reduced the genesis of morphological changes, reduced the rate of 45Ca2+ uptake by myocardial cells. These facts show that the morphological changes of myocardial cells induced by increasing the extracellular Ca2+ concentration from low to normal are due to excess uptake of Ca2+ by the myocardial cells.
The morphological changes of cultured myocardial cells induced by increasing the extracellular Ca2+ concentration from low to normal were reversed on further incubation of the cells in medium with or without Ca2+.  相似文献   

5.
Abstract: We investigated the interaction between Pb2+ and protein kinase C (PKC) in the Pb2+-induced release of norepinephrine (NE) from permeabilized adrenal chromaffin cells. Our analysis of endogenous PKC activity in permeabilized cells suggests that Pb2+ interacts with the adrenal enzyme at multiple sites. Pb2+ activates the enzyme through high-affinity ( K A(Pb) = 2.4 × 10−12 M ) interactions and inhibits the enzyme by competitive and noncompetitive interactions with nanomolar-( K i = 7.1 × 10−9 M ) and micromolar- ( K 'i = 2.8 × 10−7 M ) affinity sites, respectively. Activation of PKC by 12- O -tetradecanoylphorbol 13-acetate (TPA) in Ca2+-deficient, Pb2+-containing medium, enhances the Pb2+-induced NE release from permeabilized chromaffin cells by lowering the concentration of Pb2+ required for half-maximal activation of the secretory response from 7.5 × 10−10 to 5.7 × 10−11 M . The PKC inhibitors staurosporine and pseudosubstrate PKC (19–36) abolish the effect of TPA without affecting the Pb2+-induced secretion in the absence of TPA. These results indicate that (a) Pb2+ is a partial agonist of PKC, capable of both activating and inhibiting the enzyme and (b) synergistic activation of PKC by TPA and Pb2+ results in increased sensitivity of exocytosis to Pb2+ but is not obligatory for Pb2+-triggered secretion.  相似文献   

6.
Ca2+ and Mn2+ activate the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) by root microsomes of Vicia lens as they do in other similar systems. The preparation of microsomes in the presence of Mn2+ greatly increases their ability to convert ACC into ethylene, without addition of Mn2+ in the reaction mixture. Ca2+ does not have this property. The effect could not be attributed to Mn2+ entrapping into membrane vesicles (sonication followed by repelleting had no effect) but, possibly, in part to Mn2+-mediated binding to microsomes of a soluble factor favouring the conversion of ACC to C2H4. Although no direct correlation could be established in vitro between ethylene-forming-enzyme (EFE) and peroxidase activities, some soluble peroxidases might be this soluble factor. Mn2+ favoured attachment to membranes of some peroxidase activity from the soluble fraction and from commercial HRP and lipoxygenase. This binding effect of Mn2+ cannot be readily distinguished from its role in the generation of a chain of free radicals and in redox mechanisms.  相似文献   

7.
Preference responses of zebrafish to 10−3, 10−4 and 10−5M alanine (Ala) were concentration- dependent. Behavioural responses to copper (Cu) and Cu + Ala mixtures were also assessed. Zebrafish avoided 100 and 10 μg Cu l−1, but not 1 μg l−1. Mixtures of 10−3 m Ala+ 100 μg Cu l−1 and 10 4 M Ala + 10 μg Cu 1−1 were avoided as intensely as was Cu alone. Responses to 10−3 M Ala + 10 or 1 μg Cu l−1 and 10 4 M Ala +1 μg Cu l−1 did not differ statistically from controls (no detectable preference or avoidance). These results demonstrate, firstly, that a concentration of a pollutant avoided by itself (10 μg Cu l−1) may not be avoided when encountered with an attractant chemical stimulus (Ala) and may suppress the preference for an attractant stimulus, and secondly, that a concentration of a pollutant not avoided by itself and not considered deleterious (1 μg Cu l−1) suppresses attraction to Ala (an important constituent of prey odours for many fishes).  相似文献   

8.
The reductive carboxylation of α-ketoglutarate by purified NADP+-isocitrate dehydrogenase (EC 1.1.1.42) from maturing castor bean seeds ( Ricinus communis L. ) has been characterized. The optimum pH for the reaction was 6.5, whereas pH 8.5 was optimum for oxidation of isocitrate (forward reaction). The enzyme utilized NADH as well as NADPH as the reducing agent in the reverse reaction, but only NADP+ in the forward reaction. The Km values for NADPH and NADH were 0.044 and 2.8 m M respectively, and for α-ketoglutarate and HCO3 4.1 and 3.7 m M. The enzyme was activated by various cations including Mg2+, Mn2+, Co2+, Zn2+, Ni2+ and Co2+. Km values for Mg2+ Mn2+, Co2+ and Zn2+ were 12, 34, 37 and 49μ M respectively.  相似文献   

9.
Abstract: The adenylate cyclase activity of rat hippocampal plasma membranes can be stimulated by vaso-active intestinal polypeptide (VIP). Low concentrations (10−9 to 10−7M) of 5'-guanylyl-imido diphosphate (GppNHp) evoke a transient inhibition of the enzyme, which is followed by stimulation with increasing GppNHp concentrations (10−6 to 10−4M). Inclusion of ethyleneglycol - bis - (β - aminoethylether) - N,N' - tetraacetic acid (EGTA) during incubation abolishes the GppNHp inhibition while preserving GppNHp activation. The stimulation induced by GppNHp is amplified by VIP, but the inhibition is unaffected. Adenosine analogs and opiates are inhibitory ligands in the presence of GTP, and their effects can be reversed by the appropiate receptor antagonists, 3-isobutyl-1-methylxanthine and naloxone. Treatment of membranes with trypsin abolishes the GppNHp-induced inhibition without affecting the GppNHp stimulation. The inhibition induced by GppNHp is also abolished by EGTA treatment followed by washing, which coincides wtih a reduction in the adenosine- and opiate-mediated, GTP-dependent inhibition. The GppNHp inhibition can be restored in EGTA-treated but not in trypsin-treated membranes by addition of calcium-calmodulin but not by Ca2+ or Mg2+. Calcium-calmodulindepleted membranes lack calcium stimulation as well as GppNHp-induced inhibition, whereas untreated membranes and calcium-calmodulin-depleted membranes plus exogenous calcium-calmodulin showed calcium stimulation and GppNHp inhibition. These results suggest that calmodulin is involved in both Ca2+ stimulation and guanine nucleotide-mediated inhibition of rat hippocampal adenylate cyclase.  相似文献   

10.
Abstract The oxidation of protoporphyrinogen by membranes from Desulfovibrio gigas with nitrite as the electron acceptor proceeds at the ratio of 1 mol protoporphyrin produced for each mol of nitrite reduced. Coupled to the protoporphyrinogen-nitrite reaction is the esterification of ortho-phosphate with a P/2e value of 0.92. Pentachlorophenol, 3 × 10−5 M, and carbonyl cyanide m -chlorophenyl hydrazone, 3 × 10−6 M, serve as uncouplers of phosphorylation while rotenone, 9 × 10−6 M, and hydroxyquinoline- N -oxide, 0.1 × 10−6 M, inhibit electron flow from protoporphyrinogen oxidase to nitrite reductase.  相似文献   

11.
Injection of taurodeoxycholate (TDOC) alone or in combination with 10−5 M Ca2+(Ca-EGTA buffer) into newt eggs induced a cup- or furrow-like depression on the egg surface. Reduction of the Ca2+ concentration inhibited the response. These findings imply that TDOC induces a cytoplasmic contraction associated with the membrane and that a micromolar Ca2+ concentration is required for this process. Injection of 10−5 M Ca2+(Ca-EGTA buffer) alone had no effect. On the basis of these findings, the roles of TDOC and Ca2+ in induction of contraction were discussed.  相似文献   

12.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   

13.
Photosystem II membranes (D-PSII) were isolated from dark-grown spruce seedlings. All major PSII proteins except the 17- and 23-kDa extrinsic proteins were present in D-PSII. O2 evolution and Mn content in D-PSII were negligible, while PSII-donor activity showed a value comparable to that of NH2OH-treated PSII membranes (NH2OH-L-PSII) from light-grown seedlings. Light incubation of D-PSII with 1 m M MnCl2, 50 m M CaCl2 and 100 μ M DCIP at pH 5.3 resulted in activation of the latent water-oxidizing complex. Accomplishment of photoactivation of PSII membranes from dark-grown spruce seedlings clearly indicates that only ligation of Mn2+ to the apo-water oxidizing complex is required for expression of O2 evolution, and that protein synthesis is not involved in the photoactivation process. There was no essential difference between 'photoactivation' of naturally Mn-free PSII membranes and 'photoreactivation' of artificially Mn-depleted PSII membranes on kinetics, pH dependence, Mn2+-concentration dependence. However, kinetics and pH dependence of photoactivation were appreciably different in spruce PSII membranes and in PSII membranes of angiosperms such as wheat and spinach.  相似文献   

14.
Abstract It has been hypothesized that vegetation in certain ecosystems inhibits nitrification in soil by producing phenolic compounds that inhibit oxidation of ammonia by nitrifying microorganisms. This hypothesis is based largely on a report that very low concentrations (10−6 M–10−8 M) of several phenolic acids (notably ferulic acid) completely inhibited NO2 production in an aqueous suspension of soil treated with (NH4)2SO4 and a nutrient solution suitable for growth of Nitrosomonas and other autotrophic nitrifying microorganisms. To evaluate this hypothesis, we determined the effects of three ohenolic acids (ferulic acid, caffeic acid, and p -coumaric on nitrite production by representatives of three genera of terrestrial autotrophic nitrifying microorganisms ( Nitrosospira, Nitrosomonas , or Nitrosolubos ) grown on a defined medium containing NH4+. We found that nitrite production by the Nitrososspira was not inhibited by ferulic acid, caffeic acid, or p -coumaric acid at concentrations of 10−6 or 10−5 M and was only slightly inhibited when these acids were at a concentration of 10−4 M. We also found that ferulic acid did not markedly inhibit nitrite production by the three genera of nitrifying microorganisms studied, even when its concentration was as high as 10−3 M. These observations invalidate the hypothesis tested because the phenolic acids studied did not significantly retard ammonia oxidation by autotrophic microorganisms even when their concentration in cultures of these microorganisms greatly exceeded their concentrations in soils.  相似文献   

15.
Abstract— Synthetic substance P initially increased cyclic AMP levels and subsequently induced neurite extension in cultured neuroblastoma N 18 cells. The magnitude of these effects depended on the concentration of fetal calf serum (FCS) in the culture medium, being more evident in the presence of a lower (0.1%) concentration of FCS.
In Eagle's medium containing 0.1% FCS, low concentrations of substance P (10−7-10−5 M) increased cyclic AMP levels and stimulated neurite extension.
In Eagle's medium containing 5%FCS, both substance P at concentrations of 10−5-10−3M and dibutyryl cyclic AMP at concentrations of 10−4-10−2M increased cyclic AMP levels and stimulated neurite extension. The activities of acetylcholinesterase, (Na++ K+)-, HCO3 and Mg2+ -stimulated-ATPase were also increased. Cell growth was inhibited.
Substance P at concentrations of 10-7-10−5M also stimulated the adenylate cyclase activity of a particulate fraction of N 18 in a concentration-dependent manner.  相似文献   

16.
The growth of Fucus vesiculosus L. germlings in chemically defined culture media containing a range of Cu concentrations (20–1000 nM) was monitored simultaneously with measurement of the Cu speciation in the media by competitive equilibrium-adsorptive cathodic stripping voltammetry. Fucus vesiculosus germlings were found to exude Cu-complexing ligands with conditional stability constants of the order of 1.6 × 1011. Ligand concentrations increased with increasing total dissolved Cu concentrations (CuT) until a concentration of 500–800 neq Cu·L−1 was reached. Concentrations of the ligand exceeded CuT in treatments containing 20 and 100 nM Cu, were similar to CuT in the 500-nM Cu treatment, but were less than CuT in the 1000-nM treatment. Therefore, [Cu2+] were calculated to be at concentrations of 10−11− 10−10 M in the 20- and 100-nM treatments, 10−9 M in the 500-nM treatment, and 10−7 M in the 1000-nM treatment. Growth rates were lowest at Cu2+ concentration > 10−9. These results are discussed within the context of the potential roles for exuded copper-complexing ligands.  相似文献   

17.
Abstract: The systems responsible for phosphorylating tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis, were investigated in situ in adrenal medullary cells made permeable to solutes of up to 1,000 dalton by exposure to brief intense electric fields. Two different phosphorylation systems were found. One is dependent on Ca2+, the other on cyclic AMP. The Ca2+-dependent system is half-maximally activated by 1-2 μ M Ca2+ and 0.5 m M ATP, and follows a time course similar to that of secretion of catecholamines. Trifluoperazine (0.1 m M ) does not inhibit significantly Ca2+-dependent phosphorylation of tyrosine hydroxylase in situ. The cyclic AMP-dependent system is half-maximally activated by addition of 0.5 μ M cyclic AMP and about 0.3 m M ATP. Ca2+-dependent and cyclic AMP-dependent phosphorylations of tyrosine hydroxylase have roughly the same time course and are additive under conditions where one system is already saturated. Peptide maps of immunoprecipitated tyrosine hydroxylase, after in situ phosphorylation of the enzyme either in the presence of 10−8 M Ca2+ plus 2 × 10−5 M cyclic AMP or of 10−5 M Ca2+, show a marked difference indicating that the enzyme contains several phosphorylation sites. At least one of these sites is phosphorylated only by the Ca2+-dependent system, whereas the other site(s) are phosphorylated by both the Ca2+- and cyclic AMP-dependent systems. The effect of in situ phosphorylation of tyrosine hydroxylase on its enzymatic activity was also investigated.  相似文献   

18.
Vitamin D3 at low concentration (10−9 M) inhibited the growth of Phaseolus vulgaris L. (cv. Contrancha) roots in vitro as measured by elongation (14 h) and [3H]-leucine incorporation into protein (2 h), and increased their labelling with 45Ca2+ (2 h). Cycloheximide and puromycin (50 u.M) blocked vitamin D3 stimulation of root 45Ca2+ labelling, indicating that it is mediated by de novo protein synthesis. The calcium ionophore X-537A (10−5JW) induced similar changes both in root elongation and 45Ca2+ uptake (14 h). This may indicate that the inhibitory effects of the sterol on root growth are mediated by changes in Ca2+ fluxes. However, this interpretation should be further strengthened by additional studies as the ionophore may have acted on root growth, affecting physiological processes other than Ca2+ transport.  相似文献   

19.
NADP+-malic enzyme ( l -malate: NADP+ oxidoreductase, decarboxylating EC 1.1.1.40) from pod walls of chickpea was purified 51-fold by ammonium sulphate fractionation, DEAE- cellulose chromatography and gel filtration through Sepharose 4B. The purified enzyme required a divalent cation, either Mn2+ or Mg2+, for its activity. Km values at pH 7.8 for malate, NADP+ and Mn2+ were 4.0, 0.031 and 0.71 m M , respectively. Mn2+-dependent activity was inhibited by heavy metal ions such as Cd2+, Zn2+, Hg2+, and to a lesser extent by Pb2+ and Al3+. Among the organic acids examined, sodium salts of oxalate and oxaloacetate were inhibitory. Kinetics of the reaction mechanism showed sequential binding of malate and NADP+ to the enzyme. Products of reaction, viz. pyruvate, bicarbonate and NADPH, inhibited the enzyme activity. At limiting concentrations of NADP+, pyruvate and bicarbonate induced a positive cooperative effect by malate. It is proposed that the activity of NADP+-malic enzyme is controlled by intracellular concentrations of substrates and products.  相似文献   

20.
Abstract: The PNS was anticipated to be involved in the modulation of immune responses. To study aspects of this neuronal-immune communication, a recently developed tissue slice method was used to study the effects of adrenergic and opioidergic transmitters on interleukin 6 (IL-6) secretion in the spleen. The α2-adrenergic agonist p -aminoclonidine (10−7 M ) inhibited IL-6 secretion (control vs. p -aminoclonidine, 100.0 ± 4.76 vs. 59.3 ± 6.6% of control values; p < 0.001). The α1-adrenergic agonist methoxamine (10−8 M ) also inhibited IL-6 secretion (100.0 ± 4.8 vs. 71.5 ± 3.8%; p < 0.001). The endogenous opioids β-endorphin (10−10 M ), methionine-enkephalin (10−9 M ), and leucine-enkephalin (10−9 M ) inhibited IL-6 secretion as well ( p = 0.0051, p = 0.0337, and p = 0.0226, respectively). Electrical stimulation of spleen slices inhibited IL-6 secretion (100.0 ± 4.3 vs. 56.7 ± 4.6% of control values; p < 0.001). The involvement of α-adrenergic and opioidergic molecules in this electrically induced inhibition was shown by the use of antagonists. Electrical inhibition of IL-6 secretion was attenuated by phentolamine (10−7 M ; p = 0.0345), by naloxone (10−6 M ; p = 0.0046), by cyprodime (10−8 M ; p = 0.0014), and by the combination of cyprodime (10−7 M ) plus phentolamine (10−8 M ; p < 0.0001). We conclude from the complementary studies that the inhibition of IL-6 secretion induced by electrical pulses was mostly mediated by α-adrenergic and μ-opioidergic endogenous transmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号