首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimycin-insensitive succinate-cytochrome c reductase activity has been detected in pure, reconstitutively active succinate dehydrogenase. The enzyme catalyzes electron transfer from succinate to cytochrome c at a rate of 0.7 mumole succinate oxidized per min per mg protein, in the presence of 100 microM cytochrome c. This activity, which is about 2% of that of reconstitutive (the ability of succinate dehydrogenase to reconstitute with coenzyme ubiquinone-binding proteins (QPs) to form succinate-ubiquinone reductase) or succinate-phenazine methosulfate activity in the preparation, differs from antimycin-insensitive succinate-cytochrome c reductase activity detected in submitochondrial particles or isolated succinate-cytochrome c reductase. The Km for cytochrome c for the former is too high to be measured. The Km for the latter is about 4.4 microM, similar to that of antimycin-sensitive succinate-cytochrome c activity in isolated succinate-cytochrome c reductase, suggesting that antimycin-insensitive succinate-cytochrome c activity of succinate-cytochrome c reductase probably results from incomplete inhibition by antimycin. Like reconstitutive activity of succinate dehydrogenase, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase is sensitive to oxygen; the half-life is about 20 min at 0 degrees C at a protein concentration of 23 mg/ml. In the presence of QPs, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase disappears and at the same time a thenoyltrifluoroacetone-sensitive succinate-ubiquinone reductase activity appears. This suggests that antimycin-insensitive succinate-cytochrome c reductase activity of succinate dehydrogenase appears when succinate dehydrogenase is detached from the membrane or from QPs. Reconstitutively active succinate dehydrogenase oxidizes succinate using succinylated cytochrome c as electron acceptor, suggesting that a low potential intermediate (radical) may be involved. This suggestion is confirmed by the detection of an unknown radical by spin trapping techniques. When a spin trap, alpha-phenyl-N-tert-butylnitrone (PBN), is added to a succinate oxidizing system containing reconstitutively active succinate dehydrogenase, a PBN spin adduct is generated. Although this PBN spin adduct is identical to that generated by xanthine oxidase, indicating that a perhydroxy radical might be involved, the insensitivity of this antimycin-insensitive succinate-cytochrome c reductase activity to superoxide dismutase and oxygen questions the nature of this observed radical.  相似文献   

2.
(1) Purified succinate dehydrogenase contains about 49 mol of lysine residues per mol enzyme. Titration of succinate dehydrogenase with fluorescamine indicates that half the lysyl groups are located on the surface of the protein and the other half are buried inside. (2) The reconstitutive activity and the low Km ferricyanide reductase activity of succinate dehydrogenase decreased as the extent of alkylation of amino groups by fluorescamine increased. (3) The inhibitory effects of fluorescamine on both activities are parallel and are succinate concentration dependent. (4) Alkylation of the native succinate-Q reductase by fluorescamine does not affect the enzymatic activity or alter the enzyme kinetic parameters. This indicates that the inhibitory effect of fluorescamine on succinate dehydrogenase is due to the modification of a specific amino group(s) on succinate dehydrogenase which is essential in the interaction with QPs to form succinate-Q reductase. The participation of an ionic group in the formation of succinate-Q reductase supports the idea of the involvement of ionic interaction between succinate dehydrogenase and QPs.  相似文献   

3.
J X Xu  L Yu  C A Yu 《Biochemistry》1987,26(24):7674-7679
The involvement of the carboxyl groups in the membrane-anchoring protein (QPs) in reconstitution of succinate dehydrogenase to form succinate-ubiquinone reductase is studied by using a carboxyl group modifying reagent, dicyclohexylcarbodiimide (DCCD). Inactivation of QPs by DCCD is found to be dependent on the temperature, pH, detergent, and DCCD concentration used. When QPs is treated with 300 molar excess DCCD at room temperature for 10 min, about 90% of the original reconstitutive activity is lost. When intact or reconstituted succinate-ubiquinone reductase formed from reconstitutively active succinate dehydrogenase and QPs is treated with DCCD under the same conditions, no loss of succinate-ubiquinone reductase activity is observed. However, when a mixture of reconstitutively inactive succinate dehydrogenase and QPs is treated with DCCD before being reconstituted with active succinate dehydrogenase, an inactivation behavior similar to that with QPs alone is observed. These results indicate that DCCD modifies the carboxyl groups of QPs which are essential for the interaction with succinate dehydrogenase to form succinate-ubiquinone reductase. Inactivation of QPs by DCCD parallels the incorporation of DCCD into QPs. About two carboxyl groups per molecule of QPs are essential for the interaction with succinate dehydrogenase. These essential carboxyl groups are located in the smaller subunit (Mr 13,000) of QPs. Modification of QPs by DCCD also alters the heme environment of cytochrome b560.  相似文献   

4.
研究了羧基修饰剂DCCD对泛醌结合蛋白QPs重组活力的影响;用0.1%TritonX-100增溶QPs后,用250mol/molQPs的DCCD于室温处理5min,处理后的QPs丧失约50%与琥珀酸脱氢酶的重组活力。先将QPs与琥珀酸脱氢酶重组再用DCCD处理没有发现重组的琥珀酸泛醌还原酶活性的降低。此结果说明QPs中存在重组活性必需的羧基。  相似文献   

5.
Treatment of the soluble ubiquinone-deficient succinate: ubiquinone reductase with pyridoxal phosphate results in the inhibition of the carboxin-sensitive ubiquinone-reductase activity of the enzyme. The inactivation is prevented by the soluble homolog of ubiquinone (Q2) but is insensitive to the dicarboxylates interacting with the substrate binding site of succinate dehydrogenase. The reactivity of the pyridoxal phosphate-inhibited enzyme with different electron acceptors suggests that the observed inhibition is due to the dissociation of succinate dehydrogenase from the enzyme complex. The soluble succinate dehydrogenase was recovered in the supernatant after treatment of the insoluble succinate: ubiquinone reductase with pyridoxal phosphate. The data obtained strongly suggest the participation of amino groups in the interaction between succinate dehydrogenase and the ubiquinone reactivity conferring peptide within the complex.  相似文献   

6.
Properties of bovine heart mitochondrial cytochrome b560   总被引:2,自引:0,他引:2  
A large-scale preparation of the two-subunit protein complex (QPs) that converts succinate dehydrogenase into succinate-ubiquinone reductase from cytochrome b-c1 particles is achieved by a procedure involving Triton X-100 solubilization and calcium phosphate column chromatography at different pH values. The isolated two-subunit QPs contains 25 nmol of cytochrome b560/mg of protein and is able to reconstitute with soluble succinate dehydrogenase to form a TTFA-sensitive succinate-ubiquinone reductase. The maximum reconstitutive activity is 100 mumol of succinate oxidized per min per mg of QPs protein at 23 degrees C. Although cytochrome b560 in isolated QPs is not succinate reducible and its dithionite reduced form is reactive to carbon monoxide, cytochrome b560 is shown to be physically associated with succinate dehydrogenase by the following observations. The dithionite reduced form of cytochrome b560 in isolated QPs has a symmetrical alpha-absorption peak, which upon reconstitution with succinate dehydrogenase becomes slightly broadened and shows a shoulder at around 553 nm, identical to that of cytochrome b560 in succinate-ubiquinone reductase. Upon addition of succinate dehydrogenase to QPs, about 50% of the reduced form of cytochrome b560 in the QPs becomes insensitive to carbon monoxide treatment. The redox potential of cytochrome b560 in QPs is -144 mV which is higher than that of cytochrome b560 in succinate-ubiquinone reductase (-185 mV). Upon addition of succinate dehydrogenase, the redox potential of about 46% of the cytochrome b560 in QPs preparation becomes identical to that of cytochrome b560 in succinate-ubiquinone reductase. Cytochrome b560 in the QPs preparation shows two epr signals, g = 3.07 and g = 2.92, whereas cytochrome b560 in succinate-ubiquinone reductase exhibits only one epr signal at g = 3.46. When QPs is reconstituted with succinate dehydrogenase to form succinate-ubiquinone reductase, the g = 3.46 epr signal reappears at the expense of the g = 3.07 signal. Based on epr measurement at liquid helium temperature, about 18% of the total cytochrome b in the isolated active succinate-cytochrome c reductase is cytochrome b560, indicating that cytochrome b560 is indeed a unique cytochrome b and not a denatured product of cytochrome b562 or b565.  相似文献   

7.
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex). An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinae dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into chtochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate. The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 anbd 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 mumol succinate oxidized per min per mg protein at 38 degrees C. Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation. When these three components were mixed in a proper ratio, a thenoyltrifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

8.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

9.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

10.
Linda Yu  Chang-an Yu 《BBA》1980,593(1):24-38
Purified ubiquinone-binding protein in succinate-ubiquinone reductase (QPs) reconstitutes with pure soluble succinate dehydrogenase to form succinate-ubiquinone oxidoreductase upon mixing of the two proteins in phosphate buffer at neutral pH. The maximal reconstitution was found with a weight ratio of succinate dehydrogenase to QPs of about 5, which is fairly close to the calculated value of 6.5, a value obtained by assuming one mole of QPs reacts with one mole of succinate dehydrogenase. Succinate-cytochrome c reductase was reconstituted when succinate dehydrogenase and QPs were added to Complex III or cytochrome b-c1 III complex (a highly purified ubiquinol-cytochrome c reductase). The reconstituted enzyme possessed kinetic parameters which were identical to those of the native enzyme complex. Interaction between QPs and succinate dehydrogenase resulted in the disappearance of low Km ferricyanide reductase activity from the latter. Unlike soluble succinate dehydrogenase, the reconstituted enzyme, as well as native succinate-cytochrome c reductase, reduced low concentration ferricyanide only in the presence of excess ubiquinone. The apparent Km for ubiquinone was 6 μM for reduction of ferricyanide (300 μM) by succinate, which is similar to the Km when ubiquinone was used as electron acceptor. When 2,6-dichlorophenolindophenol was used as electron acceptor for reconstitution of succinate-ubiquinone reductase very little or no exogeneous ubiquinone was needed to show the maximal activity with QPs made by Method II, indicating that the bound ubiquinone in QPs is enough for enzymatic activity. In addition to restoring the succinate-ubiquinone reductase activity the interaction between QPs and succinate dehydrogenase not only stabilized succinate dehydrogenase but also partially deaggregated QPs. The reconstituted succinate-ubiquinone reductase had a minimal molecular weight of 120000 when the reconstituted system was dispersed in 0.2% Triton X-100. The maximal reconstitution was observed at neutral pH in phosphate buffer, Tris-acetate or Tris-phosphate buffer. Tris-HCl buffer, however, produced a less efficient reconstitution. These results indicate that the interaction between QPs and succinate dehydrogenase may involve some cationic group which has a high affinity for Cl?. Primary amino groups of QPs are not directly involved in the interaction as the reconstitution showed no significant difference when the amino groups of QPs were alkylated with fluorescamine. The Arrhenius plots of reconstituted succinate-ubiquinone reductase show that the enzyme catalyzes the reaction with an activation energy of 19.7 kcal/mol and 26.6 kcal/mol at temperatures above and below 26°C, respectively. These activation energies are similar to those obtained with native enzyme. The Arrhenius plots of the interaction between QPs and succinate dehydrogenase also have a break point at 26°C. The activation energy for this interaction was calculated to be 11.2 kcal/mol and 6.9 kcal/mol for the temperatures above and below the break-point. The significance of the difference in activation energies between the enzymatic reaction and the reconstitution reaction are further explored in the discussion.  相似文献   

11.
1. Exposure of rats to low environmental temperature resulted in increased activities of several hepatic oxidative-enzyme systems. 2. Simultaneous with increase in liver ubiquinone in cold-exposed rats, the ubiquinone-dependent succinate-neotetrazolium chloride reductase activity also increased. Such an increase could also be obtained by enriching liver with ubiquinone by feeding with an exogenous source. 3. Succinate–neotetrazolium chloride reductase activity could be increased by preincubation of mitochondria with succinate and the mechanism of this activation appears to be different from that obtained on addition of ubiquinone. 4. Succinate–neotetrazolium chloride reductase activity was found to be more labile than succinate dehydrogenase on freezing and thawing and storage, and the presence of succinate gave protection against this loss in hepatic mitochondria obtained from both normal and cold-exposed animals.  相似文献   

12.
Escherichia coli produces two enzymes which interconvert succinate and fumarate: succinate dehydrogenase, which is adapted to an oxidative role in the tricarboxylic acid cycle, and fumarate reductase, which catalyzes the reductive reaction more effectively and allows fumarate to function as an electron acceptor in anaerobic growth. A glycerol plus fumarate medium was devised for the selection of mutants (frd) lacking a functional fumarate reductase by virtue of their inability to use fumarate as an anaerobic electron acceptor. Most of the mutants isolated contained less than 1% of the parental fumarate reduction activity. Measurements of the fumarate reduction and succinate oxidation activities of parental strains and frd mutants after aerobic and anaerobic growth indicated that succinate dehydrogenase was completely repressed under anaerobic conditions, the assayable succinate oxidation activity being due to fumarate reductase acting reversibly. Fumarate reductase was almost completely repressed under aerobic conditions, although glucose relieved this repression to some extent. The mutations, presumably in the structural gene (frd) for fumarate reductase, were located at approximately 82 min on the E. coli chromosome by conjugation and transduction with phage P1. frd is very close to the ampA locus, and the order of markers in this region was established as ampA-frd-purA.  相似文献   

13.
NADH-tetrazolium reductase and succinate dehydrogenase activity, glycogen concentration and ultrastructure of muscular fiber of a human being was studied before and after single physical load to refusal. The revealed individual peculiarities of fiber reaction in different people allow to divide all tested people into two subgroups according to the change of succinate dehydrogenase activity.  相似文献   

14.
Myeloperoxidase, a granule-associated enzyme of neutrophils and monocytes, combines with H2O2 and chloride to form a potent microbicidal system that contributes to phagocyte antimicrobial activity. The nature of the lesion or lesions induced by the myeloperoxidase system which are responsible for the loss of microbial replicative activity (viability) remains unknown. Using Escherichia coli grown to late log or stationary phase under conditions of low aeration with succinate as the sole carbon source, we found that myeloperoxidase-induced loss of microbial viability could be correlated with a decrease in succinate-dependent respiration (succinate oxidase activity). Succinate dehydrogenase activity fell rapidly to undetectable levels during incubation with the myeloperoxidase system, suggesting that damage to the dehydrogenase was a major factor in the loss of oxidase activity. Other components of the succinate oxidase system were resistant to the actions of myeloperoxidase. The ubiquinone-8 and cytochrome components of the respiratory chain remained nearly constant in amount despite reduction of respiration to undetectable levels. However, as expected from the loss of succinate dehydrogenase activity, succinate-ubiquinone reductase and succinate-cytochrome reductase activities were markedly impaired. We propose that the loss of E. coli viability induced by the myeloperoxidase-H2O2-chloride system is due in part to the loss of electron transport function consequent to the oxidation of critical catalytic centers in susceptible dehydrogenases.  相似文献   

15.
Comley John C. W. and Wright Spdenis J. 1981. Succinate dehydrogenase and fumarate reductase activity in Aspiculuris tetraptera and Ascaris suum and the effect of the anthelmintics cambendazole, thiabendazole, and levamisole. International Journal for Parasitology11: 79–84. Succinate dehydrogenase and fumarate reductase activities from a particulate fraction of A. tetraptera and a soluble extract of A. suum have been determined using spectrophotometric methods. Fumarate reductase activity in A. suum could only be detected anaerobically. Succinate dehydrogenase activity from A. suum was partially characterized and shown to exist in several multimolecular forms (isoenzymes). The in vitro effect of the anthelmintics cambendazole, thiabendazole and levamisole on succinate dehydrogenase and fumarate reductase activity from the above nematodes are described. Significant inhibition of fumarate reductase activity of both nematodes was only achieved using 5 mM levamisole and 1 mM thiabendazole. After in vivo anthelmintic treatment of A. tetraptera only thiabendazole significantly inhibited fumarate reductase. It is suggested that the succinate dehydro-ogenase-fumarate reductase complex in these nematodes is unlikely to be the primary site chemotherapeutic attack for any of the anthelmintics tested.  相似文献   

16.
The succinate dehydrogenase isolated from Bacillus subtilis was found to catalyze the oxidation of succinate with hydrophilic quinones. Either naphthoquinones or benzoquinones served as acceptors. The enzyme activity increased with the redox potential of the quinone. The highest turnover number was commensurate with that of the bacterial succinate respiration in vivo. The succinate dehydrogenase was similarly active in fumarate reduction with quinols. The highest activity was obtained with the most electronegative quinol. The fumarate reductase isolated from Wolinella succinogenes catalyzed succinate oxidation with quinones and fumarate reduction with the corresponding quinols at activities similar to those of the B. subtilis enzyme. Succinate oxidation by the lipophilic quinones, ubiquinone or vitamin K-1, was monitored as cytochrome c reduction using proteoliposomes containing succinate dehydrogenase together with the cytochrome bc1 complex. The activity with ubiquinone or vitamin K-1 was commensurate with the succinate respiratory activity of bacteria or of the bacterial membrane fraction. The results suggest that menaquinone is involved in the succinate respiration of B. subtilis, although its redox potential is unfavorable.  相似文献   

17.
Reconstitution of succinate-Q reductase is achieved by admixing soluble succinate dehydrogenase (SDH) and ubiquinone-protein-S (QP-S), a new protein isolated from the soluble cytochrome b-c1 complex. The reconstituted reductase catalyzes reduction of Q by succinate. The reaction is fully sensitive to thenoyltrifluoroacetone. The reconstituted reductase (same as succinate-cytochrome c reductase or submitochondrial particles) does not show “low concentration ferricyanide reductase activity” as soluble dehydrogenase does. In other words, this enzymic site on SDH is occupied by QP-S. When an artificial dye, such as phenazine methosulfate or Wurster's Blue, is used as electron acceptor the rate of oxidation of succinate by SDH is not significantly changed regardless of whether the dehydrogenase is in the free or in the reconstituted succinate-Q reductase forms.  相似文献   

18.
Exposure of rats to hypobaric stress for periods of up to 36 h caused a consistent change in the succinate-NT reductase activity of the heart mitochondria whereas there was no significant change in the activities of either succinate dehydrogenase and succinate-NT reductase of the brain and the kidney. Mitochondrial succinate dehydrogenase of the heart, the brain and the kidney was activated 2- to 7-fold with the substrate and malonate. The activations obtained with oxalate, citrate and dinitrophenol were relatively lower in comparison to succinate and malonate. Benzohydroquinone and 2-nitrophenol had no stimulatory effect on the heart, the brain and the kidney mitochondria. THE ACTIVATIONS OBTAINED WITH THE VARIOUS EFFECTORS PARTIALLY (OR COMPLETELY IN THE CASE OF SUCCINATE) REVERSED ON WASHING THE MITOCHONDRIAL SAMPLES WITH THE SUCROSE HOMOGENIZING MEDIUM. The effect of ubiquinol, which also activated the enzyme, was only partially reversed after the second preincubation with succinate in the brain and the kidney whereas in the heart the activity was fully reversed. The increased activity of succinate dehydrogenase obtained with ATP and ADP was further enhanced by Mg2+ exclusively in the brain mitochondria, suggesting the possibility of Mg2+-AIP complex as the active species. Succinate-NT reductase of the heart, the brain and the kidney mitochondria showed a high activation with ubiquinone whereas its reduced form had no stimulatory effect.  相似文献   

19.
Crossed immunoelectrophoresis was used to analyze the components of membrane vesicles of anaerobically grown Escherichia coli. The number of precipitation lines in the crossed immunoelectrophoresis patterns of membrane vesicles isolated from E. coli grown anaerobically on glucose plus nitrate and on glycerol plus fumarate were 83 and 70, respectively. Zymogram staining techniques were used to identify immunoprecipitates corresponding to nitrate reductase, formate dehydrogenase, fumarate reductase, and glycerol-3-phosphate dehydrogenase in crossed immunoelectrophoresis reference patterns. The identification of fumarate reductase by its succinate oxidizing activity was confirmed with purified enzyme and with mutants lacking or overproducing this enzyme. In addition, precipitation lines were found for hydrogenase, cytochrome oxidase, the membrane-bound ATPase, and the dehydrogenases for succinate, malate, dihydroorotate, D-lactate, 6-phosphogluconate, and NADH. Adsorption experiments with intact and solubilized membrane vesicles showed that fumarate reductase, hydrogenase, glycerol-3-phosphate dehydrogenase, nitrate reductase, and ATPase are located at the inner surface of the cytoplasmic membrane; on the other hand, the results suggest that formate dehydrogenase is a transmembrane protein.  相似文献   

20.
A histochemical analysis of reaction rates of a series of enzymes was performed in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus. These neurons were selected because of their functional homogeneity. The high metabolic activity of these cells as well as their large size facilitate cytophotometric analysis in cryostat sections. Sections were incubated for the activity of hexokinase, glucose-6-phosphate dehydrogenase, succinate dehydrogenase, NADPH dehydrogenase, NADPH ferrihaemoprotein reductase and beta-hydroxybutyrate dehydrogenase. All media contained polyvinyl alcohol as tissue stabilizer and Nitro BT as final electron acceptor. Measurements were performed with a Vickers M85a cytophotometer. Linear relationships between the specific formation of formazan (test minus control reaction) and incubation time were obtained for all enzymes although some reactions showed an initial lag phase or an intercept with the ordinate. The relatively high activities of hexokinase, succinate dehydrogenase and the extremely low activity of hydroxybutyrate dehydrogenase indicate that energy is mainly supplied by glycolysis. Glucose-6-phosphate dehydrogenase showed a high activity whereas NADPH reductase and dehydrogenase activity were low in electromotor neurons, indicating that the NADPH generated is largely used for biosynthesis. Despite their synchronous firing pattern activity, electromotor neurons showed a considerable heterogeneity with respect to their metabolic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号