首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simulation method to interpret electron spin resonance (ESR) of spin labelled amphiphilic molecules in oriented phosphatidylcholine multibilayers in terms of a restricted motional model is presented. Order and motion of the cholestane spin label (3-spiro-doxyl-5alpha-cholestane) incorporated into egg yolk phosphatidylcholine, dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine, pure and in mixture with cholesterol, were studied at various temperatures. With egg yolk phosphatidylcholine identical sets of motional parameters were obtained from simulations of ESR spectra obtained at three microwave frequencies (X-, K- and Q-band). With dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine analyses of the spectra show that phase transitions occur in samples containing up to 30 mol % cholesterol. The activation energy for the motion of the spin label is about three times larger above than below the phase transition, indicating a more collective motion in the lipid crystalline state than in the gel state. In the liquid crystalline state the activation energy is larger in the pure phosphatidylcholines than with cholesterol added. Additions of cholesterol to egg phosphatidylcholine induces a higher molecular order but does not appreciably affect correlation times. This is in contrast to dipalmitoylphosphatidylcholine where both order and correlation times are affected by the presence of cholesterol. The activation energies follow the same order as the transition temperatures: dipalmitoylphosphatidylcholine greater than dimyristoylphosphatidylcholine greater than egg yokd phosphatidylcholine, suggesting a similar order of the cooperativity of the motion of the lipid molecules. Magnetic field-induced effects on egg phosphatidylcholine multibilayers were found at Q-band measurements above 40 degrees C. The cholestane spin label mimics order and motion of cholesterol molecule incorporated into the lipid bilayers. This reflects order and motion of the portions of the lipid molecules on the same depth of the bilayer as the rigid steroid portions of the intercalated molecules.  相似文献   

2.
A simulation method to interpret electron spin resonance (ESR) of spin labelled amphiphilic molecules in oriented phosphatidylcholine multibilayers in terms of a restricted motional model is presented. Order and motion of the cholestane spin label (3-spiro-doxyl-5α-cholestane) incorporated into egg yolk phosphatidylcholine, dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine, pure and in mixture with cholesterol, were studied at various termperatures. With egg yolk phosphatidylcholine identical sets of motional parameters were obtained from simulations of ESR spectra obtained at three microwave frequencies (X-, K- and Q-band). With dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine analyses of the spectra show that phase transitions occur in samples containing up to 30 mol % cholesterol. The activation energy for the motion of the spin label is about three times larger above than below the phase transition, indicating a more collective motion in the liquid crystalline state than in the gel state. In the liquid crystalline state the activation energy is larger in the pure phosphatidylcholines than with cholesterol added. Additions of cholesterol to egg phosphatidylcholine induces a higher molecular order but does not appreciably affect correlation times. This is in contrast to dipalmitoylphosphatidylcholine where both order and correlation times are affected by the presence of cholesterol. The activation energies follow the same order as the transition temperatures: dipalmitoylphosphatidylcholine > dimyristoylphosphatidylcholine > egg yolk phosphatidylcholine, suggesting a similar order of the cooperativity of the motion of the lipid molecules. Magnetic field-induced effects on egg phosphatidylcholine multibilayers.  相似文献   

3.
The temperature boundary for phase separation of membrane lipids extracted from Nerium oleander leaves was determined by analysis of spin label motion using electron spin resonance spectroscopy and by analysis of polarization of fluorescence from the probe, trans-parinaric acid. A discontinuity of the temperature coefficient for spin label motion, and for trans-parinaric acid fluorescence was detected at 7°C and −3°C with membrane lipids from plants grown at 45°C/32°C (day/night) and 20°C/15°C, respectively. This change was associated with a sharp increase in the polarization of fluorescence from trans-parinaric acid indicating that significant domains of solid lipid form below 7°C or −3°C in these preparations but not above these temperatures. In addition, spin label motion indicated that the lipids of plants grown at low temperatures are more fluid than those of plants grown at higher temperatures.

A change in the molecular ordering of lipids was also detected by analysis of the separation of the hyperfine extrema of electron spin resonance spectra. This occurred at 2°C and 33°C with lipids from the high and low temperature grown plants, respectively. According to previous interpretation of spin label data the change at 29°C (or 33°C) would have indicated the temperature for the initiation of the phase separation process, and the change at 7°C (or −3°C) its completion. Because of the present results, however, this interpretation needs to be modified.

Differences in the physical properties of membrane lipids of plants grown at the hot or cool temperatures correlate with differences in the physiological characteristics of plants and with changes in the fatty acid composition of the corresponding membrane lipids. Environmentally induced modification of membrane lipids could thus account, in part, for the apparently beneficial adjustments of physiological properties of this plant when grown in these regimes.

  相似文献   

4.
B J Wisnieski  K K Iwata 《Biochemistry》1977,16(7):1321-1326
Two electron spin resonance (ESR) spin labels were used to monitor the physical state of bacterial and animal cell membranes: 5N10, a nitroxide derivative of decane, and 12NS-GA, a glucosamine derivative of 12-nitroxide stearic acid. Spectra were recorded at 1 degrees C intervals from approximately 5 to 45 degrees C. Arrhenius plots of log hH/hP vs. 1/K were obtained by measuring the amplitudes of the hydrocarbon and water signals, hH and hP, respectively. Two discontinuities in the Arrhenius plot (at characteristic temperatures t1 and th) were observed with bacterial cell membranes independent of the spin label employed. Analysis of sealed animal cell membrane samples revealed four characteristic temperatures when the hydrophobic spin lable 5N10 was used, but only two when the amphiphilic spin label 12NS-GA was used. The specific set of characteristic temperatures revealed with 12NS-GA depended on whether the membrane preparation was inside out (ISO) or right side out (RSO). Analysis of Newcastle disease virus, a source of RSO plasma membrane derived from host, revealed two characteristic temperatures at approximately 14 and 33 degrees C. Analysis of phagosomes, a source of ISO plasma membrane derived from LM cells, revealed two characteristic temperatures at approximately 23 and 38 degrees C. When unsealed or disrupted membrane preparations were spin labeled with 12NS-GA, both sets (RSO and ISO) of characteristic temperatures were revealed. The results indicate that the inner and outer monolayers of animal cell membranes are physically distinct and that the glycosylated spin label, 12NS-GA, is apparently restricted in its ability to flip across the membrane bilayer. In this study, characteristic temperatures were pinpointed by computer analysis of the ESR spectral data.  相似文献   

5.
Spin Label Motion in Fatty Acids   总被引:2,自引:0,他引:2       下载免费PDF全文
Spin labels dissolved in highly purified fatty acid systems exhibit nearly identical tumbling rates in liquid and solid phases. Even though the spin labels do not have the same molecular geometry as the lipid matrix the melting point of the matrix can be inferred by measurements of the temperature dependency of molecular motion.  相似文献   

6.
The initial rate of concanavalin A-mediated agglutination of polyoma transformed Baby Hamster Kidney (pyBHK) cells follows Arrhenius kinetics. There is a smooth decrease in the agglutination rate from 37 degrees C to 22 degrees C with an activation energy of 11.8 +/- 0.2 kcal/mol in this region. There is a sharp decrease in agglutination rate below 22 degrees C. The addition of 0.1 mM 1,3-di-tert-2-hydroxyl-5-methylbenzene, a lipid perturber, increases the agglutination rate by a factor of two and increases the membrane lipid fluidity as determined by the spin label method. The rotational correlation time of the spin label 2N14 (2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide) was measured. The sum of the enthalpy of activation of rotational diffusion and the enthalpy of activation of translational diffusion is very nearly equal to the enthalpy of activation of agglutination. This is consistent with the rate limiting step of agglutination being receptor diffusion, which is probably limited in pyBHK cells by membrane lipid fluidity.  相似文献   

7.
Yeast mutants lacking fatty acid synthetase activity (fas-) die when deprived of saturated fatty acid under conditions which are otherwise growth-supporting. The spin label technique is used to show that restriction of molecular rotational diffusion of spin label molecules dissolved in aqueous zones increases several fold under conditions of fatty acid starvation while the apparent physical state of cellular hydrocarbon zones remains essentially unchanged. We focus attention on the cellular aqueous interior as the potential site of alteration under selective starvation conditions. Correspondences exist between restriction of molecular motion of water soluble spin labels dissolved in the cell and loss of cell viability. The correspondences to changes in the molecular motion of hydrocarbon soluble spin labels are much less or are not detectable.  相似文献   

8.
9.
Electron paramagnetic resonance was used to investigate the physical state of plant calmodulin in solution. Wheat germ calmodulin contains a single cysteine residue (Cys-27) on the first of four calcium binding loops. In this study the nitroxide spin label 2,2,6,6-tetramethyl-4-maleimidopiperidine-1-oxyl (MAL-6) was covalently attached to Cys-27 to produce a Ca(2+)-sensitive, biologically-active, labeled protein. The rotational correlation time of the spin label, a measure of its rotational mobility and reflective of the physical state of this region of the protein, was calculated under various conditions. Relative to control, changes in the physical state of the protein reflected by increased motion of the spin label were observed at high pH, low ionic strength and upon addition of Ca2+. These results extend knowledge of the structure of the protein, previously known from solid state and biochemical studies, to calmodulin in solution.  相似文献   

10.
The dynamics of the side groups of amino acid residues and local conformational changes in the lysozyme molecule upon dehydration and rehydration of lysozyme crystals were studied by the methods of spin label, X-ray diffraction, and molecular dynamics. The His15 residue of lysozyme from chicken egg white was modified by spin label, and spin-labeled tetragonal crystals of the protein were grown. The spatial structure of the covalently bound spin label and its immediate surroundings in the lysozyme tetragonal crystal was determined. The conformation of a fragment of the lysozyme molecule with the spin label on His15, optimized by the method of molecular dynamics, closely agreed with X-ray data. It was found by the X-ray diffraction analysis that a decrease in relative humidity to 40% is accompanied by both a decrease in the unit cell volume by 27% and a change in the diffraction field of roentgenograms from 0.23 to 0.60 HM. The dehydration of spin-labeled lysozyme crystals leads to an anomalous widening of EPR peaks without changes in their position. The dehydration in the humidity range studied has a two-stage character. The decrease in humidity to 75% is accompanied by a sharp change in the parameters measured, and on further decrease in humidity to 40% they change insignificantly. The first stage is caused by the removal of the greater part of molecules of bulk water, and the second stage is due to the removal of the remaining bulk water and possible changes in the dynamics of weakly bound water molecules and their position. The simulation of experimental EPR spectra showed that the anomalous broadening of the spectrum upon dehydration is related to an increase in the dispersion of spin label orientations induced by changes in the network of hydrogen bonds generated by water molecules in the vicinity of the spin label and a possible turn (by no more than 5 degrees) of the entire protein molecule. After rehydration, the physical state of the lysozyme crystal did not return to the starting point.  相似文献   

11.
We investigate the interaction between dipalmitoylphosphatidylcholine (DPPC) and a nitroxide spin label in order to understand its influences on lipid structure and dynamics using molecular dynamics simulations. The system was modified by covalently attaching nitroxide spin labels to the headgroups of two DPPC molecules. (S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate) (MTSL) was used as the spin label. The label position and dynamics were analyzed as was the impact of the modified DPPC on the structure of the surrounding lipids. The modified DPPC molecules locate closer to the center of the membrane than unmodified DPPC molecules. The rotation of the spin label is unrestricted, but there are favored orientations. MTSL depresses the deuterium order parameters of the carbon atoms close to the headgroup in surrounding DPPC molecules. The spin label has no impact on order parameters of carbon atoms at the end of the lipid tails. The lateral diffusion constant of the modified DPPC is indistinguishable from unmodified DPPC molecules. These novel computational results suggest an experimental validation.  相似文献   

12.
The thermotropic phase behaviour of tonoplast material isolated from leaf mesophyll protoplasts of the obligatory CAM plant Kalanchoë daigremontiana was investigated by electron power magnetic resonance (EPR) spectroscopy using a spin label technique. The data clearly show that at temperatures below 9 °C the tonoplast membrane is in a rigid state. Above 9 °C, an increasing fluidization of the tonoplast occurs. Two distinct temperature ranges were observed: a cooperative melting process between 9 and 14 °C being followed by a second broad melting process starting at 18 °C, with continuously increasing membrane fluidity up to 51 °C, which was the highest temperature tested. These results are important for a better understanding of the mechanism of the temperature modulation of CAM. The data support the hypothesis that temperature affects CAM via the permeability of the tonoplast membrane, which determines the rates of the passive malic acid efflux from the vacuole and thus the capability of the plant to accumulate malic acid in the vacuoles overnight at a given temperature.  相似文献   

13.
Activation of the first component of human complement (C1) by bilayer-embedded nitroxide spin label lipid haptens and specific rabbit antinitroxide antibody has been measured. The nitroxide spin label hapten was contained in host bilayers of either dimyristoyl phosphatidylcholine or dipalmitoyl phosphatidylcholine in the form of both liposomes and vesicles. At a temperature of 32 degrees C, which is intermediate between the hydrocarbon chain-melting temperatures of the two phospholipids, activation of C1 in such vesicles and liposomes is more efficient in the fluid membrane. Studies of C1 activation in binary mixtures of cholesterol and dipalmitoyl phosphatidylcholine indicate that the activation of C1 is not limited by the lateral diffusion of the lipid haptens in these membranes.  相似文献   

14.
Low‐melting‐point solid‐state electrolytes (SSE) are critically important for low‐cost manufacturing of all‐solid‐state batteries. Lithium hydroxychloride (Li2OHCl) is a promising material within the SSE domain due to its low melting point (mp < 300 °C), cheap ingredients (Li, H, O, and Cl), and rapid synthesis. Another unique feature of this compound is the presence of Li vacancies and rotating hydroxyl groups which promote Li‐ion diffusion, yet the role of the protons in the ion transport remains poorly understood. To examine lithium and proton dynamics, a set of solid‐state NMR experiments are conducted, such as magic‐angle spinning 7Li NMR, static 7Li and 1H NMR, and spin‐lattice T1(7Li)/T1(1H) relaxation experiments. It is determined that only Li+ contributes to long‐range ion transport, while H+ dynamics is constrained to an incomplete isotropic rotation of the OH group. The results uncover detailed mechanistic understanding of the ion transport in Li2OHCl. It is shown that two distinct phases of ionic motions appear at low and elevated temperatures, and that the rotation of the OH group controls Li+ and H+ dynamics in both phases. The model based on the NMR experiments is fully consistent with crystallographic information, ionic conductivity measurements, and Born–Oppenheimer molecular dynamic simulations.  相似文献   

15.
In non–drought years (1977, 1985), temperatures and oxygen concentrations from 1 to 14 July at the deepest point in each of five pools in Wilfin Beck were similar with ranges of 12–18° C and 7·8–9·8 mg l–1. Trout Salmo trutta were present in all pools. In drought years (1976, 1983), temperature increased and oxygen concentration decreased as pool size decreased. In the two smallest pools, they were outside the thermal and oxygen limits for trout (ranges for both pools 24–29° C, 1·2–2·5 mg l–1), and trout were absent. Values in a medium–sized pool were close to the incipient lethal levels and a few juvenile trout were present in both drought years. The lowest temperatures and highest oxygen concentrations were recorded in the two largest pools (ranges 20–25° C, 3·6–4·8 mg l–1) and trout of all ages (0+ to adults) were present in both drought years. In these two pools, both temperature and oxygen concentration decreased from the surface to the deepest point in the pool. Trout preferred lower temperatures near the pool bottom rather than higher oxygen concentrations near the surface, but some fish moved towards the surface at night when the pool cooled slightly. These field results were discussed in relation to lethal values recorded for brown trout in the laboratory, and there was general agreement between field and laboratory values. Trout in the drought years occurred at temperatures close to, or below, the incipient lethal value of 24·7° C (+0·5) and also at the highest oxygen concentrations, but only when these were at temperatures below the incipient lethal value.  相似文献   

16.
J J Yin  J B Feix    J S Hyde 《Biophysical journal》1987,52(6):1031-1038
Electron-electron double resonance (ELDOR) and saturation-recovery spectroscopy employing 14N:15N stearic acid spin-label pairs have been used to study the effects of cholesterol on lateral diffusion and vertical fluctuations in lipid bilayers. The 14N:15N continuous wave electron-electron double resonance (CW ELDOR) theory has been developed using rate equations based on the relaxation model. The collision frequency between 14N-16 doxyl stearate and 15N-16 doxyl stearate, WHex (16:16), is indicative of lateral diffusion of the spin probes, while the collision frequency between 14N-16 doxyl stearate and 15N-5 doxyl stearate, WHex (16:5), provides information on vertical fluctuations of the 14N-16 doxyl stearate spin probe toward the membrane surface. Our results show that: (a) cholesterol decreases the electron spin-lattice relaxation time Tle of 14N-16 doxyl stearate spin label in dimyristoylphosphatidylcholine (DMPC) and egg yolk phosphatidylcholine (egg PC). (b) Cholesterol increases the biomolecular collision frequency WHex (16:16) and decreases WHex (16:5), suggesting that incorporation of cholesterol significantly orders the part of the bilayer that it occupies and disorders the interior region of the bilayer. (c) Alkyl chain unsaturation of the host lipid moderates the effect of cholesterol on both vertical fluctuations and lateral diffusion of 14N-16 doxyl stearate. And (d), there are marked differences in the effects of cholesterol on lateral diffusion and vertical fluctuations between 0-30 mol% and 30-50 mol% of cholesterol that suggest an inhomogeneous distribution of cholesterol in the membrane.  相似文献   

17.
The initial rate of concanavalin A-mediated agglutination of polyoma transformed Baby Hamster Kidney (pyBHK) cells follows Arrhenius kinetics. There is a smooth decrease in the agglutination rate from 37°C to 22°C with an activation energy of 11.8 ± 0.2 kcal/mol in this region. There is a sharp decrease in agglutination rate below 22°C. The addition of 0.1 mM 1,3-di-tert-2-hydroxyl-5-methylbenzene, a lipid perturber, increases the agglutination rate by a factor of two and increases the membrane lipid fluidity as determined by the spin label method. The rotational correlation time of the spin label 2N14 (2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide) was measured. The sum of the enthalpy of activation of rotational diffusion and the enthalpy of activation of translational diffusion is very nearly equal to the enthalpy of activation of agglutination. This is consistent with the rate limiting step of agglutination being receptor diffusion, which is probably limited in pyBHK cells by membrane lipid fluidity.  相似文献   

18.
Spectral characterization of 15N spin labels   总被引:3,自引:0,他引:3  
  相似文献   

19.
Freezing and melting water in lamellar structures.   总被引:1,自引:0,他引:1  
The manner in which ice forms in lamellar suspensions of dielaidoylphosphatidylethanolamine, dielaidoylphosphatidylcholine, and dioleoylphosphatidylcholine in water depends strongly on the water fraction. For weight fractions between 15 and 9%, the freezing and melting temperatures are significantly depressed below 0 degree C. The ice exhibits a continuous melting transition spanning as much as 20 degrees C. When the water weight fraction is below 9%, ice never forms at temperatures as low as -40 degrees C. We show that when water contained in a lamellar lipid suspension freezes, the ice is not found between the bilayers; it exists as pools of crystalline ice in equilibrium with the bound water associated with the polar lipid headgroups. We have used this effect, together with the known chemical potential of ice, to measure hydration forces between lipid bilayers. We find exponentially decaying hydration repulsion when the bilayers are less than about 7 A apart. For larger separations, we find significant deviations from single exponential decay.  相似文献   

20.
The influence of structural changes of an abasic site in duplex DNA on noncovalent and site-directed spin labeling (NC-SDSL) of the spin label ç were examined with electron paramagnetic resonance (EPR) spectroscopy. The binding affinities of ç to sixteen different DNA duplexes containing all possible sequences immediately flanking the abasic site were determined and the results showed that the binding of ç is highly flanking-sequence dependent. In general, a 5′-dG nucleotide favors the binding of the spin label. In particular, 5′-d(G__T) was the best binding sequence whereas 5′-d(C__T) showed the lowest affinity. Changing the structure of the abasic site linker from a tetrahydrofuran analog (F) to the anucleosidic C3-spacer (C3) does not appreciably affect the binding of ç to the abasic site. For efficient binding of ç, the abasic site needs to be located at least four base pairs away from the duplex end. Introducing a methyl substituent at N3 of ç did not change the binding affinity, but a decreased binding was observed for both N3-ethyl and -propyl groups. These results will guide the design of abasic site receptors and spin label ligands for NC-SDSL of nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号