首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of solvent on the rate of leuprolide degradation and on the structure of the degradation products was explored. Leuprolide solutions (370 mg/mL) were prepared in water and dimethyl sulfoxide (DMSO) for delivery in DUROS osmotic implants. Both solvent systems demonstrated better than 90% stability after 1 year at 37 degrees C, where the DMSO formulation afforded better stability than the aqueous formulation and was used in subsequent clinical trials. The rate of leuprolide degradation in DMSO was also observed to accelerate with increasing moisture content, indicating that the aprotic solvent minimized chemical degradation. Interestingly, leuprolide degradation products varied with formulation vehicle. The proportions of leuprolide degradation products observed to form in water and DMSO at 37 degrees C were hydrolysis > aggregation > isomerization > oxidation and aggregation > oxidation > hydrolysis > isomerization, respectively. Specifically, more N-terminal hydrolysis and acetylation were observed under aqueous conditions, and increased Trp oxidation and Ser beta-elimination were seen under non-aqueous conditions. Furthermore, the major chemical degradation pathway changed with temperature in the DMSO formulation (decreasing oxidation with increasing temperature), but not in the aqueous formulation.  相似文献   

2.
The oxidation of quercetin by horseradish peroxidase/H(2)O(2) was studied in the absence but especially also in the presence of glutathione (GSH). HPLC analysis of the reaction products formed in the absence of GSH revealed formation of at least 20 different products, a result in line with other studies reporting the peroxidase-mediated oxidation of flavonoids. In the presence of GSH, however, these products were no longer observed and formation of two major new products was detected. (1)H NMR identified these two products as 6-glutathionylquercetin and 8-glutathionylquercetin, representing glutathione adducts originating from glutathione conjugation at the A ring instead of at the B ring of quercetin. Glutathione addition at positions 6 and 8 of the A ring can best be explained by taking into consideration a further oxidation of the quercetin semiquinone, initially formed by the HRP-mediated one-electron oxidation, to give the o-quinone, followed by the isomerization of the o-quinone to its p-quinone methide isomer. All together, the results of the present study provide evidence for a reaction chemistry of quercetin semiquinones with horseradish peroxidase/H(2)O(2) and GSH ultimately leading to adduct formation instead of to preferential GSH-mediated chemical reduction to regenerate the parent flavonoid.  相似文献   

3.
Tricyclic antidepressants (TCAs), along with phenothyazines and some industrial chemicals, are shown to react with enzymes that exhibit peroxidase activity. These reactions result in the formation of reactive intermediates having unpaired electrons. The peroxidase oxidation and reactivity of two TCAs, desipramine and clomipramine, were investigated. As a model of peroxidase, horseradish peroxidase (HRP) was employed. The products of the peroxidase catalyzed oxidation of desipramine and clomipramine were identified as N-dealkylated compounds iminodibenzyl and 3-chloroiminodibenzyl using the GC/MS technique. Both drugs formed broad UV/vis absorption spectra in the presence of HRP and H(2)O(2), indicating the formation of a radical cations-reactive intermediate of the oxidation reaction. The dynamics of the formation of the desipramine intermediate was studied using UV/vis spectroscopy. The extinction coefficient was measured for the reactive intermediate, 7.80×10(3)M(-1)cm(-1), as well as the apparent Michaelis-Menten and catalytic constants, 4.4mM and 2.3s(-1), respectively. Both desipramine and clomipramine degraded DNA in the presence of HRP/H(2)O(2), as was revealed by agarose gel electrophoresis and PCI extraction. Manipulating the kinetic parameters of drug's radical formation and determining the extent of degradation to biomolecules could be potentially used for designing effective agents exhibiting specific reactivity.  相似文献   

4.
Exposing bovine lipid extract surfactant (BLES), a clinical surfactant, to reactive oxygen species arising from hypochlorous acid or the Fenton reaction resulted in an increase in lipid (conjugated dienes, lipid aldehydes) and protein (carbonyls) oxidation products and a reduction in surface activity. Experiments where oxidized phospholipids (PL) were mixed with BLES demonstrated that this addition hampered BLES biophysical activity. However the effects were only moderately greater than with control PL. These results imply a critical role for protein oxidation. BLES oxidation by either method resulted in alterations in surfactant proteins SP-B and SP-C, as evidenced by altered Coomassie blue and silver staining. Western blot analyses showed depressed reactivity with specific antibodies. Oxidized SP-C showed decreased palmitoylation. Reconstitution experiments employing PL, SP-B, and SP-C isolated from control or oxidized BLES demonstrated that protein oxidation was more deleterious than lipid oxidation. Furthermore, addition of control SP-B can improve samples containing oxidized SP-C, but not vice versa. We conclude that surfactant oxidation arising from reactive oxygen species generated by air pollution or leukocytes interferes with surfactant function through oxidation of surfactant PL and proteins, but that protein oxidation, in particular SP-B modification, produces the major deleterious effects.  相似文献   

5.
H2O2 reacts with cytochrome c peroxidase in a variety of ways. The initial reaction produces cytochrome c peroxidase Compound I. If more than a 10-fold excess of H2O2 is added to the enzyme, a portion of the H2O2 will react with Compound I to produce molecular oxygen. The remainder oxidizes the heme group and various amino acid residues in the protein. If less than a 10-fold excess of H2O2 is added to the enzyme, essentially all the H2O2 is utilized by oxidation of amino acid residues in the protein. The oxidation of the amino acid residues by H2O2 substantially modifies the reactivity of cytochrome c peroxidase. The modification of reactivity could be the direct result of amino acid oxidation or an indirect result caused by a perturbation of the protein structure at the active site. The products oxidized at pH 8 lose their ability to react with H2O2. The products oxidized at pH4 react with H2O2 but their reactivity toward Fe(CN)4-6 is substantially reduced.  相似文献   

6.
The glutathione peroxidase-glutathione reductase system, an alternative pathway for metabolic utilization of H2O2 [Chance, Sies & Boveris (1979) Physiol. Rev. 59, 527-605], was investigated in Trypanosoma cruzi, an organism lacking catalase and deficient in peroxidase [Boveris & Stoppani (1977) Experientia 33, 1306-1308]. The presence of glutathione (4.9 +/- 0.7 nmol of reduced glutathione/10(8) cells) and NADPH-dependent glutathione reductase (5.3 +/- 0.4 munit/10(8) cells) was demonstrated in the cytosolic fraction of the parasite, but with H2O2 as substrate glutathione peroxidase activity could not be demonstrated in the same extracts. With t-butyl hydroperoxide or cumene hydroperoxide as substrate, a very low NADPH-dependent glutathione peroxidase activity was detected (equivalent to 0.3-0.5 munit of peroxidase/10(8) cells, or about 10% of glutathione reductase activity). Blank reactions of the glutathione peroxidase assay (non-enzymic oxidation of glutathione by hydroperoxides and enzymic oxidation of NADPH) hampered accurate measurement of peroxidase activity. The presence of superoxide dismutase and ascorbate peroxidase activity in, as well as the absence of catalase from, epimastigote extracts was confirmed. Ascorbate peroxidase activity was cyanide-sensitive and heat-labile, but no activity could be demonstrated with diaminobenzidine, pyrogallol or guaiacol as electron donor. The summarized results support the view that T. cruzi epimastigotes lack an adequate enzyme defence against H2O2 and H2O2-related free radicals.  相似文献   

7.
1. Changes in liver glutathione reductase and glutathione peroxidase activities in relation to age and sex of rats were measured. Oxidation of GSH was correlated with glutathione peroxidase activity. 2. Glutathione reductase activity in foetal rat liver was about 65% of the adult value. It increased to a value slightly higher than the adult one at about 2-3 days, decreased until about 16 days and then rose after weaning to a maximum at about 31 days, finally reaching adult values at about 45 days old. 3. Weaning rats on to an artificial rat-milk diet prevented the rise in glutathione reductase activity associated with weaning on to the usual diet high in carbohydrate. 4. In male rats glutathione peroxidase activity in the liver increased steadily up to adult values. There were no differences between male and female rats until sexual maturity, when, in females, the activity increased abruptly to an adult value that was about 80% higher than that in males. 5. The rate of GSH oxidation in rat liver homogenates increased steadily from 3 days until maturity, when the rate of oxidation was about 50% higher in female than in male liver. 6. In the liver a positive correlation between glutathione peroxidase activity and GSH oxidation was found. 7. It is suggested that the coupled oxidation-reduction through glutathione reductase and glutathione peroxidase is important for determining the redox state of glutathione and of NADP, and also for controlling the degradation of hydroperoxides. 8. Changes in glutathione reductase and glutathione peroxidase activities are discussed in relation to the redox state of glutathione and NADP and to their effects on the concentration of free CoA in rat liver and its possible action on ketogenesis and lipogenesis.  相似文献   

8.
The surface specific technique vibrational sum frequency spectroscopy has been applied to in situ studies of the degradation of Langmuir monolayers of 1,2-diacyl-phosphocholines with various degrees of unsaturation in the aliphatic chains. To monitor the degradation of the phospholipids, the time-dependent change of the monolayer area at constant surface pressure and the sum frequency intensity of the vinyl CH stretch at the carbon-carbon double bonds were measured. The data show a rapid degradation of monolayers of phospholipids carrying unsaturated aliphatic chains compared to the stable lipids carrying fully saturated chains when exposed to the ambient laboratory air. In addition, the degradation of the phospholipids can be inhibited by purging the ambient air with nitrogen. This instability may be attributed to spontaneous degradation by oxidation mediated by various reactive species in the air. To further elucidate the process of lipid oxidation in biological membranes artificial Langmuir monolayers probed by a surface specific spectroscopic technique as in this study can serve as a model system for studying the degradation/oxidation of cell membrane constituents.  相似文献   

9.
Commercial horseradish peroxidase, when supplemented with dichlorophenol and either manganese or hydrogen peroxide, will rapidly oxidize glutathione. This peroxidase-catalyzed oxidation of glutathione is completely inhibited by the presence of auxin protectors. Three auxin protectors and three o-dihydroxyphenols were tested; all inhibited the oxidation. Glutathione oxidation by horseradish peroxidase in the presence of dichlorophenol and Mn is also completely inhibited by catalase, implying that the presence of Mn allows the horseradish peroxidase to reduce oxygen to H2O2, then to use the H2O2 as an electron acceptor in the oxidation of glutathione. Catalase, added 2 minutes after the glutathione oxidation had begun, completely inhibited further oxidation but did not restore any gluthathione oxidation intermediates. In contrast, the addition of auxin protectors, or o-dihydroxyphenols, not only inhibited further oxidation of gluthathione by horseradish peroxidase (+ dichlorophenol + Mn), but also caused a reappearance of glutathione as if these antioxidants reduced a glutathione oxidation intermediate. However, when gluthathione was oxidized by horseradish peroxidase in the presence of dichlorophenol and H2O2 (rather than Mn), then the inhibition of further oxidation by auxin protectors or o-dihydroxyphenols was preceded by a brief period of greatly accelerated oxidation. The data provide further evidence that auxin protectors are cellular redox regulators. It is proposed that the monophenol-diphenol-peroxidase system is intimately associated with the metabolic switches that determine whether a cell divides or differentiates.  相似文献   

10.
Ferrochelatase (EC 4.99.1.1) catalyzed heme synthesis is best accomplished in an anaerobic environment. Factors responsible for this phenomenon are not fully understood. Oxygen sensitivity of this reaction may be due to (a) oxidation of essential thiol groups on the enzyme, (b) oxidation of ferrous ions, or (c) the formation of hydrogen peroxide. These possibilities were investigated using rat liver ferrochelatase preparations and a continuous, dual-wavelength assay. Dithiothreitol and ascorbic acid stimulated the ferrochelatase reaction whereas GSH was not as effective. Addition of GSSG had little influence on the enzyme reaction. Total ferrochelatase activity in the assay remained unaffected at the end of the incubation and inclusion of glutathione peroxidase did not alter these results. Thus, ferrochelatase itself was not inactivated by oxidation. In selenium-deficient rats, the mitochondrial ferrochelatase levels were maintained even when glutathione peroxidase activity was significantly depleted. However, glutathione peroxidase very effectively inhibited the thiol-dependent aerobic degradation of heme. These results suggested that autoxidation of heme and of ferrous ions to the unusable ferric form largely contribute toward the oxygen sensitivity of the ferrochelatase reaction in vitro.  相似文献   

11.
The cerebral free radical oxidation processes on 40 Wistar rats-males were studied by evaluation of thiobarbituric-active products of lipid peroxidation level, superoxide dismutase and glutathione peroxidase activity in sensomotor cortex, hypothalamus and brain stem. Was found that differential stability of rats to motor activities during single intensive physical loading is due by reactivity of free radicals oxidation, associated with decrease of cerebral antioxidant enzymes activity. Long term intensive physical loading may accompanied by reducing of reserve possibilities of antioxidant enzymes an cerebral structures, what possible play potential role in pathogenetic mechanisms of osteoarthritis.  相似文献   

12.
A series of new phospholipids with polar head groups have been synthesized by enzymatic transphosphatidylation of 1,2-dioleoyl-sn-glycerophosphocholine and identified by 1H NMR and MALDI-TOF-MS. The acceptor alcohols were N- or C2-substituted derivatives of ethanolamine (diethanolamine, triethanolamine, serinol, Tris, BisTris). Phospholipases D from cabbage (PLDcab) and Streptomyces sp. (PLDStr) were compared with respect to product yield and purity as well as the initial rates in transphosphatidylation and competing hydrolysis. In all reactions, PLDStr showed a remarkably higher transphosphatidylation activity than PLDcab. However, higher yields of the phospholipids with diethanolamine, triethanolamine, and serinol were obtained by PLDcab because PLDStr resulted in the additional formation of diphosphatidyl derivatives. In the synthesis of the Tris and BisTris derivatives, PLD(Str) was much more appropriate because voluminous head group alcohols (>129A3) are poorly converted by PLDcab. With BisTris as acceptor alcohol two regioisomeric forms of phosphatidyl-BisTris were obtained.  相似文献   

13.
1-Palmitoyl-2-linoleoyl-phosphatidylethanolamine degrades relatively quickly when subjected to common storage and handling procedures. The degradation products consist of compounds in which double bonds in the sn-2 position acyl chain are partially oxidized and of products arising from the hydrolysis of the acyl ester bonds. Thin-layer chromatography (TLC), which is widely utilized to isolate and to ascertain the purity of phospholipids, does not readily separate the oxidation products from the parent lipid class. High-performance liquid chromatography (HPLC), however, employing a normal phase column and an isocratic, UV-transparent solvent system, can be employed to produce a rapid analytical or preparative of phosphatidylethanolamine (PE) from these degradative impurities.  相似文献   

14.
The present review deals with the chemical properties of selenium in relation to its antioxidant properties and its reactivity in biological systems. The interaction of selenite with thiols and glutathione and the reactivity of selenocompounds with hydroperoxides are described. After a short survey on distribution, metabolism and organification of selenium, the role of this element as a component of the two seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are also reviewed. Both enzymes reduce different hydroperoxides to the corresponding alcohols and the major difference is the reduction of lipid hydroperoxides in membrane matrix catalyzed only by the phospholipid hydroperoxide glutathione peroxidase. However, in spite of the different specificity for the peroxidic substrates, the kinetic mechanism of both glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase seems identical and proceeds through a tert-uni ping pong mechanism. In the reaction cycle, indeed, as supported by the kinetic data, the oxidation of the ionized selenol by the hydroperoxide yields a selenenic acid that in turn is reduced back by two reactions with reduced glutathione. Special emphasis has been given to the role of selenium-dependent glutathione peroxidases in the prevention of membrane lipid peroxidation. While glutathione peroxidase is able to reduce hydrogen peroxide and other hydroperoxides possibly present in the soluble compartment of the cell, this enzyme fails to inhibit microsomal lipid peroxidation induced by NADPH or ascorbate and iron complexes. On the other hand, phospholipid hydroperoxide glutathione peroxidase, by reducing the phospholipid hydroperoxides in the membranes, actively prevents lipid peroxidation, provided a normal content of vitamin E is present in the membranes. In fact, by preventing the free radical generation from lipid hydroperoxides, phospholipid hydroperoxide glutathione peroxidase decreases the vitamin E requirement necessary to inhibit lipid peroxidation. Finally, the possible regulatory role of the selenoperoxidases on the arachidonic acid cascade enzymes (cyclooxygenase and lipoxygenase) is discussed.  相似文献   

15.
Peroxiredoxins are antioxidant enzymes whose peroxidase activity depends on a redox-sensitive cysteine residue at the active center. In this study we investigated properties of the active center cysteine of bovine 1-Cys peroxiredoxin using a recombinant protein (BRPrx). The only cysteine residue of the BRPrx molecule was oxidized rapidly by an equimolar peroxide or peroxynitrite to the cysteine sulfenic acid. Approximate rates of oxidation of BRPrx by different peroxides were estimated using selenium glutathione peroxidase as a competitor. Oxidation of the active center cysteine of BRPrx by H2O2 proceeded only several times slowly than that of the selenocysteine of glutathione peroxidase. The rate of oxidation varied depending on peroxides tested, with H2O2 being about 7 and 80 times faster than tert-butyl hydroperoxide and cumene hydroperoxide, respectively. Peroxynitrite oxidized BRPrx slower than H2O2 but faster than tert-butyl hydroperoxide. Further oxidation of the cysteine sulfenic acid of BRPrx to higher oxidation states proceeded slowly. Oxidized BRPrx was reduced by dithiothreitol, dihydrolipoic acid, and hydrogen sulfide, and demonstrated peroxidase activity (about 30 nmol/mg/min) with these reductants as electron donors. beta-Mercaptoethanol formed a mixed disulfide and did not support peroxidase activity. Oxidized BRPrx did not react with glutathione, cysteine, homocysteine, N-acetyl-cysteine, and mercaptosuccinic acid.  相似文献   

16.
The metabolism of styrene by prostaglandin hydroperoxidase and horseradish peroxidase was examined. Ram seminal vesicle microsomes in the presence of arachidonic acid or hydrogen peroxide and glutathione converted styrene to glutathione adducts. Neither styrene 7,8-oxide nor styrene glycol was detected as a product in the incubation. Also, the addition of styrene 7,8-oxide and glutathione to ram seminal vesicle microsomes did not yield styrene glutathione adducts. The peroxidase-generated styrene glutathione adducts were isolated by high pressure liquid chromatography and characterized by NMR and tandem mass spectrometry as a mixture of (2R)- and (2S)-S-(2-phenyl-2-hydroxyethyl)glutathione. (1R)- and (1S)-S-(1-phenyl-2-hydroxyethyl)glutathione were not formed by the peroxidase system. The addition of phenol or aminopyrine to incubations, which greatly enhances the oxidation of glutathione to a thiyl radical by peroxidases, increased the formation of styrene glutathione adducts. We propose a new mechanism for the formation of glutathione adducts that is independent of epoxide formation but dependent on the initial oxidation of glutathione to a thiyl radical by the peroxidase, and the subsequent reaction of the thiyl radical with a suitable substrate, such as styrene.  相似文献   

17.
Summary

Indole-3-acetic acid (IAA) enhanced the peroxidase-induced lipid peroxidation in phosphatidylcholine liposomes, as measured by loss of fluorescence of cis-parinaric acid. α-Tocopherol or β-carotene in the lipid phase or ascorbate or Trolox in the aqueous phase inhibited the loss of fluorescence induced by the peroxidase + IAA system, but glutathione had only a small inhibitory effect. The peroxyl radical formed by one-electron oxidation of IAA, followed by decarboxylation and reaction with oxygen, is suggested to act as the initiator of lipid peroxidation. The protection by ascorbate or Trolox is explained by the reactivity of these compounds with the IAA indolyl radical, as shown by pulse radiolysis experiments, whereas the weak effect of glutathione agrees with its low reactivity towards the IAA-derived peroxyl radical and its precursors.  相似文献   

18.
Under pathophysiological conditions, like myocardial ischemia and reperfusion, cardiac phospholipid homeostasis is severely disturbed, resulting in a net degradation of phospholipids and the accumulation of degradation products, such as lysophospholipids and (non-esterified) fatty acids. The derangements in phospholipid metabolism are thought to be involved in the sequence of events leading to irreversible myocardial injury. The net degradation of phospholipids as observed during myocardial ischemia may result from increased hydrolysis and/or reduced resynthesis, while during reperfusion hydrolysis is likely to prevail in this net degradation. Several studies indicate that the activation of phospholipases A2 plays an important role in the hydrolysis of phospholipids. In this review current knowledge regarding the potential role of the different types of phospholipases A2 in ischemia and reperfusion-induced damage is being evaluated. Furthermore, it is indicated how recent advances in molecular biological techniques could be helpful in determining whether disturbances in phospholipid metabolism indeed play a crucial role in the transition from reversible to irreversible myocardial ischemia and reperfusion-induced injury, the knowledge of which could be of great therapeutic relevance.  相似文献   

19.
The rate of oxidation of glutathione by solubilized sulfhydryl oxidase was significantly enhanced in the presence of horseradish peroxidase (donor:hydrogen-peroxide oxidoreductase, EC 1.11.1.7). This enhancement was proportional to the amount of active peroxidase in the assay, but could not be attributed solely to the oxidation of glutathione catalyzed by the peroxidase. A change in the Soret region of the horseradish peroxidase spectrum was observed when both glutathione and peroxidase were present. Moreover, addition of glutathione to a sulfhydryl oxidase/horseradish peroxidase mixture resulted in a rapid shift of the absorbance maximum from 403 nm to 417 nm. This shift indicates the oxidation of horseradish peroxidase. Spectra for three isozyme preparations of horseradish peroxidase, two acidic and one basic, all underwent this red-shift in the presence of sulfhydryl oxidase and glutathione. Cysteine and N-acetylcysteine could replace glutathione. Addition of catalase had no effect on the oxidation of peroxidase, indicating that the peroxide involved in the reaction was not derived from that released into the bulk solution by sulfhydryl oxidase-catalyzed thiol oxidation. Further evidence for a direct transfer of the hydrogen peroxide moiety was obtained by addition of glutaraldehyde to a sulfhydryl oxidase/horseradish peroxidase/N-acetylcysteine mixture. Size exclusion chromatography revealed the formation of a high-molecular-weight species with peroxidase activity, which was completely resolved from native horseradish peroxidase. Formation of this species was absolutely dependent on the presence of both the cysteine-containing substrate and sulfhydryl oxidase. The observed enhancement of sulfhydryl oxidase catalytic activity by the addition of horseradish peroxidase supports a bi uni ping-pong mechanism proposed previously for sulfhydryl oxidase.  相似文献   

20.
We optimized the conditions for oxidation of luminol by hydrogen peroxide in the presence of peroxidase (EC 1.11.1.7) from royal palm leaves (Roystonea regia). The pH range (8.3–8.6) corresponding to maximum chemiluminescence was similar for palm tree peroxidase and horseradish peroxidase. Variations in the concentration of the Tris buffer were accompanied by changes in chemiluminescence. Note that maximum chemiluminescence was observed in the 30 mM Tris solution. The detection limit of the enzyme assay during luminol oxidation by hydrogen peroxide was 1 pM. The specific feature of palm tree peroxidase was the generation of a long-term chemiluminescent signal. In combination with the data on the high stability of palm tree peroxidase, our results indicate that this enzyme is promising for its use in analytical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号