首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myeloperoxidase (MPO)-catalyzed one-electron oxidation of endogenous phenolic constituents (e.g., antioxidants, hydroxylated metabolites) and exogenous compounds (e.g., drugs, environmental chemicals) generates free radical intermediates: phenoxyl radicals. Reduction of these intermediates by endogenous reductants, i.e. recycling, may enhance their antioxidant potential and/or prevent their potential cytotoxic and genotoxic effects. The goal of this work was to determine whether generation and recycling of MPO-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC), by physiologically relevant intracellular reductants such as ascorbate/lipoate could be demonstrated in intact MPO-rich human leukemia HL-60 cells. A model system was developed to show that MPO/H(2)O(2)-catalyzed PMC phenoxyl radicals (PMC*) could be recycled by ascorbate or ascorbate/dihydrolipoic acid (DHLA) to regenerate the parent compound. Absorbance measurements demonstrated that ascorbate prevents net oxidation of PMC by recycling the phenoxyl radical back to the parent compound. The presence of DHLA in the reaction mixture containing ascorbate extended the recycling reaction through regeneration of ascorbate. DHLA alone was unable to prevent PMC oxidation. These conclusions were confirmed by direct detection of PMC* and ascorbate radicals formed during the time course of the reactions by EPR spectroscopy. Based on results in the model system, PMC* and ascorbate radicals were identified by EPR spectroscopy in ascorbate-loaded HL-60 cells after addition of H(2)O(2) and the inhibitor of catalase, 3-aminotriazole (3-AT). The time course of PMC* and ascorbate radicals was found to follow the same reaction sequence as during their recycling in the model system. Recycling of PMC by ascorbate was also confirmed by HPLC assays in HL-60 cells. Pre-loading of HL-60 cells with lipoic acid regenerated ascorbate and thus increased the efficiency of ascorbate in recycling PMC*. Lipoic acid had no effect on PMC oxidation in the absence of ascorbate. Thus PMC phenoxyl radical does not directly oxidize thiols but can be recycled by dihydrolipoate in the presence of ascorbate. The role of phenoxyl radical recycling in maintaining antioxidant defense and protecting against cytotoxic and genotoxic phenolics is discussed.  相似文献   

2.
Recycling of vitamin E in human low density lipoproteins.   总被引:1,自引:0,他引:1  
Oxidative modification of low density lipoproteins (LDL) and their unrestricted scavenger receptor-dependent uptake is believed to account for cholesterol deposition in macrophage-derived foam cells. It has been suggested that vitamin E that is transported by LDL plays a critical role in protecting against LDL oxidation. We hypothesize that the maintenance of sufficiently high vitamin E concentrations in LDL can be achieved by reducing its chromanoxyl radicals, i.e., by vitamin E recycling. In this study we demonstrate that: i) chromanoxyl radicals of endogenous vitamin E and of exogenously added alpha-tocotrienol, alpha-tocopherol or its synthetic homologue with a 6-carbon side-chain, chromanol-alpha-C6, can be directly generated in human LDL by ultraviolet (UV) light, or by interaction with peroxyl radicals produced either by an enzymic oxidation system (lipoxygenase + linolenic acid) or by an azo-initiator, 2,2'-azo-bis(2,4-dimethylvaleronitrile) (AMVN; ii) ascorbate can recycle endogenous vitamin E and exogenously added chromanols by direct reduction of chromanoxyl radicals in LDL; iii) dihydrolipoic acid is not efficient in direct reduction of chromanoxyl radicals but recycles vitamin E by synergistically interacting with ascorbate (reduces dehydroascorbate thus maintaining the steady-state concentration of ascorbate); and iv) beta-carotene is not active in vitamin E recycling but may itself be protected against oxidative destruction by the reductants of chromanoxyl radicals. We suggest that the recycling of vitamin E and other phenolic antioxidants by plasma reductants may be an important mechanism for the enhanced antioxidant protection of LDL.  相似文献   

3.
One-electron oxidation of Trolox C (a vitamin E analogue) by peroxidases   总被引:1,自引:0,他引:1  
The oxidation mechanism of Trolox C (a vitamin E analogue) by peroxidases was examined by stopped flow and ESR techniques. The results revealed that during the oxidation of Trolox C, peroxidase Compound II was the catalytic intermediate. The rate constants for the reaction of Compound II with Trolox C, which should be the rate-determining step, were estimated to be 2.1 X 10(4) and 7.2 X 10(3) M-1.s-1 for horseradish peroxidase and lactoperoxidase, respectively, at pH 6.0. The formation of the Trolox C radical was followed by ESR. The time course of the signal was similar to that of the optical absorbance changes at 440 nm, assigned as the peak of the Trolox C radical. The signal exhibited a hyperfine structure characteristic of phenoxyl radicals. From an estimation of the radical concentration in the steady state and the velocity of the radical formation, the dismutation constant was calculated to be 5 X 10(5) M-1.s-1. The concentration of the signal in the steady state was reduced by the addition of GSH. The spectrum changed from that of the Trolox C radical to that of the ascorbate radical when the reaction was carried out in the presence of ascorbate.  相似文献   

4.
The oxidation of 6-hydroxy-2,2,5,7,8-pentamethylchroman, Trolox C, and alpha-tocopherol by horseradish peroxidase was examined by stopped-flow and ESR experiments. The catalytic intermediate of horseradish peroxidase during the oxidation of vitamin E analogues and vitamin E was invariably Compound II, and rate constants for the rate-determining step decreased in the order 6-hydroxy-2,2,5,7,8-pentamethylchroman > Trolox C > alpha-tocopherol. The formation of phenoxyl radicals from substrates was verified with ESR and was followed optically. Resulting 6-hydroxy-2,2,5,7,8-pentamethylchroman and Trolox C radicals decayed through a dismutation reaction, followed by formation of the quinoid form via a transient intermediate. The sequence of events after formation of 6-hydroxy-2,2,5,7,8-pentamethylchroman and Trolox C radicals was similar to that observed by pulse radiolysis (Thomas, M. J., and Bielski, B. H. J. (1989). J. Am. Chem. Soc. 111, 3315-3319). Final oxidation products of 6-hydroxy-2,2,5,7,8-pentamethylchroman and Trolox C were identified as the quinoid forms and were obtained quantitatively whether or not the analogue had a carboxyl or methyl group at the 2-position of chroman ring. In contrast, enzymatic oxidation of alpha-tocopherol gave alpha-tocopherol quinone in very low yield. Conversion of 6-hydroxy-2,2,5,7,8-pentamethylchroman, Trolox C, and alpha-tocopherol to the corresponding quinones was also catalyzed by metmyoglobin in a reaction completely inhibited by ascorbate.  相似文献   

5.
Mitochondrial electron transport-linked tocopheroxyl radical reduction   总被引:3,自引:0,他引:3  
alpha-Tocopherol (vitamin E) is a lipophilic chain-breaking antioxidant which inhibits lipid peroxidation in isolated mitochondrial membranes and protects membranes from oxidative damage. The primary oxidation product of vitamin E is the tocopheroxyl radical. Reduction of the tocopheroxyl radical can occur by reactions with water-soluble anti-oxidants such as ascorbate or glutathione, resulting in the recycling of vitamin E. Physiological concentrations of vitamin E are too low to allow detection of tocopheroxyl radical by ESR. After dietary supplementation with vitamin E, a 10-20-fold increase in the rat liver mitochondrial membrane content of vitamin E was achieved and this allowed for direct detection of the tocopheroxyl radical by ESR, after treatment with an oxidizing system composed of lipoxygenase and arachidonic acid. By using submitochondrial particle membranes, it was shown that NADH, succinate, and reduced cytochrome c-linked oxidation reduce the tocopheroxyl radical, preventing both accumulation of the radical and vitamin E consumption. As the electron transport chain can reduce tocopheroxyl radical it may have an important physiological role in recycling vitamin E.  相似文献   

6.
A study is made of the effect of GSH as a co-antioxidant with vitamin E during free radical chain autoxidation inhibition studies of dilinoleoylphosphatidylcholine (DLPC) liposomes. Oxidations are initiated in the aqueous phase with azobis(2-amidinopropane hydrochloride) and in the bilayer phase of DLPC with azobis(2,4-dimethylvaleronitrile) under known conditions of the rate of free radical chain initiation (Ri). In reactions initiated in the aqueous phase, GSH is not an efficient antioxidant when acting alone; however, in cooperation with vitamin E in the bilayers, it does effect significant extensions of the efficient induction period of vitamin E. Quantitative studies show that GSH "spares" 0.4 molecules of vitamin E in the bilayer/molecule of GSH and therefore terminates approximately 0.8 peroxyl radical chains as a co-antioxidant with vitamin E. In contrast, GSH is not an effective co-antioxidant with an efficient water-soluble antioxidant, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox). GSH spares only 0.08 molecules of Trolox/molecule of GSH during autoxidation initiated in the aqueous phase with azobis(2-amidinopropane hydrochloride). The inhibition rate constant for GSH in trapping aqueous phase peroxyls is at least an order of magnitude less than that of Trolox. When peroxidation is initiated in the bilayer phase of DLPC with azobis(2,4-dimethylvaleronitrile), GSH is not an effective co-antioxidant with either vitamin E in the bilayer or Trolox in the water. Comparatively higher ratios of GSH to E (GSH/E = 50) or Trolox (GSH/Trolox = 30) are required to give significant extensions of the E or Trolox induction periods. GSH is estimated to preserve only approximately one vitamin E or Trolox molecule for a hundred GSH for peroxidations initiated in the DLPC bilayers. From the kinetic studies and GSH decay studies during inhibition periods, it is concluded that GSH does not act synergistically by regenerating ArOH from the phenoxyl, ArO, radical of vitamin E or Trolox. The mode of antioxidant action of GSH is concluded to be that of trapping peroxyl radicals in the aqueous phase and thereby indirectly sparing vitamin E in the bilayer.  相似文献   

7.
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever alpha-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+ -dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox. When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+ /Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.  相似文献   

8.
Direct reactions of peroxidases with Trolox C (a vitamin E analogue) and vitamin E were observed in 50% (v/v) methanol. The kinetic results revealed that the reaction of horseradish peroxidase intermediate Compound II with Trolox C and vitamin E was the rate-determining step, and the rate constants were estimated to be 1.7 x 10(3) and 5.1 x 10(2) M-1.s-1, respectively. Peroxidases catalyzed the one-electron oxidation of Trolox C and vitamin E, and the vitamin E phenoxyl radicals resulting from the peroxidase reactions were detected by continuous-flow ESR spectroscopy.  相似文献   

9.
Probucol, 4.4'-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1.1-dimethyl)phenol], is a lipid regulating drug whose therapeutic potential depends on its antioxidant properties. Probucol and x-tocopherol were quantitatively compared in their ability to scavenge peroxyl radicals generatcd by the thermal decomposition of the lipid-soluble azo-initiator 2,2'-azo-bis(2,4-dimethyl-valeronitrile), AMVN, in dioleoylphos-phatidylcholine (DOPC) liposomes. Probucol showed 15-times lower peroxyl radical scavenging efficiency than x-tocopherol as measured by the effects on AMVN-induced luminol-dependent chemiluminescence. We suggest that probucol cannot protect x-tocopherol against its loss in the course of oxidation, although probucol is known to prevent lipid peroxidation in membranes and lipoproteins. In human low density lipoproteins (LDL) ESR signals of the probucol phenoxyl radical were detected upon incubation with lipoxygenase + linolenic acid or AMVN. Ascorbate was shown to reduce probucol radicals. Dihydro-lipoic acid alone was not able to reduce the probucol radical but in the presence of both ascorbate and dihydrolipoic acid a synergistic effect of a stepwise reduction was observed. This resulted from ascorbate-dependent reduction of probucol radicals and dihydrolipoic acid-dependent reduction of ascorbyl radicals. The oxidized form of dihydrolipoic acid, thioctic acid, did not affect probucol radicals either in the presence or in the absence of ascorbate.  相似文献   

10.
The Japanese herbal medicine Sho-saiko-to-go-keishi-ka-shakuyaku-to (TJ-960) has been demonstrated to have an antioxidant action by quenching free radicals. The effects of TJ-960 on the tocopheroxy radicals generated by an arachidonic acid and lipoxygenase oxidation system were compared with those of the ascorbate and glutathione in vitamin E-enriched rat liver microsomes and submitochondrial membrane particles (SMP). Using electron spin resonance spectrometry, the disappearance of the tocopheroxy radicals after addition of glutathione and ascorbate was detected in microsomes and SMP, withh ascorbate displaying a more potent action than glutathione. Addition of TJ-960 demonstrated a similar effect on the tocopheroxy radicals in microsomes and SMP. In the presence of TJ-960, ascorbate, and glutathione, the loss of vitamin E in the vitamin E-enriched microsomes of rat liver undergoing oxidation was slowed down. In this paper, we introduced TJ-960 as another replenisher of vitamin E in membrane, increasing the membrane's resistance against oxidative damage.  相似文献   

11.
《Free radical research》2013,47(5):265-276
Probucol, 4.4′-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1.1-dimethyl)phenol], is a lipid regulating drug whose therapeutic potential depends on its antioxidant properties. Probucol and x-tocopherol were quantitatively compared in their ability to scavenge peroxyl radicals generatcd by the thermal decomposition of the lipid-soluble azo-initiator 2,2′-azo-bis(2,4-dimethyl-valeronitrile), AMVN, in dioleoylphos-phatidylcholine (DOPC) liposomes. Probucol showed 15-times lower peroxyl radical scavenging efficiency than x-tocopherol as measured by the effects on AMVN-induced luminol-dependent chemiluminescence. We suggest that probucol cannot protect x-tocopherol against its loss in the course of oxidation, although probucol is known to prevent lipid peroxidation in membranes and lipoproteins. In human low density lipoproteins (LDL) ESR signals of the probucol phenoxyl radical were detected upon incubation with lipoxygenase + linolenic acid or AMVN. Ascorbate was shown to reduce probucol radicals. Dihydro-lipoic acid alone was not able to reduce the probucol radical but in the presence of both ascorbate and dihydrolipoic acid a synergistic effect of a stepwise reduction was observed. This resulted from ascorbate-dependent reduction of probucol radicals and dihydrolipoic acid-dependent reduction of ascorbyl radicals. The oxidized form of dihydrolipoic acid, thioctic acid, did not affect probucol radicals either in the presence or in the absence of ascorbate.  相似文献   

12.
Antioxidants can scavenge highly reactive radicals. As a result the antioxidants are converted into oxidation products that might cause damage to vital cellular components. To prevent this damage, the human body possesses an intricate network of antioxidants that pass over the reactivity from one antioxidant to another in a controlled way. The aim of the present study was to investigate how the semi-synthetic flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside (monoHER), a potential protective agent against doxorubicin-induced cardiotoxicity, fits into this antioxidant network. This position was compared with that of the well-known flavonoid quercetin. The present study shows that the oxidation products of both monoHER and quercetin are reactive towards thiol groups of both GSH and proteins. However, in human blood plasma, oxidized quercetin easily reacts with protein thiols, whereas oxidized monoHER does not react with plasma protein thiols. Our results indicate that this can be explained by the presence of ascorbate in plasma; ascorbate is able to reduce oxidized monoHER to the parent compound monoHER before oxidized monoHER can react with thiols. This is a major difference with oxidized quercetin that preferentially reacts with thiols rather than ascorbate. The difference in selectivity between monoHER and quercetin originates from an intrinsic difference in the chemical nature of their oxidation products, which was corroborated by molecular quantum chemical calculations. These findings point towards an essential difference between structurally closely related flavonoids in their interplay with the endogenous antioxidant network. The advantage of monoHER is that it can safely channel the reactivity of radicals into the antioxidant network where the reactivity is completely neutralized.  相似文献   

13.
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever α-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+-dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox.

When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+/Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.  相似文献   

14.
In vitro lipid peroxidation initiated by NADPH/ADP/Fe3+ reveals an alteration of rat liver microsomal antioxidant factors at day D+4 after whole-body gamma irradiation (8Gy). This alteration is partly reversed by GSH, and more efficiently by Trolox C, a water-soluble analog of vitamin E. This reversion by Trolox C, together with the observed 50% decrease in vitamin E content in microsomes of irradiated rats as compared to those of control animals, indicate that Trolox C acts as a free-radical scavenger like and in place of vitamin E. The antioxidant action of Trolox C is not improved in the presence of GSH, which suggests that the former acts earlier than the latter on the autoxidative free-radical chain reactions. Neither GSH, nor Trolox C, nor both antioxidants totally inhibit in vitro lipid peroxidation, which appeals attention on the possible role of extra-microsomal antioxidant factors, especially cytosolic ones.  相似文献   

15.
Chain-breaking antioxidants such as butylated hydroxytoluene, alpha-tocopherol, and probucol have been shown to decrease markedly the oxidative modification of low density lipoprotein (LDL). Their mechanism of action appears to involve scavenging of LDL-lipid peroxyl radicals. The purpose of this study was to investigate the occurrence of radical reactions produced during oxidation of LDL and LDL-containing probucol initiated by lipoxygenase or copper. In addition, we have investigated the possibility of a synergistic interaction between ascorbate and probucol in inhibiting the oxidation of LDL. Incubation of LDL-containing probucol and lipoxygenase produced a composite electron spin resonance (ESR) spectrum due to the endogenous alpha-tocopheroxyl radical and probucol-derived phenoxyl radical. The spectral assignment was further verified by chemical oxidation of alpha-tocopherol and probucol. In the presence of ascorbic acid, these radicals in the LDL particle were reduced to their parent compounds with concomitant formation of the ascorbate radical. In both the peroxidation of linoleic acid and the copper-initiated peroxidation of LDL, the antioxidant activity of probucol was significantly increased by low (3-6 microM) concentrations of ascorbate. The probucol-dependent inhibition of LDL oxidation was enhanced in the presence of ascorbic acid. We conclude that the reaction between the phenoxyl radical of probucol and ascorbate results in a synergistic enhancement of the antioxidant capacity of these two compounds and speculate that such reactions could play a role in maintaining the antioxidant status of LDL during oxidative stress in vivo.  相似文献   

16.
Tocopherols (vitamin E) function as inhibitors of lipid peroxidation in biomembranes by donating a hydrogen atom to the chain propagating lipid radicals, thus giving rise to chromanoxyl radicals of the antioxidant. We have shown that alpha-tocopherol homologs differing in the lengths of their hydrocarbon side chains (alpha-Cn) manifest strikingly different antioxidant potencies in membranes. The antioxidant activity of tocopherol homologs during (Fe2+ + ascorbate)- or (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomes increased in the order alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Chromanoxyl radicals generated from alpha-tocopherol and its more polar homologs by an enzymatic oxidation system (lipoxygenase + linolenic acid) can be recycled in rat liver microsomes by NAD-PH-dependent electron transport or by ascorbate. The efficiency of recycling increased in the same order: alpha-tocopherol (alpha-C16) less than alpha-C11 less than alpha-C6 less than alpha-C1. Thus the high efficiency of regeneration of short-chain homologs of vitamin E may account for their high antioxidant potency.  相似文献   

17.
Generation and recycling of radicals from phenolic antioxidants   总被引:3,自引:0,他引:3  
Hindered phenols are widely used food preservatives. Their pharmacological properties are usually attributed to high antioxidant activity due to efficient scavenging of free radicals. Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) also cause tissue damage. Their toxic effects could be due to the production of phenoxyl radicals. If phenoxyl radicals can be recycled by reductants or electron transport, their potentially harmful side reactions would be minimized. A simple and convenient method to follow phenoxyl radical reactions in liposomes and rat liver microsomes based on an enzymatic (lipoxygenase + linolenic acid) oxidation system was used to generate phenoxyl radicals from BHT and its homologues with substitutents in m- and p-positions. Different BHT-homologues display characteristic ESR signals of their radical species. In a few instances the absence of phenoxyl radical ESR signals was found to be due to inhibition of lipoxygenase by BHT-homologues. In liposome or microsome suspensions addition of ascorbyl palmitate resulted in disappearance of the ESR signal of phenoxyl radicals with concomittant appearance of the ascorbyl radical signal. After exhaustion of ascorbate, the phenoxyl radical signal reappears. Comparison of the rates of ascorbyl radical decay in the presence or absence of BHT-homologues showed that temporary elimination of the phenoxyl radical ESR signal was due to their reduction by ascorbate. Similarly, NADPH or NADH caused temporary elimination of ESR signals as a result of reduction of phenoxyl radicals in microsomes. Since ascorbate and NADPH might generate superoxide in the incubation system used, SOD was tested. SOD shortened the period, during which the phenoxyl radicals ESR signal could not be observed. Both ascorbyl palmitate and NADPH exerted sparing effects on the loss of BHT-homologues during oxidation. These effects were partly diminished by SOD. These data indicate that reduction of phenoxyl radicals was partly superoxide-dependent. It is concluded that redox recycling of phenoxyl radicals can occur by intracellular reductants like ascorbate and microsomal electron transport.  相似文献   

18.
Ubiquinones and tocopherols (vitamin E) are intrinsic lipid components which have a stabilizing function in many membranes attributed to their antioxidant activity. The antioxidant effects of tocopherols are due to direct radical scavenging. Although ubiquinones also exert antioxidant properties the specific molecular mechanisms of their antioxidant activity may be due to: (i) direct reaction with lipid radicals or (ii) interaction with chromanoxyl radicals resulting in regeneration of vitamin E. Lipid peroxidation results have now shown that tocopherols are much stronger membrane antioxidants than naturally occurring ubiquinols (ubiquinones). Thus direct radical scavenging effects of ubiquinols (ubiquinones) might be negligible in the presence of comparable or higher concentrations of tocopherols. In support of this our ESR findings show that ubiquinones synergistically enhance enzymic NADH- and NADPH-dependent recycling of tocopherols by electron transport in mitochondria and microsomes. If ubiquinols were direct radical scavengers their consumption would be expected. Further proving our conclusion HPLC measurements demonstrated that ubiquinone-dependent sparing of tocopherols was not accompanied by ubiquinone consumption.  相似文献   

19.
Microsomal NADPH-driven electron transport is known to initiate lipid peroxidation by activating oxygen in the presence of iron. This pro-oxidant effect can mask an antioxidant function of NADPH-driven electron transport in microsomes via vitamin E recycling from its phenoxyl radicals formed in the course of peroxidation. To test this hypothesis we studied the effects of NADPH on the endogenous vitamin E content and lipid peroxidation induced in liver microsomes by an oxidation system independent of iron: an azo-initiator of peroxyl radicals, 2,2'-azobis (2,4-dimethylvaleronitrile), (AMVN), in the presence of an iron chelator deferoxamine. We found that under conditions NADPH: (i) inhibited lipid peroxidation; (ii) this inhibitory effect was less pronounced in microsomes from vitamin E-deficient rats than in microsomes from normal rats; (iii) protected vitamin E from oxidative destruction; (iv) reduced chromanoxyl radicals of vitamin E homologue with a 6-carbon side-chain, chromanol-alpha-C-6. Thus NADPH-driven electron transport may function both to initiate and/or inhibit lipid peroxidation in microsomes depending on the availability of transition metal catalysts.  相似文献   

20.
The results of this study suggest that the well-documented loss of GSH and ascorbate in organisms under oxidative stress may be mainly due to their reactions with protein radicals and/or peroxides. Protein hydroperoxides were generated in HL-60 cells exposed to radiation-generated hydroxyl radicals. We found for the first time evidence of chain peroxidation of the proteins in cells, with each hydroxyl radical leading to the formation of about 10 hydroperoxides. Protein peroxidation showed a lag, probably due to the endogenous antioxidant enzymes, with simultaneous loss of the intracellular GSH. Enhancement of the GSH levels by N-acetylcysteine decreased the formation of hydroperoxides, while treatment with l-buthionine sulfoximine had the opposite effect. The effect of variation of GSH levels on the formation of the peroxidized proteins is explained primarily by reduction of the protein hydroperoxides by GSH. Loading of the cells with ascorbate resulted in reduction of the amounts of protein hydroperoxides generated by the radiation, which was proportional to the intracellular ascorbate concentration. In contrast to the GSH, inhibition of protein hydroperoxide formation in the presence of the high (mM) intracellular ascorbate levels achieved was mainly due to the direct scavenging of hydroxyl radicals by the vitamin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号