共查询到20条相似文献,搜索用时 12 毫秒
1.
Physiology and metabolism of pathogenic Neisseria: partial characterization of the respiratory chain of Neisseria gonorrhoeae. 下载免费PDF全文
The cell membrane-associated respiratory electron transport chain of Neisseria gonorrhoeae was examined using electron paramagnetic spectroscopy (EPR) at liquid helium temperatures and optical spectroscopy at liquid nitrogen and room temperatures. EPR spectra of dithionite-reduced particles indicated the presence of centers N-1 and N-3 in the site I region of the respiratory chain, whereas reduction with succinate revealed the existence of center S-1 from the succinate cytochrome c reductase segment. Free radical(s) resembling that due to falvin semiquinone were observed with both reductants. Low temperature (77 K) optical difference spectra indicated the presence of cytochromes with alpha band maxima at 549, 557, and 562. Bands at 567, 535, and 417 nm, characteristic of the CO compound of cytochrome o, were also identified. Cytochromes a1 and a3 were not detected; however, a broad but weak absorbance with an alpha band maximun at 600 nm and a Soret shoulder at 440 nm was observed. Hence the respiratory chain of N. gonorrhoeae appears to contain several nonheme iron centers, cytochrome c, two b cytochromes, with cytochrome o which probably serves as the terminal oxidase. 相似文献
2.
3.
4.
Energy metabolism and alginate biosynthesis in Pseudomonas aeruginosa: role of the tricarboxylic acid cycle. 总被引:3,自引:5,他引:3 下载免费PDF全文
D Schlictman A Kavanaugh-Black S Shankar A M Chakrabarty 《Journal of bacteriology》1994,176(19):6023-6029
Infection with mucoid, alginate-producing strains of Pseudomonas aeruginosa is the leading cause of mortality among patients with cystic fibrosis. Alginate production by P. aeruginosa is not constitutive but is triggered by stresses such as starvation. The algR2 (also termed algQ) gene has been previously identified as being necessary for mucoidy; an algR2 mutant strain is unable to produce alginate when grown at 37 degrees C. We show here that the levels of phosphorylated succinyl coenzyme A synthetase (Scs) and nucleoside diphosphate kinase (Ndk), which form a complex in P. aeruginosa, are reduced in the algR2 mutant. We were able to correlate the lower level of phosphorylated Scs with a decrease in Scs activity. Western blots (immunoblots) also showed a decreased level of Ndk in the algR2 mutant, but the presence of another kinase activity sensitive to Tween 20 provides the missing Ndk function. The effect of AlgR2 on tricarboxylic acid (TCA) cycle enzymes appears to be specific for Scs, since none of the other TCA cycle enzymes measured showed a significant decrease in activity. Furthermore, the ability of the algR2 mutant to grow on TCA cycle intermediates, but not glucose, is impaired. These data indicate that AlgR2 is responsible for maintaining proper operation of the TCA cycle and energy metabolism. 相似文献
5.
6.
Activity of pyruvate dehydrogenase (PDG), isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase was found in the extracts of the cells of Bac. polymyxa 153, an organism producing polymyxin B. Dependence of the activity of the above enzymes on the carbon source in the medium, aeration conditions, strain features and culture age was shown. A low level of polymyxin B biosynthesis was observed at high activity of PDG and dehydrogenases of the tricarbonic acid cycle. Increased antibiotic production was recorded against the background of decreases values of the above enzyme activities. 相似文献
7.
8.
9.
10.
The composition and properties of the tricarboxylic acid cycle of the microaerophilic human pathogen Helicobacter pylori were investigated in situ and in cell extracts using [1H]- and [13C]-NMR spectroscopy and spectrophotometry. NMR spectroscopy assays enabled highly specific measurements of some enzyme activities, previously not possible using spectrophotometry, in in situ studies with H. pylori, thus providing the first accurate picture of the complete tricarboxylic acid cycle of the bacterium. The presence, cellular location and kinetic parameters of citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate oxidase, fumarate reductase, fumarase, malate dehydrogenase, and malate synthase activities in H. pylori are described. The absence of other enzyme activities of the cycle, including alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, and succinate dehydrogenase also are shown. The H. pylori tricarboxylic acid cycle appears to be a noncyclic, branched pathway, characteristic of anaerobic metabolism, directed towards the production of succinate in the reductive dicarboxylic acid branch and alpha-ketoglutarate in the oxidative tricarboxylic acid branch. Both branches were metabolically linked by the presence of alpha-ketoglutarate oxidase activity. Under the growth conditions employed, H. pylori did not possess an operational glyoxylate bypass, owing to the absence of isocitrate lyase activity; nor a gamma-aminobutyrate shunt, owing to the absence of both gamma-aminobutyrate transaminase and succinic semialdehyde dehydrogenase activities. The catalytic and regulatory properties of the H. pylori tricarboxylic acid cycle enzymes are discussed by comparing their amino acid sequences with those of other, more extensively studied enzymes. 相似文献
11.
Strains isolated from disseminated gonococcal infections often require hypoxanthine for growth. The biochemical bases for the requirement for hypoxanthine in strains isolated from both disseminated (Ile-Val-Arg-Hyx-Ura-phenotype) and non-disseminated (Hyx-phenotype) infections were compared. The requirement for hypoxanthine was dependent upon the composition of the growth medium. In a complete defined medium, hypoxanthine was replaced by a mixture of adenine and guamine but not by either purine alone. The addition of adenine along inhibited gonococcal growth. This inhibition was reversed by the addition of guanine and most likely resulted from an inhibition of de novo purine biosynthesis. In a histidine-free medium, adenine replaced the hypoxanthine requirement in Ile-Val-Arg-Hyx-Ura-strains. Adenine did not replace the hypoxanthine requirement in Hyx- strains. The Ile-Val-Arg-Hyx-Ura- strains exhibited a markedly reduced rate of the novo purine biosynthesis while Hyx- strains were blocked in this pathway. In vivo concentrations of purines are important factors which may limit the intracellular or extracellular growth of these strains. 相似文献
12.
13.
Phospholipid composition and phospholipase A activity of Neisseria gonorrhoeae. 总被引:6,自引:5,他引:6 下载免费PDF全文
L M Senff W S Wegener G F Brooks W R Finnerty R A Makula 《Journal of bacteriology》1976,127(2):874-880
Exponential-phase cells of Neisseria gonorrhaeae 2686 were examined for phospholipid composition and for membrane-associated phospholipase A activity. When cells were harvested by centrifugation, washed, and lyophilized before extraction, approximately 74% of the total phospholipid was phosphatidylethanolamine, 18% was phosphatidylglycerol, 2% was cardiolipin, and 10% was lysophosphatidylethanolamine. However, when cells still suspended in growth medium were extracted, the amount of lysophosphatidylethanolamine decreased to approximately 1% of the phospholipid composition. This suggests that a gonococcal phospholipase A may be activated by conditions encountered during centrifugation and/or lyophilization of cells preceding extraction. Phospholipase A activity associated with cell membranes was assayed by measuring the conversion of tritiated phosphatidylethanolamine to lysophosphatidylethanolamine. Optimal activity was demonstrated in 10% methanol at pH 8.0 to 8.5, in the presence of calcium ions. The activity was both detergent sensitive and thermolabile. Comparisons of gonococcal colony types 1 and 4 showed no significant differences between the two types with respect to either phospholipid content or phospholipase A activity. 相似文献
14.
Plasmid deoxyribonucleic acid in clinical isolates of Neisseria gonorrhoeae. 总被引:9,自引:6,他引:9 下载免费PDF全文
Two different sizes of circular covalently closed deoxyribonucleic acid plasmids have been identified in four independent clinical isolates of eisseria gonorrhoeae. All four strains contained a small plasmid with a molecular weight of 2.8 X 10-6 and two of the four stains also contained a large plasmid with a molecular weight of 24.5 X 10-6. The avirulent derivative of each of these four strains had the same plasmid complement as its virulent parent. There was no correlation between the presence of these plasmids and antibiotic resistance, piliation, and colony type associated with virulence, or ability to grow without seven specific amino acid supplements. 相似文献
15.
It has been shown in the experiments on rat liver mitochondria under glucose hexo-kinase load that excess of substrates of (1-20 mM) pyruvate, acetate, propionate, pent-4-enoate and malate may induce oxidation of NAD(P)H and inhibition of mitochondrial respiration (by 20-50% and more) due to a decreased rate of hydrogen production by tricarboxylic acid cycle. It has been concluded from the analysis of mathematical models and metabolite-testings which remove this inhibition that for pyruvate and acetate this inhibition is an autocatalytic one. It is related to a decreased level of CoA and oxaloacetate due to the formation of "traps" such as acetyl-CoA and alpha-kotoglutarate. For propionate and pent-4-enoate in the bicarbonate-free medium suppression of the flux in the cycle is concerned with a decreased level of CoA, acetyl-CoA and succionoyl CoA due to the accumulation of propionyl-CoA. It seems to be also concerned with the inhibition of citrate-synthetase and alpha-ketoglutarate-dehydrogenase by propionyl-CoA. Malate (in the presence of malonate) can inhibit respiration at the expense of direct inhibition of citrate-synthetase. 相似文献
16.
RAMAKRISHNAN CV 《Enzymologia》1954,17(3):169-174
17.
Burgess SC Hausler N Merritt M Jeffrey FM Storey C Milde A Koshy S Lindner J Magnuson MA Malloy CR Sherry AD 《The Journal of biological chemistry》2004,279(47):48941-48949
Liver-specific phosphoenolpyruvate carboxykinase (PEPCK) null mice, when fasted, maintain normal whole body glucose kinetics but develop dramatic hepatic steatosis. To identify the abnormalities of hepatic energy generation that lead to steatosis during fasting, we studied metabolic fluxes in livers lacking hepatic cytosolic PEPCK by NMR using 2H and 13C tracers. After a 4-h fast, glucose production from glycogenolysis and conversion of glycerol to glucose remains normal, whereas gluconeogenesis from tricarboxylic acid (TCA) cycle intermediates was nearly absent. Upon an extended 24-h fast, livers that lack PEPCK exhibit both 2-fold lower glucose production and oxygen consumption, compared with the controls, with all glucose production being derived only from glycerol. The mitochondrial reduction-oxidation (red-ox) state, as indicated by the NADH/NAD+ ratio, is 5-fold higher, and hepatic TCA cycle intermediate concentrations are dramatically increased in the PEPCK null livers. Consistent with this, flux through the TCA cycle and pyruvate cycling pathways is 10- and 40-fold lower, respectively. Disruption of hepatic cataplerosis due to loss of PEPCK leads to the accumulation of TCA cycle intermediates and a nearly complete blockage of gluconeogenesis from amino acids and lactate (an energy demanding process) but intact gluconeogenesis from glycerol (which contributes to net NADH production). Inhibition of the TCA cycle and fatty acid oxidation due to increased TCA cycle intermediate concentrations and reduced mitochondrial red-ox state lead to the development of steatosis. 相似文献
18.
Intrageneric transformation of neisseria gonorrhoeae and neisseria perflava to streptomycin resistance and nutritional independence. 总被引:2,自引:2,他引:2 下载免费PDF全文
Auxotrophic mutants of Neisseria gonorrhoeae and Neisseria perflava were transformed to prototrophy using homologous and heterologous deoxyribonucleic acid (DNA). Within either species the efficiencies of transformation for nutritional markers were found to be very similar to the values obtained for transformation to streptomycin resistance. The number of transformants in the interspecific N. perflava (donor) - - leads to N. gonorrhoeae (recipient) cross was 100-fold lower than the number obtained in the intraspecific N. gonorrhoeae - - leads to N. gonorrhoeae cross for streptomycin resistance, as well as for several nutritional markers. In the reciprocal experiment the difference in the number of transformants in the interspecific N. gonorrhoeae - - leads to N. perflava cross and the number obtained in the intraspecific N. perflava - - leads to N. perflava cross varied from 600 to 1,000-fold for the streptomycin resistance marker. Of greater interest was the finding that N. perflava auxotrophs, although transformable to prototrophy with wild-type N. perflava DNA, were not transformed to nutritional independence by gnoncoccal DNA. These same mutants were transformable to streptomycin resistance using the heterologous gonococcal DNA. When the DNAs of N. meningitidis, N. flava, and N. lactamicus were used to transform N. gonorrhoeae to prototrophy or streptomycin resistance, the transformation frequencies obtained fell along a gradient that in general reflected taxonomic relationships. On the other hand, with N. perflava as the recipient for these same DNAs, only N. flava DNA could transform auxotrophs to prototrophy, although transformation to streptomycin resistance occurred in all cases. DNA from N. perflava - - leads to N. gonorrheae streptomycin-resistant or Ade+ intergenotic transformants transformed N. gonorrhoeae cells at a 100-fold-higher efficiency than did DNA from N. perflava. Our findings suggest that (i) N. gonorrhoeae and N. perflava are more closely related than hitherto suspected and (ii) N. perflava is more selective with respect to heterologous DNA than is N. gonorrhoeae. 相似文献
19.
20.
Deoxyribonucleic acid modifications and restriction endonuclease production in Neisseria gonorrhoeae. 总被引:4,自引:7,他引:4 下载免费PDF全文
Modification of gonococcal deoxyribonucleic acid (DNA) was investigated, and the relationship with endonuclease production was explored. Both chromosomal and plasmid DNA from different gonococcal strains, irrespective of their plasmid content, was poorly cleaved by the restriction endonucleases HaeII, HaeIII, SacII, and BamHI. The fragment pattern of the Tn3 segment present on the 7.2-kilobase gonococcal resistance plasmid, when compared to its known DNA sequence, allowed us to conclude that the HaeIII and BamHI resistance was due to modification of these sites. A comparison of the fragment pattern of the resistance plasmid, when isolated from Escherichia coli or Neisseria gonorrhoeae, revealed that the resistance of HaeII must also be due to modification of its recognition sequence. Isoschizomers of HaeII and HaeIII can be found in isolates of N. gonorrhoeae (NgoI and NgoII, respectively). A new restriction endonuclease in gonococci, NgoIII, with a specificity similar to SacII, is reported here. High-pressure liquid chromatography of gonococcal DNA showed the presence of 5-methylcytosine. It is suggested that the methylation of cytosine residues in the HaeII (NgoI), HaeIII (NgoII), and SacII (NgoIII) recognition sites is the basis for the resistance of gonococcal DNA to cleavage by these enzymes. This methylation may be part of a host restriction modification system. In two out of five gonococcal strains the sequence -GATC- was modified. One strain unable to modify this sequence was a spontaneous mutant of a strain carrying such a modifying function. 相似文献