首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Glucose Metabolism in Neisseria gonorrhoeae   总被引:32,自引:8,他引:24       下载免费PDF全文
The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO(2) from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-(14)C]acetate over that of [2-(14)C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent.  相似文献   

2.
Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-(14)C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH(2)) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH(2) and to repressed levels of key enzymes.  相似文献   

3.
Metabolism of lactate as a carbon source by Pseudomonas citronellolis occurred via a nicotinamide adenine dinucleotide (NAD)-independent L-lactate dehydrogenase, which was present in cells grown on DL-lactate but was not present in cells grown on acetate, aspartate, citrate, glucose, glutamate, or malate. The cells also possessed a constitutive, NAD-independent malate dehydrogenase instead of the conventional NAD-dependent malate dehydrogenase instead of the conventional NAD-dependent enzyme in the tricarboxylic acid cycle. Both enzymes were particulate and used dichlorophenolindo-phenol or oxygen as an electron acceptor. In acetate-grown cells, the activity of pyruvate dehydrogenase and NAD phosphate-linked malate enzyme decreased, cells grown on glucose or lactate. This was consistent with the need to maintain a supply of oxalacetate for metabolism of acetate via the tricarboxylic acid cycle. Changes in enzyme activities suggest that gluconeogenesis from noncarbohydrate carbon sources occurs via the malate enzyme (when oxalacetate decarboxylase is inhibited) or a combination of the NAD-independent malate dehydrogenase and oxalacetate decarboxylase.  相似文献   

4.
A methane-utilizing organism capable of growth both on methane and on more complex organic substrates as a sole source of carbon and energy, has been isolated and studied in detail. Suspensions of methane-grown cells of this organism oxidized C-1 compounds (methane, methanol, formaldehyde, formate); hydrocarbons (ethane, propane); primary alcohols (ethanol, propanol); primary aldehydes (acetaldehyde, propionaldehyde); alkenes (ethylene, propylene); dimethylether; and organic acids (acetate, malate, succinate, isocitrate). Suspensions of methanol-or succinate-grown cells did not oxidize methane, ethane, propane, ethylene, propylene, or dimethylether, suggesting that the enzymatic systems required for oxidation of these substrates are induced only during growth on methane. Extracts of methane-grown cells contained a particulate reduced nicotinamide adenine dinucleotide-dependent methane monooxygenase activity. Oxidation of methanol, formaldehyde, and primary alcohols was catalyzed by a phenazine methosulfate-linked, ammonium ion-requiring methanol dehydrogenase. Oxidation of primary aldehydes was catalyzed by a phenazine methosulfate-linked, ammonium ion-independent aldehyde dehydrogenase. Formate was oxidized by a nicotinamide adenine dinucleotide-specific formate dehydrogenase. Extracts of methane-grown, but not succinate-grown, cells contained the key enzymes of the serine pathway, hydroxypyruvate reductase and malate lyase, indicating that the enzymes of C-1 assimilation are induced only during growth on C-1 compounds. Glucose-6-phosphate dehydrogenase was induced during growth on glucose. Extracts of methane-grown cells contained low levels of enzymes of the tricarboxylic acid cycle, including alpha-keto glutarate dehydrogenase, relative to the levels found during growth on succinate.  相似文献   

5.
Acetobacter suboxydans does not contain an active tricarboxylic acid cycle, yet two pathways have been suggested for glutamate synthesis from acetate catalyzed by cell extracts: a partial tricarboxylic acid cycle following an initial condensation of oxalacetate and acetyl coenzyme A. and the citramalate-mesaconate pathway following an initial condensation of pyruvate and acetyl coenzyme A. To determine which pathway functions in growing cells, acetate-1-(14)C was added to a culture growing in minimal medium. After growth had ceased, cells were recovered and fractionated. Radioactive glutamate was isolated from the cellular protein fraction, and the position of the radioactive label was determined. Decarboxylation of the C5 carbon removed 100% of the radioactivity found in the purified glutamate fraction. These experiments establish that growing cells synthesize glutamate via a partial tricarboxylic acid cycle. Aspartate isolated from these hydrolysates was not radioactive, thus providing further evidence for the lack of a complete tricarboxylic acid cycle. When cell extracts were analyzed, activity of all tricarboxylic acid cycle enzymes, except succinate dehydrogenase, was demonstrated.  相似文献   

6.
In the course of submerged cultivation of low-production and industrial production strains of Streptomyces aureofaciens, the activity of enzymes of the tricurboxylic acid cycle was studied. The activities of citrate synthase (EC 4.1.3.7), aconitate hydratase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.42), fumarate hydratase (EC 4.2.1.2), and malate dehydrogenase (EC 1.1.1.37) were estimated spectrophotometrically in cell-free preparations. In the growth phase, mainly the initial reactions of the cycle were active with both strains. In production-phase, the activities of enzymes in the low-production strain were 2–5 × higher than in the production strain. Benzylthioeyanate, at a concentration of 5 × l0?5M, stimulated chlortetracycline production of both strains with accompanying decrease in activity of the enzymes of the tricarboxylic acid cycle. The role of the tricarboxylic acid cycle in control of chlortetracycline biosynthesis is discussed.  相似文献   

7.
The acid end-products of glucose metabolism of oral and other haemophili   总被引:2,自引:0,他引:2  
The acids produced in broth culture by various species of oral haemophili and by stock strains of capsulated and other haemophili were identified and measured by gas-liquid chromatography. Succinic acid was the major acid end-product of all strains, with acetic acid also being regularly produced but in smaller amounts. A stock strain, Haemophilus parainfluenzae NCTC 4101, produced less succinic acid than other strains of haemophili. Strain NCTC 4101 possessed all the enzymes of the tricarboxylic acid cycle, as previously reported, but in the other haemophili examined only succinic dehydrogenase, fumarase and malate dehydrogenase could be detected. No other enzymes of the tricarboxylic acid cycle were detected and isocitrate lyase, malate synthase and pyruvate carboxylase were also absent. Phosphoenolpyruvate-carboxylase was present in all strains. A partial tricarboxylic acid cycle and marked malate dehydrogenase activity appear to be characteristic of haemophili. The pathway to succinate in haemophili appears to be via carboxylation of phosphoenolpyruvate to oxalacetate and thence via malate and fumarate. The results of tracer studies on a single oral strain of H. parainfluenzae using various labelled substrates were in keeping with this proposed metabolic pathway.  相似文献   

8.
Carbon-14 was incorporated into oxalate and CO2 from either citrate-1,5-14C, succinate-1,4-14C, or fumarate-1,4-14C by cultures of Aspergillus niger pregrown on a medium which contained glucose as the sole carbon source and which did not allow citrate accumulation. In cell-free extracts of mycelium forming oxalate and CO2 from added citrate the following enzymes of the tricarboxylic acid (TCA) cycle were identified: citrate synthase CE 4.1.3.7), aconitate hydratase (EC4.2.1.3), NAD and NADP-dependent isocitrate dehydrogenase (EC 1.1.1.41, 1.1.1.42), (alpha-oxoglutarate dehydrogenase (EC 1.2.4.2), succinate dehydrogenase (EC 1.3.99.1), fumarate hydratase (EC 4.2.1.2), and malate dehydrogenase (EC 1.1.1.37). The in vitro activity of aconitate hydratase and of NADP-dependent isocitrate dehydrogenase was shown to be almost identical to the rate of in vivo degradation of citrate or to exceed this rate. The degradation of citrate to oxalate was inhibited completely by 9 mM fluoroacetate. It is concluded that the TCA cycle is involved in the formation of oxalate from citrate.  相似文献   

9.
Growth in the presence of glucose, even under highly aerobic conditions, significantly reduced the activities of three tricarboxylic acid cycle enzymes, citrate synthetase, alpha-ketoglutarate dehydrogenase, and malate dehydrogenase, in suicidal but not nonsuicidal Aeromonas strains. Pyruvate dehydrogenase activity, however, was significantly increased. The activities of all of the enzymes, as well as the glucose-mediated increase in acetic acid production, were shown to be regulated by catabolite repression. The regulator protein is the same one which regulates the utilization of several sugars.  相似文献   

10.
Ethanol grown Acetobacter aceti differed from acetate grown. In ethanol grown cells, acetate uptake, caused by the oxidation of acetate, was completely inhibited by ethanol, in acetate grown cells only to 20%. This was correlated with a 65-fold higher specific activity of the membrane bound NAD(P)-independent alcohol dehydrogenase in ethanol grown than in acetate grown cells. In comparison with ethanol grown cells, acetate grown cells showed a 3-fold higher acetate respiration rate and 3-fold higher specific activities of some tricarboxylic acid cycle enzymes tested. Both adaptations were due to induction by the homologous and not to repression by the heterologous growth substrate. A. aceti showed a membrane bound NAD(P)-independent malate dehydrogenase and no activity of a soluble NAD(P)-dependent one, as was known before from A. xylinum. A hypothesis was proposed explaining the observed inhibition of malate dehydrogenase and of functioning of the tricarboxylic acid cycle in the presence of ethanol or butanol or glucose by a competition of two electron currents for a common link in the convergent electron transport chains. The electrons coming from the quinoproteins, alcohol dehydrogenase and glucose dehydrogenase on the one side and those coming from the flavoproteins, malate dehydrogenase and succinate dehydrogenase via ubiquinonecytochrome c reductase on the other side are meeting at cytochrome c. Here the quinoproteins may be favoured by higher affinity and so inhibit the flavoproteins. Inhibition could be alleviated in the cell free system by increasing the oxygen supply.Dedicated to Professor Carl Martius on the occasion of his 80th birthday, March 1st 1986  相似文献   

11.
During exponential growth, ordinary colorless (OC) plants of Blastocladiella emersonii consumed little glucose and produced no lactic acid. Similarly, resistant sporangial (RS) plants did not utilize glucose or produce lactic acid during the first 24 hr of exponential growth. During the next 24 hr of RS development, glucose was consumed with the concomitant production of lactic acid which was then reutilized. Lactic acid gradually accumulated again at maturity. Enzyme studies on cell-free extracts indicated the presence of all tricarboxylic cycle enzymes except α-ketoglutarate dehydrogenase at all stages of development of both RS and OC plants. Included among the enzymes detected were an adenosine monophosphate-stimulated, nicotinamide adenine dinucleotide-isocitric dehydrogenase, and citrate-condensing enzyme. When measured on a per plant basis, tricarboxylic cycle enzyme levels increased during the exponential growth of both kinds of plants. Only after the bicarbonate ceased to have effect on RS plant morphogenesis was there a decrease in the levels of the tricarboxylic cycle enzymes when measured on a per plant basis. Specific activity measurements indicated some differences in the differential rates of synthesis among the enzymes studied previous to 36 hr. Preliminary studies utilizing short periods of 14C-bicarbonate fixation in young RS plants indicated that during the first 4 min most of the label was located in aspartic acid. These results are discussed in terms of previous results and particularly Cantino's hypothesis concerning the relationship between bicarbonate induction and tricarboxylic-cycle enzymes in the morphogenesis of B. emersonii.  相似文献   

12.
Evidence for a functional glyoxylate cycle in the leishmaniae.   总被引:1,自引:0,他引:1       下载免费PDF全文
Isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 4.1.3.2), the two enzymes characteristic of the glyoxylate cycle, were demonstrated in promastigotes of five species of Leishmania (L. brasiliensis, L. donovani, L. mexicana, L. tarentolae, and L. tropica). Both enzymes were present in cells grown in a medium containing 10 mM glucose. Substitution of glucose with 20 mM acetate did not enhance enzyme levels. Acetate was readily taken up and metabolized by the cells. The distribution of label from acetate into various intermediary metabolites indicates a functional glyoxylate cycle and its role in gluconeogenesis/glyconeogenesis. The glyoxylate cycle in conjunction with alanine-glyoxylate aminotransferase and glyoxylate-aspartate aminotransferase could also be important in providing glyoxylate, the precursor for glycine biosynthesis.  相似文献   

13.
Acetate-grown GS-15 whole-cell suspensions were disrupted with detergent and assayed for enzymes associated with acetate catabolism. Carbon monoxide dehydrogenase and formate dehydrogenase were not observed in GS-15. Catabolic levels of acetokinase and phosphotransacetylase were observed. Enzyme activities of the citric acid cycle, i.e., isocitrate dehydrogenase, 2-oxoglutarate sythase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were observed.  相似文献   

14.
A scheme is presented that shows how the reactions involved in gluconeogenesis, glycolysis and the tricarboxylic acid cycle are linked in rat liver. Equations are developed that show how label is redistributed in aspartate, glutamate and phosphopyruvate when it is introduced as specifically labelled pyruvate or glucose either at a constant rate (steady-state theory) or at a variable rate (non-steady-state theory). For steady-state theory the fractions of label introduced as specifically labelled pyruvate that are incorporated into glucose and carbon dioxide are also given, and for both theories the specific radioactivities of aspartate and glutamate relative to the specific radioactivity of the substrate. The theories allow for entry of label into the tricarboxylic acid cycle via both oxaloacetate and acetyl-CoA, for (14)CO(2) fixation and for loss of label from the tricarboxylic acid cycle in glutamate, but not for losses in citrate. They also allow for incomplete symmetrization of label in oxaloacetate due to incomplete equilibration with fumarate both in the extramitochondrial part of the cell and in the mitochondrion on entry of oxaloacetate into the tricarboxylic acid cycle. In the latter case failure both of oxaloacetate to equilibrate with malate and of malate to equilibrate with fumarate are considered.  相似文献   

15.
Bacillus larvae appears to be unique among related bacilli in that it contains enzymes of the Embden-Meyerhof-Parnas, pentose phosphate, and Entner-Doudoroff pathways. Simultaneous occurrence of enzymes of all three metabolic pathways has not until now been reported in other Bacillus species. Radiorespirometric analyses of specifically labeled glucose catabolism reveal that vegetative cells of B. larvae dissimilate glucose predominately via a direct oxidative route and to a lesser extent by a nonoxidative scheme although specific activities of enzymes of all three pathways are comparable. Predominance of an oxidative pathway is unusual and also has not been reported for other bacilli. Studies on the oxidation of pyruvic, acetic, succinic, and alpha-ketoglutaric acids show that terminal respiration of cells in transition from vegetative growth to sporulation involves both the tricarboxylic acid and glyoxylic acid cycles. The relationship of these findings to the fastidiousness and oligosporogeny of B. larvae is discussed.  相似文献   

16.
Yersinia pestis was found to utilize palmitic acid as a primary carbon and energy source. No inhibition of growth by palmitic acid was observed. Comparison of palmitic acid uptake by cells pregrown either with or without palmitic acid demonstrated that fatty acid uptake was constitutive. High basal levels of two enzymes of beta-oxidation, beta-hydroxyacyl-coenzyme A dehydrogenase and thiolase, and the two enzymes of the glyoxylate shunt, isocitrate lyase and malate synthase, were found in cells grown in defined medium with glucose. Elevated levels of all four enzymes were found when cells were grown with acetate as a primary carbon and energy source, and even higher levels were observed when palmitic acid was provided as a primary carbon and energy source. High-pressure liquid chromatography was used to demonstrate that, in the presence of glucose, uniformly labeled [14C]palmitic acid was converted to intermediates of the tricarboxylic acid cycle and glyoxylate shunt. Pregrowth with palmitic acid was not required for this conversion. Strains lacking the 6- or the 47-megadalton plasmid did not take up [3H]palmitic acid but did possess levels of enzyme activity comparable to those observed in the wild-type strain.  相似文献   

17.
Low concentrations (less than 0.2% w/v) of phenoxyethanol stimulated both the rate of respiration and total oxygen uptakes of Escherichia coli NCTC 5933 suspensions with glucose and other substrates, whilst higher concentrations (0.2--0.6% w/v) although still below those showing significant bactericidal activity, produced progressive levels of inhibition. The degree of respiratory inhibition varied with different substrates in the order malate less than succinate less than pyruvate less than or equal to glucose less than lactate, and suggested appreciable inhibition at a point after malate in the tricarboxylic acid cycle. This suggestion was supported by the use of tetrazolium salts as alternative electron acceptors, and by cytochrome difference spectra, which together implicated malate dehydrogenase as the most likely site of action. Isolated dehydrogenase enzymes of the tricarboxylic acid cycle in cell-free preparations were unaffected by high concentrations of phenoxyethanol (0.8% w/v) with the exception of malate dehydrogenase which was inhibited in extracts to extents similar to those of malate oxidation by intact bacteria. Lineweaver-Burke plots for malate dehydrogenase activity in the presence of phenoxyethanol suggested a competitive inhibition of the oxaloacetic acid-limited reaction and a non-competitive inhibition of the NADH-limited reaction. Accordingly, Ki values were found to be low when the rate of reaction was limited by oxaloacetic acid concentration yet relatively high when NADH was rate limiting.  相似文献   

18.
Frankia isolate NPI 0136010 was able to use only propionate and acetate as sole carbon sources and was unable to use hexoses, pentoses, disaccharides, and trisaccharides. Cell free extracts were surveyed for key enzymes of intermediary carbon metabolism. Enzymes of the Embden-Meyerhof-Parnas (EMP) pathway, the tricarboxylic acid (TCA) cycle and glyoxylate shunt were detected while enzymes of the pentose phosphate (PP) and Entner-Doudoroff (ED) pathways were absent. Malic enzyme was present allowing for the conversion of malate to pyruvate and gluconeogenesis. Radiorespirometric analysis confirmed the operation of the TCA cycle and established the methylmalonyl pathway as the route of propionate metabolism. The uptake of propionate was active and mediated by sulfhydryl groups.  相似文献   

19.
A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

20.
Changes in the activity of some enzymes of the tricarboxylic acid cycle during development of sea urchins were investigated. Unfertilized eggs showed substantial activity of citrate synthase, aconitase, NAD- and NADP-specific isocitrate dehydrogenases, fumarase and malate dehydrogenase. During development, the activity of citrate synthase, aconitase, NADP-specific isocitrate dehydrogenase and malate dehydrogenase increases gradually, whereas the activity of fumarase remains rather constant. There is no close correlation between changes in the enzyme activity and the increase in oxygen consumption during development. Citrate synthase, aconitase, NADP-specific isocitrate dehydrogenase are mainly localized in the mitochondrial fraction, whereas fumarase and malate dehydrogenase are present in both mitochondrial and cytosol fractions. The intracellular localization of these enzymes does not change during development. A possible mechanism for the regulation of some enzymes of the tricarboxylic acid cycle in sea urchin eggs is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号