首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

2.
An H-2Kb- negative clone of BL6 melanoma (BL6-8) was transfected with neor, H-2Kb, or H-2IAk genes. In an 18-h cytotoxicity assay clones with high levels of H-2Kb Ag expression were found more sensitive to lysis by spleen cells of syngenic and allogeneic mice than H-2Kb low clones. NK cells were involved in the lysis of H-2Kb+ BL6 melanoma clones, with spleen cell cytotoxicity of mice increased after poly I:C stimulation or decreased after pretreatment with anti-asialo GM1 serum or NK1.1 mAb. Anti-TNF Ab were also able to reduce the cytotoxicity of normal spleen cells and completely abolished the cytotoxicity of the NK-depleted spleen cells suggesting involvement of NC cells in lysis of H-2Kb+ BL6 melanoma clones. Increase in sensitivity of H-2Kb+ BL6 cells to natural cell-mediated cytotoxicity was associated with the appearance of NK recognizable determinants as assessed by the cold target inhibition assay. All BL6 clones, irrespective of sensitivity to natural cell-mediated cytotoxicity, showed high sensitivity to lysis by LGL-derived granules. In contrast, all H-2Kb low BL6 clones were resistant and all H-2Kb highly positive clones were sensitive to lysis by TNF-alpha. When an H-2Kb highly positive clone was selected in vitro for resistance to TNF, it concomitantly showed increased resistance to cytotoxicity by spleen cells, confirming the importance of TNF in spleen cell cytotoxicity against H-2Kb+ melanoma cells. Taken together, the data indicate that class I H-2Kb but not class II H-2IAk gene product could increase the sensitivity of BL6 cells to lysis by NK and natural cytotoxic cells as well as TNF. We hypothesize that these effects could be due to pleiotropic effects of H-2Kb gene products on various biologic properties of BL6 melanoma cells some of which may be more directly involved in regulation of tumor cell sensitivity to lysis by NK and/or natural cytotoxic cells.  相似文献   

3.
The lymphoma mutant RMA-S escaped graft rejection after transplantation over a minor histocompatibility barrier, whereas it was rejected in H-2 allogeneic mice. The parental control line was rejected in both situations. The mutant, which had been selected against MHC class I molecules retained 5 to 10% of the wild-type H-2Db, Kb, and beta 2-microglobulin expression on the cell surface. It remained sensitive to allo-H-2b CTL in vitro, but was completely resistant to minor histocompatibility antigen-specific, H-2b-restricted CTL. It was equally resistant to other H-2b-restricted responses against internally derived Ag, such as tumor-specific CTL or a CTL clone specific for the influenza virus nucleoprotein. The results indicate a target cell defect that selectively abolishes the sensitivity to H-2-restricted CTL directed against internally processed Ag. This appears sufficient to shift the transplantation response over a minor histocompatibility Ag barrier from rejection to acceptance. There are two possible explanations for the results: 1) a block in the MHC class I-directed pathway for internal Ag processing, and 2) subthreshold H-2/Ag ligand density in relation to triggering requirements of restricted CTL. Regardless of the type of defect, the results demonstrate a difference between allo-H-2-specific and H-2-restricted CTL recognition at the level of the target cell.  相似文献   

4.
We have taken the approach of producing somatic cell variants with altered H-2 products to study the structural requirements for cell surface expression of class I histocompatibility molecules. H-2 antigen variants generated by chemical mutagenesis of a cell line expressing the H-2b haplotype were first selected with alloantisera for their loss of H-2Kb expression, and then were analyzed by radioimmunoassay for the appearance of intracellular Kb antigen. For one such variant (69.9.15), whereas the H-2Kb antigen was absent from the cell surface as assayed by antibody-mediated complement-dependent cytotoxicity, an H-2Kb molecule was detected within the cell lysate as confirmed by direct immune precipitation with Kb-specific monoclonal antibodies. The product had an altered antigenic phenotype, since it reacted with only two anti-Kb monoclonal antibodies (Y-3 and EH-144) and not with a third (5F1.2). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis identified the beta 2 microglobulin-associated, intracellular H-2Kb heavy chain to be slightly smaller in Mr than the H-2Kb of the parental cell line. Hybridization analysis revealed the Kb gene from the variant to be without gross alterations, and furthermore, identified a Kb mRNA species that was identical in size to wild-type Kb mRNA. Because complementation was not observed after somatic cell fusion of variant cells with BALB/c splenocytes, it appeared that the alteration in Kb expression was due to a cis-acting defect. In addition, DNA-mediated gene transfer of the wild-type Kb gene into the variant cell line resulted in expression of the Kb antigen on the cell surface, thus confirming that the defect in expression of the mutant Kb product was not due to other factors in the 69.9.15 cell line. Such findings are consistent with the conclusion that stable H-2Kb surface-negative somatic variants can arise due to limited alterations in the Kb gene, resulting in the synthesis of a class I molecule that is expressed only as an intracellular product.  相似文献   

5.
Rejection of the MHC class I negative 402AX teratocarcinoma is accompanied by induction of tumor cell-encoded H-2K and H-2D antigens by the genetically resistant host. To determine whether MHC antigen expression is required for 402AX rejection, we have prepared H-2Db-transfected 402AX cells (402AX/Db). Transfectants express high levels of H-2Db, most of which is not associated with beta 2-microglobulin. MHC syngeneic and allogeneic mice susceptible to 402AX are resistant to 402AX/Db, suggesting that MHC class I antigen expression is required for tumor rejection. Autologous 129 hosts, however, are susceptible to 402AX/Db. 402AX cells transfected with the H-2Kb gene (402AX/Kb) are also lethal in the autologous 129/J host, but rejected by MHC syngeneic and allogeneic mice. Non-129 strain 402AX-susceptible mice pre-immunized with 402AX/Db or simultaneously challenged with 402AX/Db plus 402AX are immune to 402AX. Mice immunized with 402AX/Db produce MHC class I induction factor. 402AX/Db and 402AX cells are lysed equally by natural killer cells, indicating that in 402AX cells the expression of class I antigens is unrelated to NK susceptibility. These studies confirm the requirement for class I expression in 402AX immunity, but demonstrate that in the autologous host immunity requires additional factors beyond class I antigen expression.  相似文献   

6.
The work described here demonstrates the importance of major histocompatibility complex class I antigens for the control of tumor growth and metastasis by the host's immune system. In certain murine tumor cells which have lost expression of H-2 class I antigens, a de novo expression of H-2 can be achieved by transfection with syngeneic class I genes. In contrast to the parental cells the transfected tumors do not grow any more in syngeneic mice, or in other cases they do not form metastases. The studies suggest that the de novo expression of the H-2 antigens renders the tumors highly immunogenic and leads to effective recognition of a tumor-associated antigen in conjunction with the transfected H-2 antigen. These conclusions were confirmed in other tumor systems. For example, separation of a heterogeneous tumor into clones expressing high or low amounts of H-2 showed that only the tumor cell with low H-2 grew well in syngeneic mice, whereas the H-2 high tumor clones were rejected. In other studies in vitro induction by IFN-gamma of H-2 antigen on H-2 negative tumors led to reduced tumor growth in vivo which was due to the increased immunogenicity. About 10% of human tumors are also low or defective for HLA class I expression and often these tumors appear to be more malignant. The class I negative tumors could either have arisen from class I low or negative tissues or are HLA loss variants which escaped the attack of the immune system. Altogether, our studies and the data of other laboratories demonstrate the important role of class I antigens for anti-tumor immunity and they suggest that modulation of class I expression by gene transfection or by induction with soluble mediators could be a useful tool for the manipulation of tumor immunity.  相似文献   

7.
In this study we demonstrate that antitumor CTL repertoire restricted to a single MHC class I allele is higher in homozygous than in heterozygous mice. Consequently, transfection of two parental H-2K genes, but not of a single H-2K gene into a highly metastatic H-2K-negative tumor clone, resulted in abrogation of metastatic properties in F1 recipients. Clones of the 3LL carcinoma, which are low H-2Kb expressors, are nonimmunogenic and highly metastatic. Transfection of H-2K genes converted cells of such clones to nonmetastatic in syngeneic homozygous mice. However, in semi-syngeneic heterozygous mice, single H-2K transfectants retained their metastatic phenotype. In such heterozygous mice, i.e., in (H-2d x H-2b)F1, or in (H-2k x H-2b)F1, transfection of the two parental H-2K genes was required for complete abolishment of the metastatic phenotypes. In fact, in these heterozygous animals, even the local growth (i.e., tumorigenicity) of the double H-2K transfectants was significantly suppressed. These observations are attributed to the difference between homozygous and heterozygous mice with regard to the T cell repertoire restricted to a single H-2K-tumor-associated antigen complex. The reduced tumorigenicity and the complete abrogation of the metastatic phenotype was a function of a high immunogenic competence of the double transfectants in F1 heterozygous mice, which was significantly higher than that of single transfectants, as measured by the induction of CTL and of their precursors. Immunization of F1 mice by inactivated double transfectants conferred protection against metastasis formation by a subsequent graft of the parental D122 cells. Single transfectants were only marginally effective in conferring such protection. Applying an immunotherapy protocol, we observed that a series of vaccinations with double transfectants of animals already carrying a parental tumor reduced significantly the generation of metastasis by the otherwise highly metastatic D122 cells.  相似文献   

8.
Many AKR spontaneous thymomas are reported to express different amounts of the major histocompatibility complex class I H-2Kk molecules. Moreover, H-2Kk-deficient AKR tumor cells are found to be more malignant when compared to tumor cells that express abundant levels of the H-2Kk molecules. To corroborate further the role of H-2Kk in tumorigenesis of AKR leukemia, we have, in this study, expressed antisense H-2Kk RNA in a high-H-2Kk-expressing and poorly tumorigenic AKR thymoma cell line 369. The down-regulation of H-2Kk molecules in the transfected 369 clones rendered them more tumorigenic in syngeneic AKR/J mice. The increase in oncogenicity correlates well with a concomitant reduction in their susceptibility to tumor-specific cytotoxic T lymphocytes in vitro. These results suggest the relevance of H-2Kk molecules in the immune surveillance of AKR tumors.  相似文献   

9.
10.
Rich RF  Green WR 《Journal of virology》1999,73(5):3826-3834
C57BL/6 (H-2(b)) mice generate type-specific cytolytic T-lymphocyte (CTL) responses to an immunodominant Kb-restricted epitope, KSPWFTTL located in the membrane-spanning domain of p15TM of AKR/Gross murine leukemia viruses (MuLV). AKR.H-2(b) congenic mice, although carrying the responder H-2(b) major histocompatibility complex (MHC) haplotype, are low responders or nonresponders for AKR/Gross MuLV-specific CTL, apparently due to the presence of inhibitory AKR. H-2(b) cells. Despite their expression of viral antigens and Kb, untreated viable AKR.H-2(b) spleen cells cause dramatic inhibition of the C57BL/6 (B6) antiviral CTL response to in vitro stimulation with AKR/Gross MuLV-induced tumor cells. This inhibition is specific (AKR.H-2(b) modulator spleen cells do not inhibit allogeneic MHC or minor histocompatibility antigen-specific CTL production), dependent on direct contact of AKR.H-2(b) cells in a dose-dependent manner with the responder cell population, and not due to soluble factors. Here, the mechanism of inhibition of the antiviral CTL response is shown to depend on Fas/Fas-ligand interactions, implying an apoptotic effect on B6 responder cells. Although B6.gld (FasL-) responders were as sensitive to inhibition by AKR.H-2(b) modulator cells as were B6 responders, B6.lpr (Fas-) responders were largely insensitive to inhibition, indicating that the responder cells needed to express Fas. A Fas-Ig fusion protein, when added to the in vitro CTL stimulation cultures, relieved the inhibition caused by the AKR.H-2(b) cells if the primed responders were from either B6 or B6.gld mice, indicating that the inhibitory AKR.H-2(b) cells express FasL. Because of the antigen specificity of the inhibition, these results collectively implicate a FasL/Fas interaction mechanism: viral antigen-positive AKR.H-2(b) cells expressing FasL inhibit antiviral T cells ("veto" them) when the AKR.H-2(b) cells are recognized. Consistent with this model, inhibition by AKR.H-2(b) modulator cells was MHC restricted, and resulted in approximately a 10- to 70-fold decrease in the in vitro expansion of pCTL/CTL. Both CD8(+) CTL and CD4(+) Th responder cells were susceptible to inhibition by FasL+ AKR.H-2(b) inhibitory cells as the basis for inhibition. The CTL response in the presence of inhibitory cells could be restored by several cytokines or agents that have been shown by others to interfere with activation-induced cell death (e.g. , interleukin-2 [IL-2], IL-15, transforming growth factor beta, lipopolysaccharide, 9-cis-retinoic acid) but not others (e.g., tumor necrosis factor alpha). These results raise the possibility that this type of inhibitory mechanism is generalized as a common strategy for retrovirus infected cells to evade immune T-cell recognition.  相似文献   

11.
Mice with the H-2b major histocompatibility complex haplotype are high immune responders to nicotinic acetylcholine receptors (AChR), whereas mice with the H-2k haplotype are generally low responders. F1 progeny of C57BL/6 (H-2b) mice crossed with mice of most H-2k strains are high responders to AChR in standard conditions of testing helper T cell proliferation in vitro (4 X 10(5) lymph node cells/microwell, 1 wk after primary challenge in vivo). In contrast, the F1 progeny of AKR/J (H-2k) crossed with high responder (H-2b) strains (B6, A.BY, or C3H.SW) were all hyporesponsive to AChR when lymphocytes were tested at 4 X 10(5) cells/well. However, at a density of 1 X 10(6) or greater/well, a high level of antigen-specific responsiveness was demonstrable in the F1 hybrid lymphocytes. A shift from low to high responsiveness to AChR at high cell densities was observed also in the H-2b strain AKR.B6. Other strains previously demonstrated to be low responders to AChR did not become responsive to AChR when lymphocyte numbers were increased to 1.4 X 10(6)/well. The N2 generation yielded by backcrossing (AKR X B6)F1 mice to AKR/J were all low responders, whereas N2 progeny derived by backcrossing F1 to B6 were high or low responders in a ratio of approximately 1:1 (independent of their H-2 phenotype). Results consistent with this observation were obtained in (AKR X B6) F2 mice. These data suggest that at least one AKR/J gene outside of the H-2 complex exerts a hyporesponsive influence on the I-A-dependent helper T cell response to AChR in H-2b mice.  相似文献   

12.
The resistance of unirradiated F1 mice against graft-vs-host reaction (GvHR) induced by lymphocytes from certain parental strains is apparently a violation of the basic law in classical transplantation immunity. To explore genetic mechanisms of this peculiar phenomenon, GvHR-associated immunosuppression was examined on various kinds of F1 mice undergoing GvHR induced by parental lymphocytes. In F1 mice raised by crossing DBA/2 mice with various H-2-congeneic B10-series strains, parental lymphocytes having non-H-2 genetic background of DBA (DBA/2 and DBA/1) invariably could not induce GvHR-associated immunosuppression, irrespective of the H-2 haplotype incompatibility involved, whereas lymphocytes of the partner parental strain induced the immunosuppression. The number of the relevant loci in the DBA non-H-2 was assessed to be three recessive loci by examination of the capability to induce the GvHR-associated immunosuppression on lymphocytes from individual (B 10.D2 X DBA/2)F1 X DBA/2 backcross mice. On the other hand, in F1 mice raised by crossing C3H/He or AKR/J mice with various H-2-congeneic B10-series strains, parental lymphocytes of H-2k haplotype, irrespective of their non-H-2 haplotype, invariably could not induce the GvHR-associated immunosuppression. Furthermore, it was revealed that non-H-2 genes of parental C3H or AKR incorporated in the F1 mice determine the resistance of the F1 mice against the H-2k-induced GvHR. The results of examination of the resistance on individual (B10 X [B10.BR X C3H/He]F1) and (B10 X [B10.BR X AKR/J]F1) mice suggested that three non-H-2 loci of C3H/He or two non-2 loci of AKR/J incorporated in F1 hybrids could determine the resistance of the respective F1 mice.  相似文献   

13.
Our previous study revealed that in F1 mice raised by crossing C3H/He or AKR/J mice with various H-2-congenic B10-series strains, parental H-2k spleen cells (SC) could not induce the graft-vs-host reaction (GvHR)-associated immunosuppression (GAIS). We also elucidated that a limited number of non-H-2 genes of parental C3H/He or AKR/J mice that had been incorporated into the F1 hybrids determined the F1 resistance to the GAIS, and the present study was done to explore the mechanism implicated in this type of F1 resistance to GAIS. SC from B10.AL mice carrying an rH-2 (K:k I:k S:k D:d) haplotype but not SC from H-2K B10.BR (k k k k) mice induced GAIS of in vitro CTL responses to third-party alloantigens in H-2k/d (C3H/He x B10.D2)F1 recipients mice. Further, SC from H-2k/a (C3H/He x B10.A)F1 mice carrying heterozygous C3H/B10 non-H-2 background but not SC from the same H-2k/a (B10.BR x B10.A)F1 mice but carrying homozygous B10/B10 background induced GAIS in H-2k/d (C3H/He x B10.D2)F1 recipients. Although C3H/He-, B10.BR-, and C3H.OH (d d d k)-SC were incapable of inducing GAIS in (C3H/He x B10.D2)F1 (k/d k/d k/d k/d) recipients, they were all good inducers of GAIS in (C3H.OH x B10.BR)F1 (d/k d/k d/k k/k) recipients. Exactly the same pattern of co-operative non-H-2 AKR and H-2D region-gene control of GAIS was observed on GvHR induced in H-2k/d (AKR/J x B10.D2)F1 recipients. These results suggest that the non-H-2 genes of C3H/He or AKR/J strain inhibit the functional expression of certain antigenic determinant(s) when it is encoded by heterozygous but not homozygous gene(s) linked tightly to H-2D region of k haplotype. Thus, the F1 resistance to GAIS is mediated by immune response of F1 recipients who miss the antigenic determinant(s) against that expressed on cell surface of GvHR-inducing T lymphocytes.  相似文献   

14.
In a murine strain combination identical in H-2 Ag but disparate in minor histocompatibility (H) Ag consisting of C3H/He (C3H; H-2k, Mls-1b) mice as recipients and AKR/J (AKR; H-2k, Mls-1a) mice as donors, a permanent skin allograft tolerance can be achieved by the cyclophosphamide (CP)-induced tolerance system that consists of i.v. injection of donor spleen cells (day -2) and i.p. injection of CP 2 days later (day 0). Such permanent take of allografts in CP-induced tolerant mice was interfered with by intramuscular injection of cyclosporin A (CsA) from day -5 to day -1 and their grafts were rejected by 21 days after grafting. Mls-1a-reactive CD4+V beta 6+ T cells in the periphery, as the indicator to follow the kinetics of donor-reactive T cells, increased on day 0 and day 3 in the C3H mice treated with AKR spleen cells alone, whereas they disappeared rapidly from day 0 to day 3 in CP-induced tolerant mice. When CsA capable of interfering with IL-2 production and T cell proliferation was administered before CP treatment in CP-induced tolerance system, the number of CD4+V beta 6+ T cells in periphery did not increase on day 0 and 3, but increased on day 7 in contrast to the decreased number of those in CP-induced tolerant mice. On day 7, MLR against donor cells was decreased in CP-induced tolerant mice, but maintained in CsA-interfered tolerant mice. These result may indicate that the destruction of donor-Ag-stimulated, proliferating T cells by CP is interfered with by CsA, probably because CsA inhibits the proliferation of donor-reactive T cells at the time of CP treatment. Furthermore, these results also implicate that the protocol for immunosuppression with CsA and antimetabolites has to be designed carefully in clinical transplantation.  相似文献   

15.
The expression of products encoded by the major histocompatibility complex (MHC) on tumor cells has recently been studied extensively. It has been found that many malignant tumor cells have their MHC antigens 'switched-off' but that these antigens are re-expressed following DNA-mediated gene transfer, with increased tumor immunogenicity as a result and the consequence that these 'transformed' tumor cells are rejected in vivo. This review will discuss approaches that have been taken to induce strong tumor-specific immunity by the manipulation of MHC expression on tumor cells.  相似文献   

16.
Mutant cells generated in vivo can be eliminated when mutated gene products are presented as altered MHC/peptide complexes and recognized by T cells. Diminished expression of MHC/peptide complexes enables mutant cells to escape recognition by T cells. In the present study, we tested the hypothesis that mutant lymphocytes lacking expression of MHC class I molecules are eliminated by autologous NK cells. In H-2b/k F1 mice, the frequency of H-2Kb-negative T cells was higher than that of H-2Kk-negative T cells. The frequency of H-2K-deficient T cells increased transiently after total body irradiation. During recovery from irradiation, H-2Kk-negative T cells disappeared more rapidly than H-2Kb-negative T cells. The disappearance of H-2K-deficient T cells was inhibited by administration of Ab against asialo-GM1. H-2Kk-negative T cells showed higher sensitivity to autologous NK cells in vitro than H-2Kb/k heterozygous or H-2Kb-negative T cells. Adding syngeneic NK cells to in vitro cultures prevented emergence of mutant cells lacking H-2Kk expression but had little effect on the emergence of mutant cells lacking H-2Kb expression. Results in the H-2b/k F1 strain correspond with the sensitivity of parental H-2-homozygous cells in models of marrow graft rejection. In H-2b/d F1 mice, there was no significant difference between the frequencies of H-2Kb-negative and H-2Kd-negative T cells, although the frequencies of mutant cells were different after radiation exposure among the strains examined. H-2b/d F1 mice also showed rapid disappearance of the mutant T cells after irradiation, and administration of Ab against asialo-GM1 inhibited the disappearance of H-2K-deficient T cells in H-2b/d F1 mice. Our results provide direct evidence that autologous NK cells eliminate mutant cell populations that have lost expression of self-MHC class I molecules.  相似文献   

17.
An interspecies class I MHC molecule, Kb1+2/A2 (in which the alpha-1 and alpha-2 domains of the H-2Kb molecule have been linked to the alpha-3, transmembrane and intracytoplasmic domains of the HLA-A2 molecule) has been expressed on both human and mouse target cells by gene transfer. Maintenance of serologic determinants has been demonstrated. However, decreased lysis by allospecific CTL populations of cell lines that expressed a hybrid interspecies class I molecule, Kb1+2/A2, as compared with lines that expressed the native Ag, H-2Kb, has been described. An analysis with a limited panel of H-2Kb allospecific clones demonstrated that not all H-2Kb-specific CTL can lyse cells that express Kb1+2/A2 Ag. This suggested that the reduction of lysis by CTL populations was due to the loss of specific alloreactive clones in the population. Each clone used in this study was then defined as having high or low affinity characteristics. No correlation between the affinity of the CTL and the ability to recognize the interspecies hybrid molecule could be shown. Rather, these data suggest that antigenic determinants that are located within the polymorphic domains, alpha-1 and alpha-2, may be conformationally influenced by the alpha-3 domain.  相似文献   

18.
Abstract

A simple strategy for designing a cancer immunotherapeutic system involves modification of tumor cells from tumor-bearing animals in vivo in such a way that the host can evoke a specific immune response against them. We have expressed allogeneic class I major histocompatibility complex (MHC) molecules on tumor cells, through ex vivo DNA-mediated gene transfer. These molecules are potent immuno-modulators for the stimulation of strong immune reactions against certain malignancies. In order to achieve efficient gene delivery to tumor cells in vivo we have compared the efficiencies of gene transfer into mammalian tumor cells by the biolistic particle delivery system and cationic liposomes. In this report, we have demonstrated that cationic liposomes prepared by DC-chol and DOPE gives the best efficiency of transfection for tumor cells in vivo. We also showed that a strong anti-H-2Kb allo-reactive cytotoxic T lymphocyte (CTL) response could be generated following in vivo immunization of AKR/J mouse spleens with the H-2Kb gene and DC-chol cationic liposomes. The direct immunization of mouse spleens to induce cell-mediated immunity against exogenous antigens may allow alternative treatment strategies for cancer immunotherapy.  相似文献   

19.
The tumorigenicity of adenovirus type 12 (Ad12)-transformed cells has been attributed to the low levels of class I major histocompatibility complex (MHC) protein expression by these cells. These levels of class I proteins are thought to be below the threshold critical for cytotoxic T-lymphocyte recognition, a process that may be involved in tumor cell immunosurveillance. We have used gene transfer experiments to investigate the role played by class I protein expression in the tumorigenicity of Ad12-transformed BALB/c mouse cells in naive, syngeneic adult mice. Our Ad12-transformed mouse cells were tumorigenic in adult mice and were similar to other Ad12-transformed mammalian cells in that they expressed low levels of class I MHC mRNA and cell surface proteins. Despite these low levels of expression, the cells were highly immunogenic in syngeneic mice and were rejected as allografts by allogeneic mice. Transfection of genomic H-2Dd or H-2Ld fragments into these cells produced a variety of cell clones that expressed increased levels of cell surface class I proteins. These cells expressing high levels of class I protein were up to 16-fold more tumorigenic than the parental cells in syngeneic adult mice. Thus, by quantitative assays, the tumorigenicity of Ad12-transformed BALB/c mouse cells is not functionally related to the low levels of class I MHC proteins they express. The increased tumorigenicity expressed by H-2Dd- and H-2Ld-transfected cells was not detected in BALB/c nu/nu mice, suggesting that a thymus-dependent mechanism that is not mediated by evasion of cytotoxic T-lymphocyte recognition could contribute to the difference in tumorigenicity of Ad12-transformed BALB/c mouse cells that express low and high levels of class I MHC proteins.  相似文献   

20.
The diversity of T cell receptors specific for self MHC gene products   总被引:1,自引:0,他引:1  
Cytolytic and helper T cells exhibit, in addition to their specificity for foreign antigen, a restriction specificity for self MHC gene products. The present study was designed to assess the degree of diversity within the repertoire of receptors that are involved in T cell recognition of self MHC gene products. For this purpose, we generated a series of murine cytolytic T lymphocyte (CTL) clones specific for a hapten antigen and restricted to the self MHC gene product H-2Kb. An analysis of the hapten fine specificity of these clones by using hapten analogues revealed the presence of substantial diversity within the repertoire of CTL receptors specific for the hapten. The degree of diversity within the repertoire of self H-2 recognition structures on these clones was assessed by testing clones on panels of syngeneic, congenic H-2K disparate, and H-2Kb mutant target cells bearing varying amounts of antigen. A striking degree of heterogeneity in H-2K recognition was found among these H-2Kb restricted CTL. We estimate that there are probably a minimum of 65 different patterns of H-2K recognition among these clones. Our results suggest a high degree of diversity exists within the repertoire of self MHC recognition structures on antigen-specific T cells restricted to a single self MHC gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号